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ABSTRACT

Heterogeneity exists on a data set when samples from different classes are merged into the

data set. Finite mixture models can be used to represent a survival time distribution on het-

erogeneous patient group by the proportions of each class and by the survival time distribution

within each class as well. The heterogeneous data set cannot be explicitly decomposed to ho-

mogeneous subgroups unless all the samples are precisely labeled by their origin classes; such

impossibility of decomposition is a barrier to overcome for estimating finite mixture models.

The expectation-maximization (EM) algorithm has been used to obtain maximum likelihood

estimates of finite mixture models by soft-decomposition of heterogeneous samples without

labels for a subset or the entire set of data. In medical surveillance databases we can find par-

tially labeled data, that is, while not completely unlabeled there is only imprecise information

about class values. In this study we propose new EM algorithms that take advantages of using

such partial labels, and thus incorporate more information than traditional EM algorithms.

We particularly propose four variants of the EM algorithm named EM-OCML, EM-PCML,

EM-HCML and EM-CPCML, each of which assumes a specific mechanism of missing class

values. We conducted a simulation study on exponential survival trees with five classes and

showed that the advantages of incorporating substantial amount of partially labeled data can

be highly significant. We also showed model selection based on AIC values fairly works to

select the best proposed algorithm on each specific data set. A case study on a real-world data

set of gastric cancer provided by Surveillance, Epidemiology and End Results (SEER) program

showed a superiority of EM-CPCML to not only the other proposed EM algorithms but also

conventional supervised, unsupervised and semi-supervised learning algorithms.
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CHAPTER 1. INTRODUCTION

This chapter introduces research problems that are dealt with by this thesis as well as

expected benefits of this study.

1.1 Motivation

“How long will I survive?” may be one of the most frequently asked question from can-

cer patients. Answers to such questions come from observed survival time of similarly di-

agnosed patents in the past. Surveillance, Epidemiology and End Results (SEER) program

(www.seer.cancer.gov) of the National Cancer Institute provides tremendous amount cancer

cases that have been collected since 1973 in the United States. So fully utilizing the SEER

data is desirable to give cancer patients precise expectation about their remaining time to

death. Diagnostic information like contiguous extension of primary tumor or involvement of

lymph nodes is particularly important to be utilized because expected survival time significantly

depends on such diagnostic information.

Medical surveillance data often fail to deliver precise diagnostic information. From 1988 to

2003, for example, every instance of the gastric signet ring cell carcinoma on the cardia in the

SEER database was desired to have values of {Not involved}, {Celiac, Hepatic (excl.

gastrohepatic)}, {Other regional}, or {Distant}, which are corresponding to the leaf

nodes of Figure 1.1(a). However more than half of the cases that have been collected from

1988 to 2003 contain imprecise information about the lymph node involvement: {Unknown},

{Involved, NOS}, and {Regional, NOS} (Table 1.1). A change of the procedure of collecting

data over years is an important characteristic of SEER database. Figure 1.1(b) represents a

hierarchy of values for the lymph node involvement applied from 2004 to 2008; it further spec-
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Lymph node involvement

Not involved Involved

Regional Distant

OthersCeliac, Hepatic
(excl. gastrohepatic)

(a) 1988–2003

Lymph node involvement

Not involved Involved

Regional Distant

OthersCeliac, Hepatic
(excl. gastrohepatic)

Hepatoduodenal
Celiac, Hepatic

(excl. gastrohepatic,
hepatoduodenal)

(b) 2004–2008

Figure 1.1: Categorization of values on the lymph node involvement attribute for the gastric

signet ring cell carcinoma on the cardia in SEER research data. (a) Categorization applied

from 1988 to 2003. (b) Categorization applied from 2004 to 2008.

ified {Celiac, Hepatic (excl. gastrohepatic)} into {Hepatoduodenal} and {Celiac,

Hepatic (excl. gastrohepatic and hepatoduodenal)}. With the newly extended hierar-

chy of attribute values, 29 cases of {Celiac, Hepatic (excl. gastrohepatic)} that were

collected until 2003 are considered having imprecise diagnostic information, although they were

fully specified cases at the time of being collected.

Completeness of cancer information is one of goals that SEER program is trying to achieve;

so cases with imprecise diagnostic information are undesirable. They may however be unavoid-

able because of practical difficulties in input data control, updates of data coding systems with

imperfect migration of old data, and so on. However, cases with imprecise diagnostic informa-

tion still carry more specific information than cases with no diagnosis; and utilizing this while

estimating survival time distributions may hence reduce uncertainties of the results. This study

has been motivated to fully utilize such imprecise diagnostic information in estimating survival

time distributions and to see how such uses of imprecise diagnostic information contribute to

population studies of cancer patients.
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Table 1.1: Number of observed values on the lymph node involvement attribute for the gastric

signet ring cell carcinoma on the cardia in SEER research data. (*NOS: not otherwise specified)

Values 1988–2003 2004–2008

Unknown 186 26

Known

Not involved 106 86

Involved, NOS∗ 3 1

Regional, NOS∗ 124 20

Celiac, Hepatic (excl. gastrohepatic) 29

Celiac, Hepatic (excl. gastrohepatic, hepatoduodenal) 16

Hepatoduodenal 1

Other regional 92 86

Distant, NOS∗ 56

Total 596 236

1.2 Toward Partially Supervised Learning of Survival Time Models

Databases are composed of samples that have been observed from a population. When the

population is composed of several subpopulations, an instance in databases is expected to have

primary data that explain characteristics of the instance and a label which represents the origin,

that is, the subpopulation from which the instance was observed. Instances in a database have

traditionally been categorized into labeled data and unlabeled data according to whether the

labels were observed. Over the past decades there has been great interest in learning statistical

knowledge about primary data within each subpopulation that makes it distinguishable to the

other subpopulations. Unsupervised learning (e.g. clustering) is typically used when all the

available data are unlabeled. On the other hand, supervised learning (e.g. classification) is

appropriate to use when all the data are labeled. Semi-supervised learning has extended both

unsupervised learning and supervised learning by using both labeled and unlabeled data in a

single learning procedure (Zhu and Goldberg, 2009). Therefore, semi-supervised learning uti-

lizes more information to contribute to knowledge discovery than supervised and unsupervised

learning.

In real-world data, observed labels may carry only partial information about the origins of

samples. Numerous such examples exist in a variety of applications. Consider for example a
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Table 1.2: Types of data that are fully utilized in each learning method

Type of data

Type of partially

learning labeled unlabeled labeled

Supervised
√

Unsupervised
√

Semi-supervised
√ √

Partially supervised
√ √ √

screenshot from a movie where the characters in the scene are known based on the dialogue.

Then we may not be able to identify the name associated with a face exactly, but we can choose

small numbers of candidates (Cour et al., 2009, 2011). Another example is where a component

that caused system failure cannot be exactly identified due to cost or time constraints, a subset

of components that contains the true cause could still be identified (Usher and Hodgson, 1988;

Usher and Guess, 1989; Guess et al., 1991). Finally, in student databases some student status

can be simply categorized into undergraduate and graduate, whereas some others have more

specified information such as whether the graduate student is in master program or in doctorate

program (Zhang, 2005; Zhang et al., 2006). All three examples represent data with labels that

carry partial but incomplete information about the origin subpopulation. Such labels have

been called partial labels (Ambroise and Govaert, 2000; Cour et al., 2011), ambiguous labels

(Cour et al., 2009), or imprecise labels (Vannoorenberghe and Smets, 2005; Côme et al., 2008,

2009). We call samples partially labeled data if the samples consist of primary data and partial

labels.

None of supervised, unsupervised, and semi-supervised learning methods cannot fully utilize

partially labeled data for data mining. Partially supervised learning, which represents learning

from partially labeled data, intends to take advantages of fully utilizing partially labeled data

(Table 1.2). In the same ways that using unlabeled data leads to more reliable statistical

knowledge when only few labeled data are given (Zhu and Goldberg, 2009), with partially

supervised learning we can expect to take advantage of partially labeled data when only few

labeled and unlabeled data are given. In the area of reliability engineering, learning failure time

models from partially labeled data have been studied since the 1980’s (Usher and Hodgson,
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1988; Usher and Guess, 1989; Guess et al., 1991; Lin and Guess, 1994; Ramon et al., 1995;

Park, 2005; Flehinger et al., 1996, 1998). In the field of machine learning however only few

studies have been done regarding partially supervised learning for face recognition (Cour et al.,

2009, 2011) and finite mixture modeling (Ambroise and Govaert, 2000).

Proposed methods in this study fully utilize partially labeled data in survival time analy-

sis. This study considers survival time of a cancer patient as primary data, while diagnostic

information labels cancer patients to group patients at a same risk together. As described in

Section 1.1 a considerable number of cases in medical surveillance database are partially labeled

with diagnostic information. This study intends to use such imprecise diagnostic information

in estimating expected time to death or survival rates for subpopulation at each risk level. In

particular we focus on estimating a finite mixture of survival time distributions. Learning finite

mixture models from partially labeled data has already been studied by Ambroise and Govaert

(2000). However Ambroise and Govaert (2000) utilized partially labeled data under a strict

assumption on label observing mechanisms, although the assumption was not explicitly stated

in their study. We therefore propose more generalized learning methods that can be useful

when underlying assumptions on Ambroise and Govaert (2000) are violated. In addition, we

propose a learning method with a specific label observing mechanism that possibly exists in a

hierarchical structure of diagnostic information.

1.3 Organization of Dissertation

The remainder of this thesis is organized as follows. Chapter 2 introduces background on

finite mixture models, partially supervised learning, and survival time models. In chapter 3

new Expectation-Maximization (EM) algorithms are proposed to estimate a mixture of survival

time models from partially labeled data. In Chapter 4 the new EM algorithms are specialized

for a hierarchical structure of observable labels called attribute value taxonomy (AVT). Chapter

4 also proposes a new EM algorithm for a specific type of label observing mechanism on AVT.

