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Flux Variable-Flux Target OBR 

    

€ 

minimize
Fij

h
     

Cell
∑ Fij

h − Fij
T( )
2

Flux
∑    subject to

˜ m i
min ≤ mi + Fij

h

i< j
∑ − Fji

h

i> j
∑ ≤ ˜ m i

max i = 1,…, N

OBR-FVFT = global inequality constrained QP 

The OBR-FVFT feasible set is non-empty: for any given density 
distribution there exists a set of antisymmetric fluxes which satisfy 
the global inequality constraints. 

Theorem. (Existence of unique optimal solutions) 

 C1 & C2  

 C3  



Connection with state-of-the-art FCR 

Change of variables 

€ 

Fij
h = (1−α ij )Fij

L +α ijFij
T = Fij

L +α ijdFij , dFij = Fij
T − Fij

L , α ij = α ji

After changing variables the OBR-FVFT QP transforms as follows 

Objective 

Constraint 
€ 

Fij
h − Fij

T = (1−α ij ) dFij

  

€ 

˜ Q i
min ≤ α ijdFij

i< j
∑ − α ijdFij

i> j
∑ ≤ ˜ Q i

max i =1,…,N

  

€ 

˜ Q i
min = ˜ m i

min − ˜ m i
L ≤ 0    and    ˜ Q i

max = ˜ m i
max − ˜ m i

L ≥ 0

where 

 Liska et al, Optimization-based synchronized flux-corrected conservative interpolation (remapping) of 
mass and momentum for ALE methods, Journal of Computational Physics, 2010,  pp.1467-1497 



FCR is a global constrained optimization problem such that  
(1)  The FCR objective function is equivalent to the OBR objective.  
(2)  The FCR feasible set is always a subset of the OBR feasible set. 
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Theorem.  

FCR can be viewed as approximation of OBR obtained by replacing 
the OBR constraints set by a simpler set of box constraints 



Impacts of the smaller FCR feasible set 
The “torture” test 

Initial: “peak” 

OBR: “peak” 

FCR: “step” 

FCR does not preserve the shape of the peak density distribution 
May be improved by using iterated FCR 

Designed to test 
topology preservation 



Deconstructing the torture test 

OBR feasible set 

FCR feasible set 



Swept region implementation 

€ 

Fij
h = ρi

h (x)dV
˜ κ i ∩κ j

∫ − ρi
h (x)dV

κ i ∩ ˜ κ j
∫

€ 

˜ m i
h = mi

h + Fij
h

E( ˜ κ i )
∑

Exact cell intersections 
Dukowicz, 1984 

Swept region (SR) approximation 
Margolin, Shashkov, 2003 

€ 

˜ κ i ∩κ j

€ 

˜ κ i

€ 

Fij
h = ρi

h (x)dV
Σ f

∫

€ 

Σ f

SRs are completely determined by the coordinates of old and new cells ⇒ efficiency 
SRs give exact cell masses for linear density ⇒ accuracy 

Exact cell intersections guarantee that low order fluxes in FCR are monotone. 
However, this is not true for SR without additional restrictions on mesh motion. 

Potential issue for FCR but not for OBR, which does not use low order fluxes 

€ 

˜ κ i



OBR-FVFT Robustness (SR Implementation) 

C=5 C=6 C=7 C=14 C=15 C=16 C=100 
OBR ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
FCR ✔ ✔ ✔ ✗ ✗ ✗ ✗ 
Donor ✔ ✗ ✗ ✗ ✗ ✗ ✗ 

Preservation of monotonicity 

C=3 C=4 C=5 C=15 C=16 C=100 
OBR ✔ ✔ ✔ ✔ ✔ ✔ 
FCR ✔ ✗ ✗ ✗ ✗ ✗ 

Preservation of linearity 

Donor FCR OBR 

Mesh motion 
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Cells Remaps L2 error L1 error L∞ error L2 rate L1 rate L∞ rate 

