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* Continuum tensor random fields
 Mesoscale properties

* From scalar to tensor-valued random fields
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Separation of Scales?

microscale: d
average size of grain
(microstructure)

()

mesoscale: L
representative-volume-element(RVE)

statistical volume element (SVE)

(b)

macroscale: L __ .,

Separation of scales
d<<L<<L

macro

does not generally hold!
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Continuum Tensor Random Field

C(w,x) =C+C'(w,Xx)

Can the random field (RF) be

assumed isotropic (£,v) and
smooth? No

Can we assume a unique tensor RF
with anisotropic realizations? No

Can we do local averaging of tensor
RF for input to stochastic finite

elements (SFE)? No Applications:
« Random field models

Uncertainty quantification
Waves in random media
FGM ...

Can we assume correlation
functions of tensor RF w/o
reference to micromechanics? No
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Continuum Tensor Random Field

For instance, wavefront in
continuum mechanics is modeled
as a singular surface:

... an idealized model —
homogeneous continuum,
no microstructure
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Continuum Tensor Random Field
* Mesoscale *

C(a),x):a W € )
!

What is its scale
dependence?

Is it isotropic?

Is it uniquely defined?
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Mesoscale Properties

Local averaging Z,(w,x)= L—ld 7, (0,X )dx

IS Inconsistent with constitutive laws in 2D or 3D

because mechanics involves

boundary value problems...
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Mesoscale Properties

Determine mesoscale properties from Hill-Mandel condition;
for Cauchy materials:

G:Ezg:g N j (t—g-n)-(u—g-x)dS:O
0B

Equivalence of mechanical and energetic definitions of properties
requires...

Uniform boundary conditions (BC): Vx € 0Bj

M|

1. Displacement (or Dirichlet) BC.: U=&-Xx
2. Traction (or Neumann) BC: [ = E ‘n
3. Displacement-traction (t _ g . n) . (u _ g . x) -0

(or mixed-orthogonal) BC:
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Mesoscale Properties
Scale-dependent homogenization

Single crystal

u,=¢e,x (Ensemble avg.) [Phys. Rev. B, 2008: JMPS, 2008; IJES, 2010]
G 70.5Ej-
- —=—— Ta-DBVP
5 ——~—— Ta-TBVP
= °F ——=— Ta-Voigt
o - Ta-Reuss
O 695 .
Polycrj)’g*\lal S é v -
§ 68.5
t = Gjnj (Ensemble avg.) 6 |

()]
oo

67 .5/

t=c-n—>S', u=¢-x—C

Window size

Hierarchy of bounds:
(s1) <..<(sy) <(sy) <.<c?<(ct)<(cL)...<(c)
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Mesoscale Properties
Two-phase composite material

In two-phase media, the
beta probability distribution function

approximates the scale change
for entire range of mesoscales:
from SVE to RVE

[IJSS, 1998]
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Mesoscale Properties
Two-phase composite material

A i.‘:,‘.',:{ Effect of contrast in C:
® e : . .
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Mesoscale Properties
Two-phase composite material

?T:‘:.%'{ Effect of contrast in C:

L . . . . .
® 0q0% sOftinclusions in stiff matrix
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Mesoscale Random Fields
Scalar RFs

Z :QxX >R, Z(w,x)=2z,xeX

F(z,..,2,;X,...X )=P{ZL(x,)<zZ,., (X )<z}

(Z(x))=p, (Z(x)Z(x;+X)) =R, (x) <0

R(Xlaxz) = <[Z(X1) - <Z(X1)>][Z(X2) - <Z(X2)>]>

R(x,,X,)

o(x,)o(x,)

p(Xl,Xz) =

p(x)=p(x), x= HXH = XX,

p(x)Z—l/D
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Mesoscale Random Fields
Constructing correlation functions

Using simpler models, one may construct new, more
complex correlation functions:

1.

A convex combination of probability distributions is a
probability distribution (and the same holds for density
functions)

. A convex combination of correlation functions is a

correlation function

A finite product of correlation functions is a correlation
function
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Mesoscale Random Fields
Basic models of correlation functions

p(x)=exp[—Ax*], A>0, O0<a <2
p(x)=[1+A4x“]", 4>0, 0<a <2

exp[—Ax”]
1+ Bx*”

p(x)=exp[-) Ax*], 4,>0, 0<a <2, s=1,..,r

s=1

p(x)= , A, B>0, O<a,B <2

p(x)=[-]Ja+Bx")L], B, >0, 0<B, <2, [ =12,.
s=1

p(x)=exp[—Ax*](coshBx“)’, A+BR2l-s5)>0, 0<a<2, s=1,..,r

, A+ B2l-5)>0, O<a <2, s=1,..,r

NOTE: These do not separate local from long-range effects
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Mesoscale Random Fields
Vector RFs