In Chapter 5 We conduct experiments on synthetic data that is generated from a survival tree

introduced by Davis and Anderson (1989) and conduct a case study on SEER database. Finally

conclusions are made in Chapter 6.
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CHAPTER 2. BACKGROUND

This chapter provides background knowledge about three major components of this study:

finite mixture models, partially supervised learning, and survival time models.

2.1 Finite Mixture Models (FMM)

Finite mixture modeling is a study of learning how a heterogeneous population is composed

of predetermined numbers of subpopulations (McLachlan and Peel, 2000). Finite mixture

models are popularly and widely used when knowing statistical patterns of primary data within

each subpopulation, as well as mixing proportions, produces valuable knowledge that cannot

be known from the marginal patterns. For example, finite mixture models extract signals from

noisy spectroscopy data by considering signal and noise to be separate subpopulations (Kuss

et al., 2002). Also, failure time of a system can be specifically estimated for each possible cause

(Mendenhall and Hader, 1958; Papadapoulos and Padgett, 1986). In addition, finite mixture

models have been widely applied to medical data analysis (Schlattmann, 2008).

A finite mixture model is usually defined as a weighted sum of simple parametric densities,

each of which represents a density of interest within a homogeneous subpopulation. With K

subpopulations the mixture of densities of multivariate data x = (x1, · · · , xd) is defined as

f(x) =
K∑
k=1

pkfk(x|θk) (2.1)

where
∑K

k=1 pk = 1 for nonnegative mixing proportion pk and fk is a probability density

function (pdf) of interest for the kth subpopulation parameterized by θk. Here θk is possibly

a vector of multiple parameters while pk ∈ R. For example if fk(·) represents a pdf of an

exponential distribution, θk is a scalar: θk ∈ (0,∞) ⊂ R. On the other hand, when fk(·)

represents a pdf of a univariate normal distribution, θk is a vector that consists of a mean
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parameter µ and a scale parameter σ: θk = (µ, σ) ∈ (−∞,∞)× (0,∞) ⊂ R2. In this study we

assume θk’s are independent from each other for all k = 1, · · · ,K.

We assume there is a complete dataset with n observations

Dcomplete = {(x1, y1), · · · , (xn, yn)}

that is independently and identically sampled from the population. Here xi denotes primary

data and yi denotes a label for the subpopulation from which the primary data observed.

When K subpopulations exist yi is one of 1, · · · ,K. In semi-supervised learning we assume the

following dataset has been observed:

Dobs = {(x1, y1), · · · , (xm, ym),xm+1, · · · ,xn}, 0 ≤ m ≤ n.

No labeled data is available if m = 0, while all the data are labeled if m = n.

It is must be noted that we assume the labeling occurs after data have been sampled from

the heterogeneous population. Under the assumption we can define mechanisms of sampling

each instance as follows:

1. Randomly select a mixture component k according to multinomial distribution with pro-

portions {p1, · · · , pK}.

2. Observe primary data xi with probability density function fk(x|θk).

3. Randomly label the instance as yi = k with some probability.

Most studies of mixtures address on maximum likelihood (ML) estimation of the parameter

set

Φ = (p1, · · · , pK ,θ1, · · · ,θK),

as this study does. The remainder of this section introduces the existing studies for supervised,

unsupervised, and semi-supervised ML estimation of FMM.

2.1.1 Supervised estimation

First we consider cases that all the observed instances are labeled, which means Dobs is

exactly the same to Dcomplete. Redner and Walker (1984) defined the log-likelihood function of
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labeled observations by generalizing a two-component mixture problem (Hosmer, 1973) to K

component mixture problems:

n∑
i=1

K∑
k=1

I(yi = k) log pkfk(xi|θk) + log
n!∏K

k=1mk!

where I(·) is an indicator function and mk =
∑m

i=1 I(yi = k). The second additive term of

the above log-likelihood function is a constant term of multinomial distribution normalization

which is independent to Φ. Although it is useful in comparing likelihoods of different data

sets of observations, it does not provides any helpful information in comparing likelihoods for

different estimates of Φ. The primary purpose of this study is to provide good estimates of Φ

for given (or fixed) data set. We therefore ignore the constant term of multinomial distribution

normalization in this study.

By ignoring the normalization term, the log-likelihood function of labeled samples can be

derived as follows:

Ls(Φ) =
n∑
i

log p(xi, yi|Φ)

=
n∑
i

logP (yi|Φ)p(xi|yi,Φ)

=
n∑
i=1

log
K∑
k=1

I(yi = k)pkfk(xi|θk)

=

n∑
i=1

K∑
k=1

I(yi = k) log pkfk(xi|θk)

=
n∑
i=1

K∑
k=1

I(yi = k) log pk +
n∑
i=1

K∑
k=1

I(yi = k) log fk(xi|θk) (2.2)

We can see Eq.(2.2) has an additive form of the log-likelihood of p = (p1, · · · , pK) and the

log-likelihood of Θ = (θ1, · · · ,θK). Eq.(2.2) is called a complete-data log-likelihood function

(Dempster et al., 1977).

The maximum likelihood estimates (MLE) of Φ is a solution to the following optimization
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problem:

max
Φ

Ls(Φ)

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K

The MLE of Φ is denoted as

Φ̂ = (p̂1, · · · , p̂K , θ̂1, · · · , θ̂K).

MLE Φ̂ can be easily and efficiently obtained by decomposing the above optimization prob-

lem into independent optimization problems. MLE of p = (p1, · · · , pK) is a solution to

max
p

n∑
i=1

K∑
k=1

I(yi = k) log pk

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K.

As a solution to the above optimization problem, MLE of each pk is

p̂k =

∑n
i=1 I(yi = k)

n

that is a proportion of instances labeled k. MLE of θk is a solution to

max
θk

n∑
i=1

I(yi = k) log fk(xi|θk).

2.1.2 Unsupervised estimation

Unsupervised estimation is applied when no instance has been labeled. When the value of

yi is not given for any 1 ≤ i ≤ n, the log-likelihood function has been defined (Redner and

Walker, 1984) as

Lu(Φ) =

n∑
i=1

p(xi|Φ)

=
n∑
i=1

log
K∑
k=1

pkfk(xi|θk). (2.3)
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The MLE of Φ is a solution to

max
Φ

Lu(Φ)

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K.

The logarithm of the summation of products of mixture proportions and probability densities

in Eq.(2.3) makes finding MLE of Φ difficult. In contrast to the supervised estimation described

in the previous section, the complicated logarithm term implies that the optimization problem

cannot be decomposed into independent optimization problems.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is one of the most

widely used method to compute MLE of Φ for unsupervised estimation. Rather than directly

solving the above optimization problem, the EM algorithm iteratively updates estimates of

Φ with monotonically increasing likelihood values. Hasselblad (1966, 1969); Wolfe (1970);

Day (1969) proposed such iterative procedures to obtain MLEs of finite mixture models. In

each iteration the EM algorithm take the ‘easy-to-estimate’ advantages of the complete-data

log-likelihood function Eq.(2.2) by solving conditional optimization problems that replaced

I(yi = k) with its expectation. The EM algorithms for finite mixture for unsupervised cases

has been thoroughly studied, with a lot variants of types of component distributions, number

of components, and constraints on mixing proportions or component distributions (Redner and

Walker, 1984; McLachlan and Krishnan, 1997; McLachlan and Peel, 2000).

Let

Φ(1) =
(
p

(1)
1 , · · · , p(1)

K ,θ
(1)
1 , · · · ,θ(1)

K

)
be an initial guess or an initial estimate of parameter Φ. Here θ

(1)
1 , · · · ,θ(1)

K are supposed

to be different from each other so that components of mixtures are distinguishable. The EM

algorithm iteratively updates the estimates Φ(q) such that the log-likelihood value monotonically

increases.

At the beginning of the qth iteration (q = 1, 2, · · · ) of the EM algorithm, we compute a
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1: Randomly initialize Φ(1)

2: q ← 0

3: repeat

4: q ← q + 1

5: E-step: w
(q)
ik ← E

[
I(yi = k)

∣∣xi,Φ(q)
]

6: M-step: Φ(q+1) ← arg maxΦQ(Φ|Φ(q))

7: until L(Φ(q+1))− L(Φ(q)) < ε

Figure 2.1: The EM algorithm for finite mixture models

conditional expectation of I(yi = k) as follows:

w
(q)
ik = E

[
I(yi = k)

∣∣∣xi,Φ(q)
]

=
p

(q)
k fk(xi|θ

(q)
k )∑K

l=1 p
(q)
l fl(xi|θ

(q)
l )

.

Once we have w
(q)
ik for all i and k, we define a conditional log-likelihood function

Q(Φ|Φ(q)) =

n∑
i=1

K∑
k=1

E
[
I(yi = k)|xi,Φ(q)

]
log pkfk(xi|θk)

=
n∑
i=1

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

=
n∑
i=1

K∑
k=1

w
(q)
ik log pk +

n∑
i=1

K∑
k=1

w
(q)
ik log fk(xi|θk). (2.4)

Let Φ(q+1) be a solution to

max
Φ

Q(Φ|Φ(q))

s.t.
K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K.

In EM algorithm, L(Φ(q+1)) is always greater than or equal to L(Φ(q)) (Redner and Walker,

1984). The estimates of Φ therefore keeps improving as additional iterations are performed.