64 320 7.71e-3 5.96E-3 1.57E-2 — — — 

256 1280 1.78e-3 1.31E-3 3.81E-3 1.06 1.09 1.02 

1024 5120 4.42E-4 3.25E-4 9.51E-4 1.03 1.05 1.01 

4096 20480 1.10E-4 8.10E-5 2.38E-4 1.02 1.03 1.01 

Cells Remaps L2 error L1 error L∞ error L2 rate L1 rate L∞ rate 

64 320 1.52E-3 1.23E-3 3.87E-3 — — — 

256 1280 8.96E-5 7.50E-5 2.44E-4 2.04 2.02 1.99 

1024 5120 5.54E-6 4.68E-6 1.54E-5 2.03 2.01 1.99 

4096 20480 3.45E-7 2.93E-7 1.39E-6 2.02 2.01 1.92 

OBR-FVFT Accuracy: Hourglass Mesh Motion 

OBR remains 2nd order (best possible); 
FCR accuracy reduced to 1st order 



Optimization-Based Transport (OBT) extends OBR to transport: 
-  inherits the robustness & accuracy of OBR 
-  impervious to cell shapes 

⇒ monotone and linearity preserving transport scheme on arbitrary cells!  

Dukowicz and Baumgardner (JCP 2000) point out that  

                       incremental remap = transport algorithm.  

Bochev, Ridzal, Young, Optimization-based modeling with applications to transport.  
Parts 1-3, Springer Lecture Notes in Computer Science, LNCS 7116, 2012. 

Optimization-based monotone transport (OBT) 

Incremental remapping such as CSLAM (Lauritzen et al JCP 2010) handles 
passive tracer transport in climate modeling and simulation.  

However, CSLAM and many other existing methods require structured grids, and all 
rely on monotone reconstruction methods, a.k.a. limiters. 



ρ 

Incremental remap as transport scheme 

ρ 
“new” 

ρ 
“old” 

Optimization-based Remap (OBR) ⇒ OBT algorithm 

t t+Δt t+Δt 

Remap 

€ 

mi(t) = ρ(x)dV
κ i (t )
∫

€ 

mi(t +Δt) = mi(t)
€ 

κ i (t )

€ 

κ i (t + Δt )

€ 

d
dt
mi(t) =

d
dt

ρ(x)dV
κ i (t )
∫ = 0Mass is conserved in Lagrangian volumes:  



L1 Error CFL=1 CFL=1.60 CFL=1.62 CFL=2.20 CFL=2.25 CFL=5.21 CFL=5.50 

OBT 2.14E-02 2.37E-02 2.38E-02 2.60E-02 2.62E-02 4.02E-02 4.36E-02 

FCRT 1.97E-02 2.19E-02 2.21E-02 3.00E-02 6.00E+06 9.45E+38 1.83E+40 

VLT 2.14E-02 2.36E-02 8.15E-01 3.47E+54 2.85E+56 2.83E+79 6.23E+77 

OBT inherits the robustness of OBR 
Zalesak cylinder: rotation 

OBR: CFL=1.0 

OBR: CFL=4.7 
Initial density 



OBT applied to a 2D test example 

VLT 

Initial 

OBT 

Van Leer 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

CFL < 1 Grid size:      NxN,      N=100 
Time steps:  2πN    628 

This example combines “smooth” and “sharp” features! 



OBT with adaptive targets 

Initial OBT OBT-A 

Rotating cylinder 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=45 
Time steps:  2πN    282 



OBT with adaptive targets: fine grid 

Initial 

OBT 

OBT-A 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=100 
Time steps:  2πN    628 CFL < 1 

OBT 



OBT with adaptive targets: coarse grid 
Initial 

OBT 

Rotating flow example (LeVeque, SINUM 33, 1996) 

€ 

u = −(y −0.5) v = (x −0.5)

Grid size:      NxN,      N=45 
Time steps:  2πN    282 CFL < 1 

OBT-A 



OBT ADAPTIVE OBT 



Cost in remap applications 
Cells Remaps FCR (sec) OBR-FVFT  Ratio 
64x64 320 4.1 7.3 1.7 
128x128 640 25.4 49.5 1.9 
256x256 1280 177.5 390.6 2.2 
512x512 2560 2049.1 3663.8 1.8 

