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Outline: Part 2

» Optimization algorithms
 Robustness and accuracy studies

- Efficiency studies

- Extension to optimization-based transport
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Flux Variable-Flux Target OBR

OBR-FVFT = global inequality constrained QP

- C1&C2
e« C3

Theorem. (Existence of unique optimal solutions)

The OBR-FVFT feasible set is non-empty: for any given density
distribution there exists a set of antisymmetric fluxes which satisfy
the global inequality constraints.
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Connection with state-of-the-art FCR

Change of variables

h L T L T L
F/=(-a)F;+a,F; =F;+a,dF;, dF;,=F; -F;, a,=a

gt i ij? ij ij Ji

After changing variables the OBR-FVFT QP transforms as follows

Objective

Constraint

h T
Fij _Fij

jeF,

“fi-a

O <Y a,dF, - ¥ a,dF, Q™™ i=L..N

i<j i>j

where

~ . I ~ L ~ ~ ~ L
O™ =m"-m; <0 and QO™ =m" -m; =0

l

Liska et al, Optimization-based synchronized flux-corrected conservative interpolation (remapping) of
mass and momentum for ALE methods, Journal of Computational Physics, 2010, pp.1467-1497
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OBR

FCR

Theorem.
FCR is a global constrained optimization problem such that

(1) The FCR objective function is equivalent to the OBR objective.
(2) The FCR feasible set is always a subset of the OBR feasible set.

minimize 2 z(l—oe,.j)z(a?Fij)2 subject to

Cell Flux

D;dF; za,dF,; 20 for i>j, dF; =0

D;dF; =a,dF,; <0 for i<j, dF;<0 |0=a,dF, <D/dF, for i<j, dF,; =0
| 0za.dF,; =2D;dF;, for i>j, dF,<0

FCR can be viewed as approximation of OBR obtained by replacing
the OBR constraints set by a simpler set of box constraints
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Impacts of the smaller FCR feasible set

The “torture” test
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Deconstructing the torture test

OBR(3)
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Swept region implementation

Exact cell intersections Swept region (SR) approximation
Dukowicz, 1984 Margolin, Shashkov, 2003

ﬁirﬁxj \\7

g ~h h h
é ,/ m; =m; + EFij
E;)
V

Fi = [pi(x0)dV- [p}(x)dV Fyj = Jpi(ndv
!

K; Nk ; K; K ;
SRs are completely determined by the coordinates of old and new cells = efficiency

SRs give exact cell masses for linear density = accuracy

Exact cell intersections guarantee that low order fluxes in FCR are monotone.
However, this is not true for SR without additional restrictions on mesh motion.

Potential issue for FCR but not for OBR, which does not use low order fluxes ?}Eﬁ%{lﬁies
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OBR-FVFT Robustness (SR Implementation)

Preservation of monotonicity
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Preservation of linearity t
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OBR-FVFT Accuracy: Hourglass Mesh Motion

Cells Remaps L,error L,error L error L,rate L, rate L. rate

% m  semes 7aES wes 20 2m is

OBR

Cells Remaps L,error L,error L_error L,rate L,rate L. rate
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FCR

OBR remains 2nd order (best possible);
Sandia
FCR accuracy reduced to 1st order e I‘I'l P
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Optimization-based monotone transport (OBT)

Dukowicz and Baumgardner (JCP 2000) point out that

incremental remap = transport algorithm.

Incremental remapping such as CSLAM (Lauritzen et al JCP 2010) handles

passive tracer transport in climate modeling and simulation.

However, CSLAM and many other existing methods require structured grids, and all
rely on monotone reconstruction methods, a.k.a. limiters.

Optimization-Based Transport (OBT) extends OBR to transport:
— inherits the robustness & accuracy of OBR
— impervious to cell shapes
= monotone and linearity preserving transport scheme on arbitrary cells!

Bocheyv, Ridzal, Young, Optimization-based modeling with applications to transport. @

Sandia
Parts 1-3, Springer Lecture Notes in Computer Science, LNCS 7116, 2012. I'I'l bk
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Incremental remap as transport scheme

: : : d
Mass is conserved in Lagrangian volumes: —

__—7 7 >

m;(t) = i
t

[p(x)dV =0

K; (1)

> — —2 >
/ / -> >
/ ,
/ f t / /‘t+At ? t+At
m(t)= [p(x)dV m.(t + At) = my(t) Remap

K; (1)

Optimization-based Remap (OBR) = OBT algorithm
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OBT inherits the robustness of OBR

Zalesak cylinder: rotation
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OBT applied to a 2D test example

Rotating flow example (LeVeque, SINUM 33, 1996)

u=-(y-0.5) v=(x-0.5)
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This example combines “smooth” and “sharp” features!
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OBT with adaptive targets

Initial

Rotating cylinder
u=-(y-0.5) v=(x-0.5)

Grid size: NxN, N=45
Time steps: 2N 282
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OBT with adaptive targets: fine grid

Rotating flow example (LeVeque, SINUM 33, 1996)
u=-(y-0.5) v=(x-0.5)
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OBT with adaptive targets: coarse grid

Initial

Rotating flow example (LeVeque, SINUM 33, 1996)
u=-(y-0.5) v=(x-0.5)
Grid size: NxN, N=45

FL<1
Time steps: 2N 282 c
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O
- Cost in remap applications

Cells Remaps FCR (sec) OBR-FVFT Ratio

n

Cells Remaps FCR (sec) OBR-FVFT Ratio
Q.