When the improvement is sufficiently small (i.e. L(Φ(q+1)) − L(Φ(q)) < ε for some ε > 0), the

iteration is terminated, and Φ(q) is considered to be the MLE estimate of Φ.
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Specifically, in M-step, pk is estimated by

p
(q+1)
k =

∑n
i=1w

(q)
ik

n
. (2.5)

The MLE of pk therefore represents the expected proportion of samples that have been drawn

from the kth subpopulation among given n samples. In addition θk is updated by

θ
(q+1)
k = arg max

θk

n∑
i=1

w
(q)
ik fk(xi|θk), (2.6)

as far as θk’s are independent from each other. Estimates θ
(q+1)
k depend on the component

distribution fk as well as observed data xi. If fk represents an exponential distribution with

failure-rate parameter θk = λk and xi denotes right-censored lifetime (ti, ci) that will be de-

scribed in Section 2.3.1, we have

λ
(q+1)
k =

∑n
i=1w

(q)
ik ci∑n

i=1w
(q)
ik ti

at the end of M-step in the qth iteration.

Non-identifiability is one of the critical issues in estimating FMM from only unlabeled data

(McLachlan and Peel, 2000). Non-identifiability leads to multiple MLEs for a same model.

For example relabeling or reordering mixture components does not affect likelihood values

in unsupervised learning. Such issue also possibly happens in semi-supervised and partially

supervised estimation. We do not address the non-identifiability issue in this study.

2.1.3 Semi-supervised estimation

When both labeled samples and unlabeled samples are available, either supervised estima-

tion or unsupervised estimation is appropriate to be applied because both of them loose helpful

information. Let us recall observed data

Dobs = {(x1, y1), · · · , (xm, ym),xm+1, · · · ,xn}, 0 ≤ m ≤ n.

With a supervised estimation approach, we only use m observations (x1, y1), · · · , (xm, ym) while

ignoring n−m observations xm+1, · · · ,xn. With an unsupervised estimation approach, we use

all the n observations of x, but we ignore all the m observed labels y1, · · · , ym. Semi-supervised

estimation overcomes such limitation of uses of data.
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Knowing a mechanism of observing labels is crucial in estimating FMM. To define mecha-

nisms of label observations, we introduce an indicator variable

δi =


0 if yi has been reported,

1 if yi has been missed.

In Dobs, δ1 = · · · = δm = 0 and δm+1 = · · · = δn = 1. For a random sample (x, y) from

population, let

γk = P (δ = 0|y = k)

be a probability of observing a label when the sample is drawn from the kth subpopulation. A

vector

Γ = (γ1, · · · , γK)

represents a mechanism of observing labels for samples from K subpopulations.

We evaluate likelihoods of observed data based not only on Φ but also on Γ. For labeled

samples (i = 1, · · · ,m), a likelihood of each sample observation is defined as

f(xi, yi, δi = 0|Φ,Γ) =

K∑
k=1

I(yi = k)f(xi, yi = k, δi = 0|Φ,Γ)

=
K∑
k=1

I(yi = k)P (δi = 0|Γ)f(xi, yi = k|Φ)

=

K∑
k=1

I(yi = k)P (δi = 0|Γ)P (yi = k|Φ)f(xi|yi = k,Φ)

=
K∑
k=1

I(yi = k)γkpkfk(xi|θk).

For unlabeled samples (i = m+ 1, · · · , n), a likelihood of observing each sample is formulated

by

f(xi, δi = 1|Φ,Γ) =

K∑
k=1

f(xi, yi = k, δi = 1|Φ,Γ)

=
K∑
k=1

P (δi = 1|Γ)f(xi, yi = k|Φ)

=

K∑
k=1

P (δi = 1|Γ)P (yi = k|Φ)f(xi|yi = k,Φ)

=
K∑
k=1

(1− γk)pkfk(xi|θk).
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Therefore the log-likelihood function for semi-supervised estimation can be defined by

Lss(Φ,Γ) =

m∑
i=1

log f(xi, yi, δi = 0|Φ,Γ) +

n∑
i=m+1

log f(xi, δi = 1|Φ,Γ)

=

m∑
i=1

log

K∑
k=1

I(yi = k)γkpkfk(xi|θk) +

n∑
i=m+1

log

K∑
k=1

(1− γk)pkfk(xi|θk). (2.7)

In this section, we investigate two mechanisms of observing labels: common missing label

mechanism (CML) and class-conditional missing mechanism (CCML) (Miller and Browning,

2003).

2.1.3.1 Semi-supervised estimation with common missing label (CML) as-

sumptions

We define a mechanism of label observation as a common missing label mechanism if

γ1 = · · · = γK .

It represents that the probability of observing labels does not depend on the origin subpopula-

tion.

We let γ = γ1 = · · · = γK . Then log-likelihood function Eq.(2.7) can be redefined by

Lss.cml(Φ, γ) =

m∑
i=1

log

K∑
k=1

I(yi = k)γpkfk(xi|θk) +

n∑
i=m+1

log

K∑
k=1

(1− γ)pkfk(xi|θk)

=

m∑
i=1

K∑
k=1

I(yi = k) log γpkfk(xi|θk) +

n∑
i=m+1

log(1− γ)

K∑
k=1

pkfk(xi|θk)

=

m∑
i=1

K∑
k=1

I(yi = k) log γ +

m∑
i=1

K∑
k=1

I(yi = k) log pkfk(xi|θk)

+

n∑
i=m+1

log(1− γ) +

n∑
i=m+1

log

K∑
k=1

pkfk(xi|θk)

=

m∑
i=1

log γ +
m∑
i=1

K∑
k=1

I(yi = k) log pk +
m∑
i=1

K∑
k=1

I(yi = k)fk(xi|θk)

+

n∑
i=m+1

log(1− γ) +

n∑
i=m+1

log

K∑
k=1

pkfk(xi|θk). (2.8)

The MLE of γ is a proportion of labeled samples:

γ̂ =
m

n
.
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To estimate MLE of Φ, the EM algorithm is also used (Miller and Browning, 2003). We start

with an initial estimate Φ(1). In E-step, a conditional expectation of I(yi = k) at the qth

iteration is computed by

w
(q)
ik =


I(yi = k) i = 1, · · · ,m

p
(q)
k fk(xi|θ

(q)
k )∑K

l=1 p
(q)
l fl(xi|θ

(q)
l )

i = m+ 1, · · · , n.

Because estimation of γ is independent from the EM algorithm, a conditional log-likelihood

function to be maximized in M-step is defined as

Q(Φ|Φ(q)) =

n∑
i=1

K∑
k=1

w
(q)
ik log pk +

n∑
i=1

K∑
k=1

w
(q)
ik log fk(xi|θk)

which is identical to the conditional log-likelihood function for unsupervised estimation with

given w
(q)
ik .

2.1.3.2 Semi-supervised estimation with class-conditional missing label (CCML)

assumptions

In contrast to CML mechanism, a class-conditional missing label mechanism represents the

condition

γk 6= γl, ∃k 6= l.

Therefore, we use Eq.(2.7) as a log-likelihood function. The log-likelihood function can be

reformulated by

Lss,ccml(Φ,Γ) =

m∑
i=1

log

K∑
k=1

I(yi = k)γkpkfk(xi|θk) +

n∑
i=m+1

log

K∑
k=1

(1− γk)pkfk(xi|θk)

=

m∑
i=1

K∑
k=1

I(yi = k) log γkpkfk(xi|θk) +

n∑
i=m+1

log

K∑
k=1

(1− γk)pkfk(xi|θk)

=

m∑
i=1

K∑
k=1

I(yi = k) log γk +

m∑
i=1

K∑
k=1

I(yi = k) log pk

+

m∑
i=1

K∑
k=1

I(yi = k) log fk(xi|θk) +
n∑

i=m+1

log
K∑
k=1

(1− γk)pkfk(xi|θk).(2.9)
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With CCML mechanism, Γ as well as Φ should be estimated by the EM algorithm. A

definition of conditional expectation w
(q)
ik is

w
(q)
ik =


I(yi = k) i = 1, · · · ,m

(1− γk)p
(q)
k fk(xi|θ

(q)
k )∑K

l=1(1− γl)p
(q)
l fl(xi|θ

(q)
l )

i = m+ 1, · · · , n.

A conditional log-likelihood function is defined as

Q(Φ,Γ|Φ(q),Γ(q)) =
m∑
i=1

K∑
k=1

w
(q)
ik log γk +

n∑
i=m+1

K∑
k=1

w
(q)
ik log(1− γk)

+
n∑
i=1

K∑
k=1

w
(q)
ik log pk +

n∑
i=1

K∑
k=1

w
(q)
ik log fk(xi|θk)

Φ(q+1) and Γ(q+1) be solutions to the following optimization problem:

max
Φ,Γ

Q(Φ,Γ|Φ(q),Γ(q))

s.t.
K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K

0 ≤ γk ≤ 1, k = 1, · · · ,K.

In contrast to CML cases, parameter Γ is updated in each M-step of the EM algorithm by

γ
(q+1)
k =

∑m
i=1 I(yi = k)∑n

i=1w
(q)
ik

.

With given w
(q)
ik , computation of Φ(q+1) is identical to unsupervised estimation as the same to

CML cases.

2.2 Partially Supervised Learning

2.2.1 Partial label

In section 2.1 we assumed observed data is either labeled or unlabeled. With binary classes

(K = 2) they are the only possible cases we can consider. With K > 3 classes however there

is possible observations that are neither labeled nor unlabeled. Such observed data has been

called data with partial labels (Ambroise and Govaert, 2000; Cour et al., 2011), ambiguous labels
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(Cour et al., 2009), or imprecise labels (Vannoorenberghe and Smets, 2005; Côme et al., 2008,

2009). In this study, we mostly use the terminology ‘partial label’ to represent such labels.

Hereafter, we redefine the complete data Dcomplete as

Dcomplete = {(x1, z1), · · · , (xn, zn)}

where zi = (zi1, · · · , ziK) is a classification vector so that zik = 1 if the ith observation is

sampled from the kth subpopulation and zik = 0 otherwise:

zik =


1 if i ∈ class k,

0 otherwise.