Matlab wall-clock times on a single Intel Xeon X5680 3.33 GHz processor 
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Cells Remaps FCR (sec) OBR-FVFT Ratio 
64x64 320 4.9 7.4 1.6 
128x128 640 28.0 53.9 1.9 
256x256 1280 194.5 400.8 2.1 
512x512 2560 2060.1 4410.5 2.1 
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Cells Remaps FCR (sec) OBR-FVFT Ratio 
64x64 320 4.6 9.0 2.0 
128x128 640 27.4 85.1 3.1 
256x256 1280 192.5 414.4 2.2 
512x512 2560 2064.9 3177.1 1.5 
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Cost in transport applications 

Cells Time 
steps 

FCR (sec) Van Leer  OBR-FVFT  Ratio 

64x64 400 4.59 4.50 44.32 9.8 
128x128 810 44.64 47.25 757.30 17.0 
256x256 1,610 387.88 393.64 4,295.71 11.07 
512x512 3,220 5,715.08 5,805.66 26,410.87 4.6 
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Cells Time 
steps 

FCR (sec) Van Leer  OBR-FVFT  Ratio 

64x64 400 4.51 4.55 34.86 7.7 
128x128 810 47.60 48.35 737.89 15.5 
256x256 1,610 390.47 399.15 5545.9 14.2 
512x512 3,220 5802.05 5804.66 50,940 8.8 
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Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro 



Switch to mass-form of remap 

€ 

˜ m i
EX = mi

EX +δmi
EX ; δmi

EX = ρ( x)dV
˜ κ i
∫ − ρ( x)dV

κ i

∫

The exact mass on new cell     can be expressed in aggregate mass-transfer form: 

€ 

˜ κ i

€ 

δmi
h

Cell
∑ = 0 ⇒ ˜ m i

h

Cell
∑ = M

C1: Mass conservation. Not free anymore: requires a single linear constraint:  

  

€ 

˜ m i
h = mi

h +δmi
h ,   where     δmi

h = ρi
h ( x)dV

˜ κ i
∫ − ρi

h ( x)dV
κ i

∫ ≈ δmi
EX

Therefore, the mass on the new cell      can be approximated by  

€ 

˜ κ i

€ 

κ iC2: Linearity preservation.  Guaranteed if       is exact for linear functions on all     : 

€ 

ρi
h

Target (high-order) mass-transfers 

€ 

δmi
T = ρi

h ( x)dV
˜ κ i
∫ − ρi

h ( x)dV
κ i

∫

C3: Local bounds ⇒        
  

€ 

δ ˜ m i
min ≤ δmi

h

cell
∑ ≤δ ˜ m i

max i = 1,…, N Box constraints 



Optimization-based remap (OBR): MVMT form 

OBR-MVMT = “singly linearly constrained QP with simple bounds” 

The OBR-MVMT feasible set is non-empty: for any given density 
distribution there exists a set of aggregate mass transfers      , 
which satisfy the box constraints and sum up to zero 

Theorem. (Existence of unique optimal solutions) 
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h

Cell
∑ = 0

 C3  

 C1  

 C2  

€ 

δmi
h



Fast Optimization Algorithm for OBR-MVMT 

    

€ 

minimize
δmi

h
          δmi
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∑ − µ2, i (δmi
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µ1, i (δmi
h −δ ˜ m i
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h −δ ˜ m i
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and δmi
h

Cell
∑ = 0

The Lagrangian 

The Karush-Kuhn-Tucker (KKT) conditions 

Key property of singly linearly constrained QP with simple bounds: 

Without the equality constraint the QP is 
fully separable into N one-dimensional 

QPs with simple bounds 

Without the equality constraint the KKT 
conditions are fully separable and can 

be solved for any fixed value of λ. 



Fast Optimization Algorithm for OBR-MVMT 
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δmi
h = δmi

T + λ µ1, i = 0 µ 2, i = 0                              if   δ ˜ m i
min ≤ δmi

T + λ ≤ δ ˜ m i
max

δmi
h = δ ˜ m i

min µ 2, i = 0 µ1, i = δmi
h −δmi

T − λ           if   δ ˜ m i
min ≥ δmi

T + λ

δmi
h = δ ˜ m i

max µ1, i = 0 µ2, i = δmi
T −δmi

h + λ           if               δmi
T + λ ≥ δ ˜ m i

max

Step 1: solve for λ fixed 

€ 

δmi
h (λ ) = median(δ ˜ m i

min ,δmi
T + λ,δ ˜ m i

max ); i = 1,...., N

Step 2: adjust λ in an outer iteration to satisfy the single equality constraint 

  

€ 

Solve δmi
h (λ)

Cell
∑ = 0 piecewise linear, monotonically increasing 

function of single scalar variable λ. 