Z: OxX—>R* Z(w,x)=1z,xeX

Wide Sense Stationary (WSS)
<ZI(X)> = H;> <Zi(Xl)Zj(Xl +X)) = RU(X) <0

Ry(x,,%,) = ([Z,(x) = (Z,(x )[Z,(x,) = (Z,(x,))])

Rl.j(xl,x2)

Gi(XI)Gj (x,)

pij(XDXZ) =

pij(xnxz) = pij(‘xl _Xz‘)
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Mesoscale Random Fields
Tensor RFs
([C;(x,) = (C, XNIC,u (x,) = (Cpu (x,))])

o (x,)o,(X,)

2"d rank tensor RF
correlation: Py (X,,X,) =

- Stationary RF: <Cl;,-(X)>=Const VX
Py (X,X,) = py (X) X=X, =X,
* |sotropic RF: <Cl-,-(X)> =Cs, vx x=|x

py () =K, (x)8,8, + K, (x)] 8,8, +5,5, |
n;no, +nnod, +nno, + njn,5ik]

[
[nl.nj5k, + nknl5ij:|

Five functions K: K,+2K,-K, =
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Mesoscale Random Fields

Tensor RFs
2"d rank tensor RF

correlation: Py (X,X,) =

Tensor RFs of constitutive
responses (from
micromechanics)

in anti-plane elasticity —> Cl,, @
of a matrix-inclusion J ~ -
composite

Rf (X) =R, (x,)R,(x;)

D
RI(x)=]]R,(x,) D=123
d=1

o m
©) ()
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Mesoscale Random Fields

Tensor RFs
4th rank tensor RF

([Cyu (%) = (Coe IIC,,. (%) = (. (X))

correlation: P (Xp,X,) =
Gijkl(xl)gprst(x2)
Tensor RFs of constitutive
responses (from
micromechanics)

in 2D elasticity > (.
.. : ijkl

of a matrix-inclusion

composite

D
R,x)=][R;(x,) D=12,3
d=1
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Spatial Correlations of Random Fields
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Spatial Correlations of Random
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Spatial Correlations of Random
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Concluding Remarks

* For tensor-type properties of materials, need RFs
consistent with mechanics

« Consistent with mechanics iff mechanical definition of
properties = energetic definition of properties
(Hill Mandel condition)

« Random fields of properties are functions of
microstructure + mesoscale

* Micromechanics analyses lead to counterintuitive results

« (Can construct correlation functions from products of
basic 1D models

« Can go to: coupled field phenomena, inelastic properties,
fractal versus long-range effects...
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ADDITIONAL SLIDES FOLLOW
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Dynamics

Determine mesoscale properties from Hill-Mandel condition
for dynamics of Cauchy materials:

C,E,=0, &, <> %js(g—a_ﬁ m (i~ €, x,) dS—k, + (k) =0

Determine mesoscale properties from Hill-Mandel condition
for dynamics of Cosserat materials:

Ti 7]'1'_7_]'1' )}ji+:uji Kji_uji Kji = o
%JS(ti _T_ki nk)<ui_uiaj xj) dS+%.[S<mi_M_ki nk)(gb.i o .iﬂj xj) ds +

ke, + (k) —k, +(K,)
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Scale-Dependent Response
3D random polycrystal

Scaling function

——+—— Copper

- Lithium

——<— Tantalum
Magnesium Oxide
Antimony-Yttrium

) T . MR - SRR w;—‘m L L L
1 2 3 4 5 6 7 8

Window size

Scaling function:  (4,5)=2

[JMPS, 2008; IJES, 2009]

5
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Rescaled function

04

02

Antimony-Yttrium

V4
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Window size
1Y !
J4 ——j exp| -0.767(5 -1)" " |, 6= N

\

Zener anisotropy index
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Fractals and Hurst Effect

Two new Gaussian RFs
are able to grasp

fractals
(i.e. roughness)

and Hurst effect
(i.e. heavy-tail behavior of
covariance function)

1. Cauchy correlation function:
0 -n/0
p(x)=(1+x") ", 6€(0,2], n>0
[Gneiting & Schlather, SIAM Review, 2004]
2. Dagum correlation function:

p()=1-(1+Ax") ", 0<(7-¢)(1+5¢), e<7

[Porcu et al., PEM 2007, 2011, Stat. Probab. Lett, 2007, Bernoulli, 2008]