Because each observation is assumed to belong to exactly one subpopulation we have

∑
k

zik = 1, ∀i. (2.10)

Unfortunately we cannot observe all zik’s in general. For cases where values of some zik’s

are unobservable partial labels are used for representing a set of candidate subpopulations to

which an instance possibly belongs (Cour et al., 2009, 2011). For the ith sample, we may not

observe the exact zi. Instead zik may be observed for some k ∈ {1, · · · ,K}. We define an

indicator vector δi = (δi1, · · · , δiK) such that

δik =


0 if zik has been reported,

1 otherwise.

When δik = 1 for some k, we obtain a partial label for the ith sample, which means precise

information about the origin of the ith sample is missing. Such process of losing specified

information about the origin is called masking (Usher and Hodgson, 1988; Usher and Guess,

1989; Guess et al., 1991; Lin and Guess, 1994; Ramon et al., 1995; Park, 2005; Flehinger et al.,

1996, 1998). It is a special case of coarsening (Heitjan and Rubin, 1991; Gill et al., 1997),

that is applied to nominal data. The observed partial label therefore can be considered as a

coarsened version of the true label.

Due to Eq.(2.10), once we observe δik = 0 and zik = 1 for a certain k, we immediately know

zij = 0 for all j ∈ {1, · · · ,K}\k. Also if we observe δij = 0 and zij = 0 for all j ∈ {1, · · · ,K}\k,



18

we immediately know zik = 1. Hence,

δik = 0 and zik = 1 ⇐⇒ δij = 0 and zij = 0 for all j ∈ {1, · · · ,K}\k.

Let z̃i = (z̃i1, · · · , z̃iK) be an observed label of the ith sample so that

z̃ik =


0 if it is known that i /∈ class k,

1 otherwise.

(2.11)

Eq. (2.11) implies that

zik ≤ z̃ik, ∀i, k. (2.12)

A deterministic coarsening (or masking) process obtain z̃i from zi and δi as follows:

z̃ik =


1 if δik = 1,

zik if δik = 0.

(2.13)

It implies that z̃i completely explains the value of δi as follows:

δi =


(0, · · · , 0) if

∑K
k=1 z̃ik = 1,

z̃i if
∑K

k=1 z̃ik > 1.

Hereafter, a set of observed data is redefined by using partial labels as follows:

Dobs = {(x1, z̃1), · · · , (xn, z̃n)}.

2.2.1.1 Partial labeling vs. multi-labeling / soft labeling

In this study we deal with data where each instance belongs to exactly one subpopulation.

Partial labels are defined as a set of candidate subpopulations that an instance possibly belongs

to (Cour et al., 2009, 2011). A partial label excludes a subpopulation that is not the candi-

date for an instance with certainty. Therefore, the partial labels have imprecise but certain

information about the membership to subpopulations.

Problems with multi-labels assume an instance can belong to multiple origins (Tsoumakas

and Katakis, 2007), while subpopulations are supposed to be disjoint to each other in problems

with partial labels. Multi-labels are supposed to have precise information about a set of all
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the subpopulations that an instance is involved into. Therefore, the multi-labels are clearly

different from the partial labels.

Partial labels are also different from uncertain labels. Uncertain labels have informa-

tion about beliefs for an instance of belonging to each subpopulation (Vannoorenberghe and

Denœux, 2002). Vannoorenberghe and Smets (2005), Côme et al. (2008), Côme et al. (2009),

and Szczurek et al. (2010) mostly focused on the estimation of finite mixtures with the uncer-

tain labels, which adapted fuzzy logics. The uncertain labels are, therefore, clearly different

from partial labels that have information with certainty. Côme et al. (2009) stated learning

from uncertain labels can generalize learning from partial labels for finite mixture models.

2.2.2 Learning FMM from partial labels

Ambroise and Govaert (2000) proposed the EM algorithm of estimating FMM from partially

labeled samples. They developed the EM algorithm to maximize the following log-likelihood

function:

Lps(Φ) =

n∑
i=1

log

K∑
k=1

z̃ikpkfk(xi|θk). (2.14)

With an initial estimate Φ(1), in E-step, a conditional expectation of zik at the qth iteration is

computed by

w
(q)
ik =

z̃ikp
(q)
k fk(xi|θ

(q)
k )∑K

l=1 z̃ilp
(q)
l fl(xi|θ

(q)
l )

.

A conditional log-likelihood function to be maximized at M-step is defined by

Q(Φ|Φ(q)) =
n∑
i=1

K∑
k=1

w
(q)
ik log pkfk(xi|θ

(q)
k ).

Φ(q+1) is a solution to

max
Φ

Q(Φ|Φ(q))

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K.

In particular, pk is estimated by

p
(q+1)
k =

∑k
i=1w

(q)
ik

n
.
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With given w
(q)
ik therefore the M-step is identical to the unsupervised estimation.

When handling partial labels we should carefully consider the missing mechanisms of label-

ing information (Lin and Guess, 1994). In Eq. (2.14) however the missing label mechanism has

been ignored. In Chapter 3, we will show Ambroise and Govaert (2000)’s method implicitly

assumes a specific missing label mechanism, and hence produces biased estimates given various

other missing label mechanisms.

2.3 Survival Time Models

Survival time analysis is statistical analysis of time to failure of a system. Definition of

failure depends on a system to be analyzed. In clinical data analysis, particularly, failure

may be defined as death of a patient having a specific disease. It is very common in area of

biostatistics to analyze time to death for patients. Over the past few decades numerous studies

have been made on univariate and multivariate survival analysis based on continuous, nominal,

and ordinal variables. In this study we only consider univariate parametric distribution to

estimate distributions of time to death.

2.3.1 Univariate parametric survival time models

Let T be a continuous variable of time to death. The followings are three popular categories

of functions to represent survival time patterns:

• f(t): a probability density function (pdf) of time to death,

• S(t): a survival function that represents P (T > t) =
∫∞
t f(u) du,

• h(t): a hazard function that represent a local survival rate, f(t)
S(t) .

The aboves describe univariate survival time models because values of the functions only depend

on time to death. If a value of T is observed for all patients in a database, f(t), S(t), and h(t)

can be estimated based on them.

In many cases exact time to death cannot be observed because of failure in tracking patients

or death with causes other than of interest. Time to death is also unknown when patients are
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still alive when collecting data. In such cases we use the last observed time when patients were

alive, which called right-censoring time. To distinguish between failure time (exact time to

death) and right-censoring time, the following two values must be obtained for each patient i:

• ti: the last observed time for patient i before death,

• ci: 1 if ti is failure time, 0 if ti is right-censoring time.

For cases ci = 0, the only thing we know is that patient i had been survived longer than ti.

By defining f(t|θ) as a parametric form of f(t), estimating θ is identical to estimating f(t).

Let the ith observation of survival time be

xi = (ti, ci).

for i = 1, · · · , n where n be the total number of patients of interest in a database. Then, the

log-likelihood function of θ is formulated as

L(θ) =
n∑
i=1

log f(ti|θ)ciS(ti|θ)1−ci .

Maximum likelihood estimator of θ is defined as

θ̂ = arg max
θ∈Θ

L(θ)

where Θ represents a solution space of θ.

An exponential distribution is one of the most popular probability distributions of failure

time of a single system where no explanatory variable for the failure time is available. An

exponential distribution is defined by a single parameter of a constant failure rate λ ∈ (0,∞).

A pdf of the exponential distribution is defined as

f(t|λ) = λe−λt,

and the survival distribution is defined as

S(t|λ) = e−λt
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for t ∈ (0,∞). The log-likelihood function is therefore defined as

L(λ) =
n∑
i=1

log
(
λe−λti

)ci (
e−λti

)1−ci

=
n∑
i=1

log λcie−λti

= (log λ)
n∑
i=1

ci − λ
n∑
i=1

ti.

MLE of λ then is estimated by

λ̂ =

∑n
i=1 ci∑n
i=1 ti

.

2.3.2 FMM on univariate survival time models

FMM is widely applicable to medical data analysis (Schlattmann, 2008). In particular, if a

population consists of two or more homogeneous subpopulations each survival function of which

is distinguishable from the others, a distribution of failure time in a population is considered a

mixture of survival functions of the subpopulations (Mendenhall and Hader, 1958; Larson and

Dinse, 1985; Peng and Dear, 2000).

Mixtures of exponential distributions (MoE) have been studied to model failure time of

population when it consists of two or more subpopulations, each of which is supposed to have

a distinguishable failure rate from others (Mendenhall and Hader, 1958; Rider, 1961; Jewell,

1982; Papadapoulos and Padgett, 1986). A system of interest is possibly a heterogeneous

system having two or more types or causes of failure. In such cases, MoE tells how much

proportions the subpopulations take among the population of interest and how the time to

failure is distributed within each subsystem. MoE generally gives more details of the system

failure than a single exponential distribution when the system of interest is not homogeneous.

The EM algorithm (Dempster et al., 1977) guarantees convergence to the unique ML es-

timates of MoE parameters for fixed numbers of subsystems, when no labeling information is

given to any observation (Jewell, 1982). In E-step, a conditional expectation for the ith patient

of belonging to the kth class is computed by

w
(q)
ik =

pk

(
λ

(q)
k

)ci
e−λ

(q)
k ti∑K

l=1 pl

(
λ

(q)
l

)ci
e−λ

(q)
l ti

.
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In M-step of the qth iteration of the EM algorithm, λk is estimated by

λ
(q)
k =

∑n
i=1w

(q)
ik ci∑n

i=1w
(q)
ik ti

.

As described in Section 2.1–2.2, we can generalize the above EM algorithm to semi-supervised

or partially supervised estimations by applying proper expectation w
(q)
ik .