-  Can solve to machine precision by a simple secant method  
-  Globalization is unnecessary because λ0=0 is an excellent initial guess:  

€ 

δmi
h (λ0 ) = median(δ ˜ m i

min ,δmi
T ,δ ˜ m i

max ); i = 1,...., N

-                   solves the QP without the equality constraint, i.e., “almost” a solution 
-   Locality                      barely violates the mass conservation constraint 

€ 

δmi
h (λ0 )

€ 

⇒δmi
h (λ0 )



OBR-MVMT does not compromise 
robustness & accuracy 

C=5 C=6 C=7 C=14 C=15 C=16 C=100 

FVFT ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

MVMT ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

FCR ✔ ✔ ✔ ✗ ✗ ✗ ✗ 

Preservation of monotonicity 

C=3 C=4 C=5 C=15 C=16 C=100 

FVFT ✔ ✔ ✔ ✔ ✔ ✔ 

MVMT ✔ ✔ ✔ ✔ ✔ ✔ 

FCR ✔ ✗ ✗ ✗ ✗ ✗ 

Preservation of linearity 

Mesh motion 

Sine & repeated repair OBR-FVFT OBR-MVMT 
#Cells #remaps L1 error L1 rate L1 error L1 rate 

128x128 640 2.69E-04 - 2.77E-04 - 

256x256 1280 6.71E-05 2.01 6.82E-05 2.04 

512x512 2560 1.68E-05 2.01 1.69E-05 2.03 

Rates of convergence 



OBR-MVMT cost: remap applications 
Cells Remaps FCR (sec) OBR-FVFT  Ratio OBR-MVMT Ratio 
64x64 320 4.1 7.3 1.7 4.1 1.0 
128x128 640 25.4 49.5 1.9 24.6 1.0 
256x256 1280 177.5 390.6 2.2 173.1 1.0 
512x512 2560 2049.1 3663.8 1.8 1918.0 0.9 
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Cells Remaps FCR (sec) OBR-FVFT Ratio OBR-MVMT Ratio 
64x64 320 4.9 7.4 1.6 4.9 1.0 
128x128 640 28.0 53.9 1.9 28.6 1.0 
256x256 1280 194.5 400.8 2.1 192.8 1.0 
512x512 2560 2060.1 4410.5 2.1 2096.5 1.0 
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Cells Remaps FCR (sec) OBR-FVFT Ratio OBR-MVMT Ratio 
64x64 320 4.6 9.0 2.0 4.9 1.1 
128x128 640 27.4 85.1 3.1 29.1 1.0 
256x256 1280 192.5 414.4 2.2 195.6 1.0 
512x512 2560 2064.9 3177.1 1.5 2146.7 1.0 
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Matlab wall-clock times on a single Intel Xeon X5680 3.33 GHz processor 



OBR-MVMT cost: transport applications 

Cells Time 
steps 

FCR 
(sec) 

Van Leer  OBR-
FVFT  

Ratio OBR-
MVMT  

Ratio 

64x64 400 4.59 4.50 44.32 9.8 4.92 1.1 
128x128 810 44.64 47.25 757.30 17.0 48.62 1.1 
256x256 1,610 387.88 393.64 4,295.71 11.07 403.23 1.0 
512x512 3,220 5,715.08 5,804.66 26,410.87 4.6 5655.06 0.9 
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Cells Time 
steps 

FCR 
(sec) 

Van Leer  OBR-
FVFT  

Ratio OBR-
MVMT  

Ratio 

64x64 400 4.51 4.55 34.86 7.7 4.98 1.1 
128x128 810 47.60 48.35 737.89 15.5 48.78 1.0 
256x256 1,610 390.47 399.15 5545.9 14.2 405.92 1.0 
512x512 3,220 5802.05 5804.66 50,940 8.8 5,655 0.9 
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Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro 