Cells Remaps FCR (sec) OBR-FVFT Ratio
e
72)

Matlab wall-clock times on a single Intel Xeon X5680 3.33 GHz processor e




- Cost in transport applications

Time FCR (sec) Van Leer OBR-FVFT Ratio
steps

»
Time FCR(sec) Van Leer OBR-FVFT Ratio
) steps
3
§ 128x128 810  47.60 48.35 73789 | 155 |

Sandi
Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro e I‘I'l Nationa |. ’



Switch to mass-form of remap

The exact mass on new cell K, can be expressed in aggregate mass-transfer form:

mi =m +0mx; om{* = [p(x)dV - [p(x)dV

Therefore, the mass on the new cell K, can be approximated by

m; =m/ +6m!, where om; = [p!(x)dV- [p(x)dV =bm ™

C1: Mass conservation. Not free anymore: requires a single linear constraint:

Som! =0 = Sm'=M
Cell Cell

C2: Linearity preservation. Guaranteed if Pih is exact for linear functions on all

om; = [pi (x)dV - [p;(x)dV =)  Target (high-order) mass-transfers

C3: Local bounds = &m"" = Som! <& i=1..,N =y Box constraints

cell
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Optimization-based remap (OBR): MVMT form

OBR-MVMT = “singly linearly constrained QP with simple bounds”

- C2
= C3
- C1

Theorem. (Existence of unique optimal solutions)

The OBR-MVMT feasible set is non-empty: for any given density
distribution there exists a set of aggregate mass transfers om.
which satisfy the box constraints and sum up to zero
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Fast Optimization Algorithm for OBR-MVMT

Key property of singly linearly constrained QP with simple bounds:

. . . 2 . \
minimize > (5mlh —5miT) subjectto | Without the equality constraint the QP is
. Lo , fully separable into N one-dimensional

o™ =om; <o ;i=1,...,N and Yom; =0 QPs with simple bounds

Cell

The Lagrangian

2 .
L(om, A, uy,u,) = E (5mlh _‘SmiT) _}Lzémih B EMLI'((S””? - om;" ) = E‘uz’i(émih —om;" ")

Cell Cell Cell Cell

The Karush-Kuhn-Tucker (KKT) conditions

r

5mih = 6miT tA U -y
~ min h ~ Max ‘

om;"" < om;' < on; Without the equality constraint the KKT

w20, uw,; =0 and Eém,.’l =0 conditions are fully separable and can

A . Cell be solved for any fixed value of A.
u, (om;" —om;"" ) =0,

Uy i (Om = 8" ) =0
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Fast Optimization Algorithm for OBR-MVMT

Step 1: solve for A fixed

om!' = 6m] + A u ;=0 u,; =0 it om"™ <om! + A< om"™

om] = o™ Upi =0 py;=0m; —om; = A it om"" = om] +A

6m,h = om" " t; =0 Uy i = 5miT - 5mih +A if ‘SmiT +A = om;"
» om)' (1) = median(dm"™" ,6m! + A, 6m"™); i=1,...,.N

Step 2: adjust A in an outer iteration to satisfy the single equality constraint

Solve Eémih()") —0 » piecewise Imear,_monotonlcally Increasing
Cell function of single scalar variable A.

- Can solve to machine precision by a simple secant method
- Globalization is unnecessary because A,=0 is an excellent initial guess:

om)' (A,) = median(Sm!"" ,0m! ,6m"™); i=1,...,.N

- dm!'(%,) solves the QP without the equality constraint, i.e., “almost” a solution
- Locality = ém!(A,) barely violates the mass conservation constraint
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ZA'Y;'? OBMVMT does not compromise

robustness & accuracy

Preservation of monotonicity
C=5 C=6 C=7 C=100

0.5 1

Preservation of linearity
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- OBR-MVMT cost: remap applications

Cells Remaps FCR (sec) OBR-FVFT Ratio

N
Cells Remaps FCR (sec) OBR-FVFT Ratio
o
Cells Remaps FCR (sec) OBR-FVFT Ratio
e
g 126128 640 274 851 a4 294
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Matlab wall-clock times on a single Intel Xeon X5680 3.33 GHz processor 6
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- OBR-MVMT cost: transport applications

Cells Time FCR Van Leer OBR- Ratio
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