In the area of reliability engineering, mixtures of failure time distributions with masked

data have been studied since the 1980’s (Miyakawa, 1984; Usher and Hodgson, 1988; Usher

and Guess, 1989; Guess et al., 1991; Lin and Guess, 1994; Ramon et al., 1995; Park, 2005;

Flehinger et al., 1996, 1998). In failure time analysis of machines, information that a failure

of a specific component caused the system failure at time t implies that the other components

have not been failed until t or have survived longer than t in other words. In the listed studies

above different likelihood functions from the above ones have been designed to incorporate such

additional information in estimating FMM.

This study does not assume such additional information is obtained. The reliability engi-

neering literature assumes any of K risk factors are possibly realized in every machine. So the

component led to the system failure can be observable only after the system failure actually

occurred. In this study on the other hand each patient is supposed to have only one risk factor.

It implies that the risk factor is observable before the death of a patient.

2.4 Summary

We have introduced detailed concepts and learning methods of finite mixture models, par-

tially supervised learning, and survival time models that have been thoroughly studied over the

last several decades. Throughout this study we combine those three concepts to learn survival

time distribution of heterogeneous population from partially labeled data. An existing study

for partially supervised learning of finite mixture models has been introduced in Section 2.2.2.

In the next chapter we proposed more generalized partially supervised learning methods for

finite mixture models.
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CHAPTER 3. EM ALGORITHMS FOR ESTIMATING FINITE

MIXTURE MODELS FROM PARTIAL LABELS

Here we propose the EM algorithm for finite mixture models with partial labels, which is

the first part as well as the most generalized picture of this thesis.

3.1 Coarsening Probabilities

In this section we address mechanisms of observing labels that have discussed for semi-

supervised learning (Section 2.1.3) to partially supervised learning problems. Let us have a set

of ‘pre-defined’ J unique observable (or coarsened versions of) label values

Cz̃ = {z̃∗1, z̃∗2, · · · , z̃∗J}

where

z̃∗j = (z̃∗j1, · · · , z̃∗jK).

So z̃i ∈ Cz̃ holds for all i = 1, · · · , n. We call z̃∗j the jth pattern of partial labels. It is important

to keep in mind that Cz̃ is defined before observing the samples. We define all the labels that

are possibly observed rather than taking the observed labels among n samples.

Let us recall the SEER data example introduced in Chapter 1. We label classes of the

farthest lymph nodes involvement as 1 for Not involved, 2 for Celiac/Hepatic, 3 for Other

regional, and 4 for Distant. Then Figure 3.1 defines seven label patterns z̃∗1, · · · , z̃∗7 as shown

in Table 3.1. Ordering classes 1, · · · ,K or patterns 1, · · · , J does not cause differences in

finding MLE of finite mixture models.

Let τij be an indicator variable that

τij = I(z̃i = z̃∗j ) ,∀i = 1, · · · , n, j = 1, · · · , J. (3.1)
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Lymph node involvement

Not involved Involved

Regional Distant

OthersCeliac, Hepatic
(excl. gastrohepatic)

Figure 3.1: Observable values on lymph node involvement by gastric cancer tumors in SEER

research data (1988–2003).

Table 3.1: Predefined 7 observable label patterns for lymph nodes involvement of gastric cancer

tumor (1988–2003).

j Description z̃∗j1 z̃∗j2 z̃∗j3 z̃∗j4
1 Not involved 1 0 0 0

2 Celiac/Hepatic 0 1 0 0

3 Other regional 0 0 1 0

4 Distant 0 0 0 1

5 Regional 0 1 1 0

6 Involved 0 1 1 1

7 Unknown 1 1 1 1
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Then the following two conditions hold:

J∑
j=1

τij = 1 , ∀i = 1, · · · , n (3.2)

J∑
j=1

τij z̃
∗
jk = z̃ik ,∀i, k. (3.3)

Let γjk be a conditional probability of observing label z̃∗j where the true origin is class k:

γjk = P (z̃i = z̃∗j |zik = 1)

= P (τij = 1|zik = 1) (3.4)

We call γjk a coarsening probability of class k with pattern j. With γjk, vector Γ representing

a mechanism of observing labels is redefined by

Γ = (γ11, · · · , γJK). (3.5)

The following two conditions must hold for coarsening probabilities:

J∑
j=1

γjk = 1 ∀k, (3.6)

γjk ≥ 0 ∀j, k. (3.7)

In this study we assume that the observed label must be valid so that does not deliver false

knowledge about the true class membership as described in Eq. (2.12):

zik ≤ z̃ik ∀i, k.

It leads to additional condition on γjk such that

γjk = z̃∗jkγjk, (3.8)

which implies γjk = 0 if z̃∗jk = 0.
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3.2 Likelihood Function for Learning FMM

By using coarsening probabilities γjk, we define a sample probability density function

f(xi, z̃i|Φ,Γ) =

K∑
k=1

f(xi, z̃i, zik = 1|Φ,Γ)

=
J∏
j=1

[
K∑
k=1

f(xi, z̃i = z̃∗j , zik = 1|Φ,Γ)

]I(z̃i=z̃∗j )

=
J∏
j=1

[
K∑
k=1

f(xi, τij = 1, zik = 1|Φ,Γ)

]τij

=
J∏
j=1

[
K∑
k=1

P (zik = 1|Φ)f(xi, τij = 1|Φ,Γ, zik = 1)

]τij

=
J∏
j=1

[
K∑
k=1

P (τij = 1|Γ, zik = 1)P (zik = 1|Φ)f(xi|Φ, zik = 1)

]τij

=

J∏
j=1

[
K∑
k=1

γjkpkfk(xi|θk)

]τij
.

By assuming data have been independently observed or sampled the log-likelihood function on

Dobs is defined by

Lps(Φ,Γ) =
n∑
i=1

J∑
j=1

τij log
K∑
k=1

γjkpkfk(xi|θk). (3.9)

Eq. (3.9) is a log-likelihood function with consideration of coarsening probabilities which have

been ignored in Ambroise and Govaert (2000); Côme et al. (2009).

As shown for semi-supervised learning cases, different assumptions on the mechanism of

observing labels lead to different estimates of FMM. In this chapter, we investigate the EM

algorithms to estimate FMM with the following three different mechanisms of observing labels:

• overall common missing label mechanism (OCML)

• pattern-conditional missing label mechanism (PCML)

• class-pattern-conditional missing label mechanism (CPCML)
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3.3 Overall Common Missing Label mechanism (OCML)

3.3.1 FMM under OCML

OCML represents a mechanism that all the possible combinations of a coarsening pattern

and a true class share a common coarsening probability. OCML implies all the coarsening

probabilities γjk are the same as far as z̃∗jk = 1:

γjk = γhl, ∀(j, k) 6= (h, l) s.t. z̃∗jk = z̃∗hl = 1. (3.10)

Under OCML coarsening probabilities γjk can be expressed by using only a single parameter

γ such that

γjk = γz̃∗jk, ∀j, k. (3.11)

In addition Eq. (3.6) is redefined by

J∑
j=1

γz̃∗jk = 1, ∀k. (3.12)

Eq. (3.12) sets γ to be

γ = 1
/ J∑
j=1

z̃∗jk (3.13)

for all k = 1, · · · ,K. To satisfy Eq.(3.13) for all k, we must have a set of observable label

patterns that
J∑
j=1

z̃∗jk =
J∑
j=1

z̃∗jl, ∀k 6= l. (3.14)

Eq. (3.14) represents that all the classes must have the same number of possible coarsening pat-

terns to define OCML on observing class labels. In a set of observable patterns on lymph nodes

involvement attributes shown in Table 3.1, we can find that
∑J

j=1 z̃
∗
j1 6=

∑J
j=1 z̃

∗
j2. Therefore

OCML is not a possible mechanism of observing lymph nodes involvement information.
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3.3.2 EM-OCML: EM algorithm for learning FMM under OCML

The log-likelihood function Eq.(3.9) can be redefined under OCML by using Eq. (3.11) as

follows:

Lps,ocml(Φ, γ) =
n∑
i=1

J∑
j=1

τij log

K∑
k=1

γz̃∗jkpkfk(xi|θk)

=
n∑
i=1

log
K∑
k=1

γz̃ikpkfk(xi|θk)

=
n∑
i=1

log γ
K∑
k=1

z̃ikpkfk(xi|θk)

= n log γ +

n∑
i=1

log

K∑
k=1

z̃ikpkfk(xi|θk)

= n log γ + Lps(Φ), (3.15)

where Lps(Φ) has been defined in Eq. (2.14). Then MLE of FMM Φ̂ under OCML assumption

is obtained by solving the following optimization problem:

max
Φ,γ

Lps,ocml(Φ, γ)

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K
J∑
j=1

γz̃∗jk = 1, k = 1, · · · ,K.

(3.16)

Because constraints on Φ and γ are independent to each other, we can independently

estimate MLEs of Φ and γ. First γ̂ is a solution to

max
γ

n log γ

s.t.

J∑
j=1

γz̃∗jk = 1, k = 1, · · · ,K

The equality constraint determines MLE to be

γ̂ = K
/ J∑

j=1

K∑
k=1

z̃∗jk (3.17)
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1: if
∑J
j=1 z̃

∗
jk 6=

∑J
j=1 z̃

∗
jl for any k 6= l then

2: return No MLE exists

3: end if

4: γ̂ ← K
/∑J

j=1

∑K
k=1 z̃

∗
jk

5: q ← 0

6: Initialize Φ(1)

7: repeat

8: q ← q + 1

9: E-step: w
(q)
ik ← z̃ikp

(q)
k fk(xi|θ(q)

k )
/∑K

l=1 z̃ilp
(q)
l fl(xi|θ(q)

l )

10: M-step(1): p
(q+1)
k ←

∑k
i=1 w

(q)
ik

/
n

11: M-step(2): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

12: until Lps,ocml(Φ
(q+1), γ̂)− Lps,ocml(Φ(q), γ̂) < ε

13: return Φ̂← Φ(q)

Figure 3.2: EM-OCML: EM algorithm for learning FMM under OCML mechanism

as far as Eq. (3.14) is satisfied. In case we have a feasible γ̂, we find MLE of Φ as a solution to

max
Φ

Lps(Φ)

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K.

We have seen in Section 2.2.2 that the EM algorithm to solve the above optimization problem

has been investigated by Ambroise and Govaert (2000). Although the authors did not explicitly

state the mechanism of observing partial labels, they have implicitly assumed OCML in their

EM algorithm. A detailed EM algorithm for learning FMM under OCML (EM-OCML) is

shown in Figure 3.2.

3.4 Pattern-Conditional Missing Label Mechanism (PCML)

3.4.1 FMM under PCML

PCML has more general condition than OCML. PCML allows coarsening probabilities can

be different from each other if the coarsened patterns are different. PCML however still restricts



31

that a chance of observing a specific pattern does not depend on the true class. It implies

γjk = γjl, ,∀j, k 6= l, z̃∗jk = z̃∗jl = 1. (3.18)

We introduce a new parameter set

γ = (γ1, · · · , γJ),

where

γj ≥ 0 ∀j.

Coarsening probabilities γjk then can be completely determined by γj as

γjk = γj z̃
∗
jk ∀j, k. (3.19)

Eq.(3.6) is then redefined by replacing γjk with Eq. (3.19):

J∑
j=1

γj z̃
∗
jk = 1 ,∀k (3.20)

It is not straightforward to define feasible regions for γ. However we can find an example that

find feasible γ. Let us have only two possible partial labels z̃∗1 = (1, 1, 0) and z̃∗2 = (0, 1, 1). To

satisfy Eq.(3.20) for k ∈ {1, 3}, we set γ1 = γ2 = 1. With this solution however
∑2

j=1 γjzj2 = 2

so that Eq.(3.20) does not holds for k = 2. We therefore cannot find feasible γ = (γ1, γ2) with

the above set of possible partial labels. On the other side, a feasible γ can always be found in

the following two cases:

• If a set of observable partial label includes all the precise labels, we can find a feasible γ.

Let z̃∗1 = (1, 0, · · · , 0), z̃∗2 = (0, 1, · · · , 0), · · · , z̃∗K = (0, 0, · · · ,K). Then γ1 = · · · = γK = 1

and γK+1 = · · · = γJ = 0 represent a feasible γ.

• If unlabeled data is observable, we can find a feasible γ. Let z̃∗J = (1, 1, · · · , 1). Then

γ1 = · · · = γJ−1 = 0 and γJ = 1 is a feasible γ.

Therefore we can find MLE of FMM under PCML for the SEER survival time data that are

labeled by lymph nodes involvement (Table 3.1). The above two conditions however are not

the only cases that we can find a feasible γ. We propose an algorithm (Figure 3.3) to find a

feasible γ, if exists, to be used as an initial parameter value in the EM algorithm.
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1: K1 ← {k :
∑J
j=1 z̃

∗
jk = 1}

2: J1 ← {j : z̃∗jk = 1, k ∈ K1}

3: while K1 6= {1, · · · ,K} do

4: if J1 = {1, · · · , J} then

5: return No feasible initial γ

6: end if

7: J2 ← {j :
∑
k/∈K1

z̃∗jk ≥ 1}

8: h← arg minj∈J2
∑
k/∈K1

z̃∗jk

9: J1 ← J1 ∪ h

10: K1 ← K1 ∪ {k : z̃∗hk = 1}

11: end while

12: γj ← 1
/

maxk
∑J
l=1 z̃

∗
lk for j /∈ J1

13: γj for j ∈ J1 are determined by γj for j /∈ J1 {J − |J1| is the number of parameters on γ}

Figure 3.3: An algorithm to find a feasible γ under PCML

3.4.2 EM-PCML: EM algorithm for learning FMM under PCML

By using new parameter set γ the log-likelihood function Eq.(3.9) can be redefined under

PCML as

Lps,pcml(Φ,γ) =

n∑
i=1

J∑
j=1

τij log

K∑
k=1

γj z̃
∗
jkpkfk(xi|θk).

MLE of FMM under PCML assumption is then the answer to

max
Φ,γ

Lps,pcml(Φ,γ)

s.t.
K∑
k=1

pk = 1

pk ≥ 0, ∀k
J∑
j=1

γj z̃
∗
jk = 1, ∀k

γj ≥ 0 , ∀j.

(3.21)

The EM algorithm iteratively find MLEs of both Φ and γ under PCML assumption (Fig-

ure 3.4). In E-step of the qth iteration of the EM algorithm, a conditional expectation of zik
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with current estimates Φ(q) and γ(q) is computed by

w
(q)
ik = E

[
zik

∣∣∣xi, z̃i,Φ(q),Γ(q)
]

= P (zik = 1|xi, z̃i,Φ(q),Γ(q))

=
f(zik = 1,xi, z̃i,Φ

(q),Γ(q))

f(xi, z̃i,Φ(q),Γ(q))

=
J∏
j=1

 γ
(q)
j z̃∗jkp

(q)
k fk(xi|θ

(q)
k )∑K

l=1 γ
(q)
j z̃∗jlp

(q)
l fl(xi|θ

(q)
l )

τij , (3.22)

where 00 = 1. We define a conditional log-likelihood function on PCML as

Qps,pcml(Φ,γ|Φ(q),γ(q)) =

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log γj z̃

∗
jkpkfk(xi|θk)

=
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log γj z̃

∗
jk +

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

=

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log γj z̃

∗
jk +

n∑
i=1

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

=
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log γj z̃

∗
jk +Q(Φ|Φ(q)) (3.23)

Eq.(3.23) shows the conditional log-likelihood function is composed of a log-likelihood for Φ

and a log-likelihood for γ. In M-step, we find an estimate of Φ that maximize

max
Φ

Q(Φ|Φ(q))

s.t.

K∑
k=1

pk = 1

pk ≥ 0, k = 1, · · · ,K

which we have seen in Section 2.1.2. To find an estimate of γ, we solve the following optimization

problem:

max
γ

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log γj z̃

∗
jk

s.t.
J∑
j=1

γj z̃
∗
jk = 1, k = 1, · · · ,K

γj ≥ 0 , ∀j = 1, · · · , J

(3.24)
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1: q ← 0

2: Initialize γ(1) by using an algorithm in Figure 3.3.

3: if A feasible γ(1) cannot be found then

4: return No MLE exists

5: end if

6: Initialize Φ(1)

7: repeat

8: q ← q + 1

9: E-step: w
(q)
ik ←

∑J
j=1 τij

[
γ

(q)
j z̃∗jkp

(q)
k fk(xi|θ(q)

k )
/∑K

l=1 γ
(q)
j z̃∗jlp

(q)
l fl(xi|θ(q)

l )
]

10: M-step(1): p
(q+1)
k ←

∑k
i=1 w

(q)
ik

/
n

11: M-step(2): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

12: M-step(3): Obtain γ(q+1) by solving Eq. (3.24) using BFGS method.

13: until Lps,pcml(Φ
(q+1),γ(q+1))− Lps,pcml(Φ(q),γ(q)) < ε

14: return Φ̂← Φ(q), γ̂ ← γ(q)

Figure 3.4: EM-PCML: EM algorithm for learning FMM under PCML mechanism

Although it is hard to find a closed form of γ(q+1), we can use nonlinear optimization methods

like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to obtain γ(q+1) that is a solution

to Eq. (3.24).

3.5 Class-Pattern-Conditional Missing Label Mechanism (CPCML)

3.5.1 FMM under CPCML

CPCML represents the most general mechanism on observing partial labels in this study.

CPCML implies the coarsening probabilities do not have any restrictions besides Eqs.(3.6)–

(3.8). It implies coarsening probabilities can be different from each other with respect to the

true class as well as the observed patterns. The parameters γjk’s are not further simplified with

smaller number of parameters.

We can find a feasible estimate of FMM under CPCML as far as

J∑
j=1

z∗jk ≥ 1, (3.25)
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for all k = 1, · · · ,K. If Eq. (3.25) does not hold for any k,
∑J

j=1 γjk = 0 due to Eq. (3.8), so

that Eq. (3.6) must be violated.

3.5.2 EM-CPCML: EM algorithm for learning FMM under CPCML

By incorporating Eq. (3.8) into the log-likelihood function Eq.(3.9), we have a log-likelihood

function under CPCML that

Lps,cpcml(Φ,Γ) =

n∑
i=1

J∑
j=1

τij log

K∑
k=1

z̃∗jkγjkpkfk(xi|θk). (3.26)

MLEs of Φ and Γ represent a solution to the following optimization problem:

max
Φ,Γ

Lps,cpcml(Φ,Γ)

s.t.
K∑
k=1

pk = 1

pk ≥ 0, ∀k
J∑
j=1

γjk = 1, ∀k

γjk ≥ 0, ∀j, k.

(3.27)

Let us have current estimates Φ(q) and Γ(q) at starting the qth iteration of the EM algorithm.

In E-step, a conditional expectation of zik is computed by

w
(q)
ik = E

[
zik

∣∣∣xi, z̃i,Φ(q),Γ(q)
]

=

J∏
j=1

 γ
(q)
jk p

(q)
k fk(xi|θ

(q)
k )∑K

l=1 γ
(q)
jl p

(q)
l fl(xi|θ

(q)
l )

τij (3.28)

which γ
(q)
j z̃∗jk in Eq.(3.22) is replaced with γ

(q)
jk . With the conditional expectation, we define a
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conditional log-likelihood function

Qps,cpcml(Φ,Γ|Φ(q),Γ(q)) =
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjkpkfk(xi|θk)

=

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjk +

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

=
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjk +

n∑
i=1

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

=
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjk +Q(Φ|Φ(q)) (3.29)

In M-step, we find an estimate of Φ to maximize Q(Φ|Φ(q)) in the same ways we have shown

for unsupervised, semi-supervised, or partially supervised learning under OCML or PCML. An

estimate of Γ must be a solution to

max
Γ

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjk

s.t.

J∑
j=1

γjk = 1, ∀k

γjk ≥ 0, ∀j, k.

Hence,

γ
(q+1)
jk =

∑n
i=1 τijw

(q)
ik∑n

i=1w
(q)
ik

. (3.30)

A detailed EM algorithm for learning finite mixture models under CPCML assumption is

described in Figure 3.5.

3.6 Comparison of Log-Likelihood under OCML, PCML, and CPCML

Sections 3.3–3.5 have described three models for FMM learning from partially labeled data.

In this section we describe how such three models are connected to each other from the per-

spective of optimization. To clearly show relations among three models, we reformulate op-

timization problems to find MLE of FMM under OCML (Eq. 3.16), PCML (Eq. 3.21), and

CPCML (Eq. 3.27) by using the log-likelihood function

Lps(Φ,Γ) =

n∑
i=1

J∑
j=1

τij log

K∑
k=1

γjkpkfk(xi|θk)
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1: q ← 0

2: Initialize Γ(1) with γ
(1)
jk = 0 if z̃∗jk = 0.

3: Initialize Φ(1).

4: repeat

5: q ← q + 1

6: E-step: w
(q)
ik ←

∑J
j=1 τij

[
γ

(q)
jk p

(q)
k fk(xi|θ(q)

k )
/∑K

l=1 γ
(q)
jl p

(q)
l fl(xi|θ(q)

l )
]

7: M-step(1): p
(q+1)
k ←

∑k
i=1 w

(q)
ik

/
n

8: M-step(2): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

9: M-step(3): γ
(q+1)
jk ←

∑n
i=1 τijw

(q)
ik

/∑n
i=1 w

(q)
ik

10: until Lps,cpcml(Φ
(q+1),Γ(q+1))− Lps,cpcml(Φ(q),Γ(q)) < ε

11: return Φ̂← Φ(q), Γ̂← Γ(q)

Figure 3.5: EM-CPCML: EM algorithm for learning FMM under CPCML mechanism

that has been defined in Eq. (3.9). Under all the three missing label mechanisms, the following

constraints must hold:

K∑
k=1

pk = 1,

pk ≥ 0, ∀k,

 common proportion constraints

J∑
j=1

γjk = 1, ∀k,

γjk ≥ 0, ∀j, k,

γjk = z̃∗jkγjk, ∀j, k,


common coarsening constraints

where common coarsening constraints have been described in Section 3.1.

An optimization problem to find MLE of FMM under CPCML (Eq. 3.27) is formulated as

max
Φ,Γ

Lps(Φ,Γ)

s.t. common proportion constraints

common coarsening constraints.

(3.31)

Under PCML we have additional constraints from Eq. (3.18) that

γjk = γjl, ∀j = 1, · · · , J, k 6= l : z̃∗jk = z̃∗jl = 1.
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So MLE of FMM under PCML is an optimal solution to

max
Φ,Γ

Lps(Φ,Γ)

s.t. common proportion constraints

common coarsening constraints

Eq. (3.18).

(3.32)

OCML has even more strict constraints on coarsening probabilities from Eq. (3.10) such that

γjk = γhl, ∀(j, k) 6= (h, l) : z̃∗jk = z̃∗hl = 1.

MLE of FMM under OCML is therefore an optimal solution to

max
Φ,Γ

Lps(Φ,Γ)

s.t. common proportion constraints

common coarsening constraints

Eq. (3.10).


(3.33)

Optimization problems Eqs.(3.31)–(3.33) share a common objective function Lps(Φ,Γ). So

the only differences among three models are in solution spaces. Eq.(3.32) and Eq.(3.33) have

additional constraints compared to Eq.(3.31). Solution spaces of FMM under PCML and

OCML are therefore included into a solution space of FMM under CPCML; it means that

CPCML leads to the highest optimal log-likelihood value among three models. In addition,

it is clear that Eq. (3.10) always satisfies Eq. (3.18), while such relation does not hold in the

opposite way. Hence we know that a solution space of FMM under OCML is a part of a solution

space of FMM under PCML. On the same objective function, an optimal solution from a larger

solution space guarantees as good solution as an optimal solution from a smaller solution space

that is a subset of the larger one. Therefore in partially supervised learning of finite mixture

models,

Lps,cpcml(Φ̂, Γ̂) ≥ Lps,pcml(Φ̂, γ̂) ≥ Lps,ocml(Φ̂, γ̂), (3.34)

where MLEs of FMM are exists for all the three missing label mechanisms.
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3.7 Model Selection

The previous section has shown that a solution space of an optimization problem under

CPCML includes solutions spaces under OCML and PCML; it has been caused by additional

equality constraints under OCML and PCML. In statistics, it implies that OCML and PCML

represent reduced models of CPCML. Section 3.4 shown that only J parameters are needed to

represent PCML mechanisms. Under OCML we only need one as shown in Section 3.3, which

dramatically reduces the number of parameters when J and K are large. The complexity of

FMM is the highest under CPCML, the second highest under PCML, and the lowest under

OCML. So MLE of FMM from EM-OCML is expected to be the most precise, while MLE

from EM-CPCML is the least. In cases OCML or PCML holds in observed data therefore EM-

CPCML includes unnecessarily many parameters and sacrifices precision of estimation without

benefits against EM-OCML or EM-PCML. It is called an over-fitting problem. On the other

side, strict equality constraints on coarsening mechanisms, Eq. (3.10) and Eq. (3.18), may

sacrifice accuracy of MLEs in cases such equality constraints do not hold in observed data.

Falsely defined assumptions generally lead to biased MLEs from the true models.

Knowing missing label mechanisms in observed data is therefore crucial to preserve precision

of MLE as much as possible without sacrificing accuracy. In many cases that we unfortunately

do not know the underlying missing label mechanisms, it may be useful to evaluate how the un-

derlying missing label mechanism is plausible to be OCML, PCML, or CPCML after obtaining

MLEs under each missing label mechanism assumption. Model selection represents a such task

of choosing the most appropriate statistical model from several candidates. We suggest Akaike

information criterion (AIC) (Akaike, 1974) to be used for model selection. AIC is defined as

AIC = −2(log-likelihood) + 2(number of parameters).

Here log-likelihood represents a value of log-likelihood function with MLE of FMM. Also the

number of parameters used in computing AIC represents the least number of parameters to be

estimated in learning FMM from observed data. In this study we have two sets of parameters: Φ

and Γ. Because proportion constraints on Φ are the same for EM-OCML, EM-PCML and EM-

CPCML, the number of parameters in Φ does not affect differences in AIC among models with
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different missing label mechanisms. On the other side, constraints on Γ are different between

models as shown in Eqs. (3.31)–(3.33), which causes differences in the number of parameters

to be estimated.

The complete Γ is a set of J×K coarsening probabilities γjk (Eq. 3.5). However constraints

on Γ predetermine some γjk before using the observed data. Under OCML Γ can be represented

by using only one coarsening probability γ (Eq. 3.11). Moreover MLE of γ is not estimated by

observed data but determined by predefined observable patterns z∗jk (Eq. 3.13). Hence γ does

not contribute on AIC. AIC for MLE under OCML is therefore computed by

AICps,ocml = −2Lps,ocml(Φ̂, γ̂) + 2|Φ|, (3.35)

where Φ̂ and γ̂ are MLEs of Φ and γ, respectively, and |Φ| represents the number of parameters

to be estimated in Φ.

Under CPCML, Eq.(3.6) implies that a coarsening probability for one pattern is explained

by coarsening probabilities for the other patterns within each class. In addition Eq.(3.8) implies

that the value of coarsening probability γjk is predetermined to be zero if z∗jk = 0. The number

of parameters on Γ is therefore
K∑
k=1

 J∑
j=1

z∗jk − 1

 .

We therefore define AIC for MLE under CPCML as

AICps,cpcml = −2Lps,cpcml(Φ̂, Γ̂) + 2|Φ|+ 2

K∑
k=1

 J∑
j=1

z∗jk − 1

 . (3.36)

Under PCML Γ can be represented by using J coarsening probabilities in γ (Eq. 3.19). The

least number of parameters to represent γ has been obtained at the end of the algorithm in

Figure 3.3 as J − |J1|. AIC for FMM under PCML is therefore defined as

AICps,pcml = −2Lps,pcml(Φ̂, Γ̂) + 2|Φ|+ 2J − 2|J1|, (3.37)

where J1 is obtained by the algorithm in Figure 3.3.

Generally the missing label mechanism corresponding to the least AIC value is considered

as the most plausible one. We therefore select a MLE from the missing label mechanism that

shows the minimum AIC value among AICps,ocml, AICps,pcml and AICps,cpcml as the best

estimate on Dobs.
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3.8 Summary

In this chapter we have proposed EM algorithms to estimate finite mixture models by incor-

porating partial labels. We have considered three missing label mechanisms: overall common

missing label mechanism (OCML), pattern-conditional missing label mechanism (PCML), and

class-pattern-conditional missing label mechanism (CPCML). CPCML represented the most

general missing label mechanism, while OCML and PCML have restricted solution spaces of

FMM. For cases of unknown underlying missing label mechanism on observed data, we sug-

gested AIC to be used for model selection criteria.

We have not restricted patterns of partial labels in this chapter. In the following chapter

we particularly focus on a taxonomic system that hierarchically specifies observable patterns

of partial labels.
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CHAPTER 4. LEARNING FINITE MIXTURE MODELS FROM

ATTRIBUTE VALUE TAXONOMY

In the previous chapter, we investigated the estimation of finite mixture models from par-

tially labeled data without any restriction on the patterns of observable labels. In this chapter,

we introduce attribute value taxonomy (AVT) as a restriction on the observed labels of sub-

populations and study how to use AVT-guided data for learning finite mixture models.

4.1 Attribute Value Taxonomy

Expert knowledge about useful hierarchical categorization of population may guide data

input procedures. For example SEER database hierarchically defines the levels of lymph nodes

involvement for gastric cancer (Figure 4.1). Gastric cancer cases are split into cases with lymph

nodes involved by tumor and cases without lymph nodes involved. Cases that lymph nodes

involved by tumor are further investigated whether the tumor has been spread to lymph nodes

in distant organs far away from the stomach or has been spread within nearby or regional

lymph nodes. For cases with only regional lymph nodes involved, it is investigated whether

celiac lymph nodes or hepatic lymph nodes are involved or not. Such specifications of the level

of lymph nodes involvement are important to estimate a person’s prognosis like survival time.

From Figure 4.1 we know celiac and hepatic lymph nodes are regional lymph nodes for gastric

cancer, not distant lymph nodes. We also know not all regional lymph nodes are either celiac

or hepatic lymph nodes; there are chances that other regional lymph nodes are involved by

gastric cancer tumor.

Attribute value taxonomy (AVT) is a tree of attribute values that represents such ‘is-

a’ relationships among values on a nominal attribute (Almuallim et al., 1995; Zhang, 2005;
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Lymph node involvement

Not involved Involved

Regional Distant

OthersCeliac, Hepatic
(excl. gastrohepatic)

Figure 4.1: AVT applied to SEER research data for lymph node involvement of gastric cancer

tumors.

Sharma and Poole, 2005). The root node of AVT represents unspecified value on the attribute.

Branches in AVT represent specification of attribute values from a relatively imprecise value

to disjoint further detailed values. So on a single path from the top-most or the root node to

a bottom or a leaf node in AVT, the farther from the root node, the more specific information

contained about the attribute. Values corresponding to leaf nodes of AVT are desired to be

observed because they contain the most specific information on the attribute. However values

on the attributes may not be completely specified due to lack of information or uncontrolled

data input practices. AVT limits observable values on the attribute to leaf and inner nodes of

AVT. With AVT in Figure 4.1 for example SEER allows people to label a gastric cancer case

as Regional if it is certain that the case is neither Not involved nor Distant. There is still

an ambiguity in an answer to which of Celiac/Hepatic or Other regional best represents

the case, but it is allowed ambiguity to be stored in SEER database. On the other hand an

imprecise label representing a case is either Celiac/Hepatic or Distant is not allowed to be

input.

4.2 Learning Finite Mixture Models with Alternative Formulation

In this section we propose an alternative parameterization for learning finite mixture models.

This section will deliver more intuitive explanation about learning finite mixture models for
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whom are not familiar with coarsening probabilities in Section 3.1.

4.2.1 Parameterization of finite mixture models

Let us recall definitions of data that have been defined in Sections 2.2 and 3.1. A probability

density function of values of interest x is supposed to be a mixture of K components,

f(x) =
K∑
k=1

pkfk(x|θk).

The objective of this study is find MLE of f(x) by utilizing all observed information about the

component origin from which each data was observed. A data set with n complete observations

is defined by

Dcomplete = {(x1, z1), · · · , (xn, zn)}

where zi = (zi1, · · · , ziK) and

zik =


1 if i ∈ class k,

0 otherwise.

Element values of an indicator vector δi = (δi1, · · · , δiK) are set to be

δik =


0 if zik has been reported,

1 otherwise.

Then an observed label of the ith sample z̃i = (z̃i1, · · · , z̃iK) is valued as

z̃ik =


1 if δik = 1,

zik if δik = 0.

So rather than Dcomplete we commonly observe a data set

Dobs = {(x1, z̃1), · · · , (xn, z̃n)}.

With predefined J unique observable label patterns z̃∗1, z̃
∗
2, · · · , z̃∗J , we define an indicator vari-

able τij so that

τij = I(z̃i = z̃∗j ) ,∀i = 1, · · · , n, j = 1, · · · , J.
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Modeling a sample density function

f(xi, z̃i) =

J∑
j=1

τij

K∑
k=1

f(xi, τij = 1, zik = 1)

=
J∑
j=1

τij

K∑
k=1

f(xi|τij = 1, zik = 1)P (τij = 1, zik = 1)

=

J∑
j=1

τij

K∑
k=1

f(xi|zik = 1)P (τij = 1, zik = 1)

=
J∑
j=1

τij

K∑
k=1

fk(xi|θk)P (τij = 1, zik = 1)

is a crucial task to obtain MLE of f(x). Particularly there are multiple ways to model a

joint probability of a true class and an observed label P (τij = 1, zik = 1). In Chapter 3 we

parameterized P (τij = 1|zik = 1) by γjk and P (zik = 1) by pk to represent the joint probability

such that

P (τij = 1, zik = 1) = P (τij = 1|zik = 1)P (zik = 1)

= γjkpk.

In this section we parameterize P (zik = 1|τij = 1) and P (τij = 1) to represent the same joint

probability; it leads to more intuitive EM algorithm for learning FMM from AVT-guided data.

Let we define parameters pjk and πj that

pjk = P (zik = 1|τij = 1), (4.1)

πj = P (τij = 1). (4.2)

pjk represents a proportion of class k within instances that are labeled as z̃∗j . In addition πj

denotes a marginal probability that instances are labeled as z̃∗j . Then the joint probability of

a true class and an observed label is represented by

P (τij = 1, zik = 1) = P (τij = 1)P (zik = 1|τij = 1)

= πjpjk.

So we can learn FMM with new parameter sets

P = (p11, · · · , pJK),

Π = (π1, · · · , πJ),
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with the following constraints:

K∑
k=1

pjk = 1, ∀j, (4.3)

pjk ≥ 0, ∀j, k, (4.4)

J∑
j=1

πj = 1, (4.5)

πj ≥ 0, ∀j. (4.6)

As similar to constraints on γjk, the relation between the observed label and the true class

membership

zik ≤ z̃ik ∀i, k,

leads to additional condition on pjk such that

pjk = z̃∗jkpjk, (4.7)

which implies pjk = 0 if z̃∗jk = 0.

We still need to have mixture parameters Φ for representing mixture components θk, but

mixture proportions pk can be completely explained by the new parameters because

pk = P (zik = 1)

=
J∑
j=1

P (τij = 1)P (zik = 1|τij = 1)

=
J∑
j=1

πjpjk. (4.8)

So a marginal pdf of x is defined as

f(x) =

K∑
k=1

pkfk(x|θk)

=

K∑
k=1

J∑
j=1

pjkfk(x|θk)

=
J∑
j=1

πj

K∑
k=1

pjkfk(x|θk)

=

J∑
j=1

πjf(j)(x), (4.9)
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where

f(j)(x) =

K∑
k=1

pjkfk(x|θk). (4.10)

Eq.(4.10) represents that a value of x with label z̃∗j is supposed to be drawn from a mixture

of K probability density function with different mixing proportions from a mixture on other

labels as well as the overall mixture f(x), while component parameter θk is independent to the

observed label.

By using new parameter sets, we define a sample probability density function

f(xi, z̃i|Φ,P,Π) =

K∑
k=1

f(xi, z̃i, zik = 1|Φ,P,Π)

=
J∏
i=1

[
K∑
k=1

f(xi, τij = 1, zik = 1|Φ,P,Π)

]τij

=
J∏
i=1

[
K∑
k=1

P (τij = 1, zik = 1|P,Π)f(xi|Φ, zik = 1)

]τij

=

J∏
i=1

[
K∑
k=1

P (τij = 1|Π)P (zik = 1|P, τij = 1)f(xi|Φ, zik = 1)

]τij

=
J∏
i=1

[
K∑
k=1

πjpjkfk(xi|θk)

]τij
. (4.11)

So a log-likelihood function for FMM is defined as follows:

Lps(Φ,P,Π) =

n∑
i=1

log f(xi, z̃i|Φ,P,Π)

=
n∑
i=1

J∑
j=1

τij log
K∑
k=1

πjpjkfk(xi|θk)

=

n∑
i=1

J∑
j=1

τij log

K∑
k=1

pjkfk(xi|θk) +

n∑
i=1

J∑
j=1

τij log πj . (4.12)

MLE of FMM is a solution to arg maxΦ,P,Π Lps(Φ,P,Π) with constraints Eqs. (4.3)–(4.7) as

well as Eq. (4.8).
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4.2.2 Alternative EM algorithm for learning FMM under CPCML

By incorporating Eq. (4.7) into log-likelihood function Eq. (4.12), we have a new log-

likelihood function under CPCML such that

Lps,cpcml(Φ,P,Π) =

n∑
i=1

J∑
j=1

τij log

K∑
k=1

z∗jkpjkfk(xi|θk) +

n∑
i=1

J∑
j=1

τij log πj . (4.13)

Then MLE of FMM Φ̂ under CPCML assumption is obtained by solving the following opti-

mization problem:

max
Φ,P,Π

Lps,cpcml(Φ,P,Π)

s.t.

J∑
j=1

πk = 1

πj ≥ 0, ∀j
K∑
k=1

pjk = 1, ∀j

pjk ≥ 0, ∀j, k,

pk =

J∑
j=1

πjpjk, ∀k.

(4.14)

The last constraint is nonlinear, which makes difficult to get a closed form solution to Eq. (4.14).

Hence we propose an EM algorithm to obtain MLE of FMM with the new parameterization.

At the qth iteration in EM algorithm, let us have current estimates Φ(q), P(q), and Π(q). In

E-step, a conditional expectation of zik is computed by

w
(q)
ik = E

[
zik

∣∣∣xi, z̃i,Φ(q),P(q),Π(q)
]

= E
[
zik

∣∣∣xi, z̃i,Φ(q),P(q)
]

=
J∑
j=1

τijP (zik = 1|xi, τij = 1,Φ(q),P(q))

=

J∑
j=1

τij
f(xi, zik = 1|τij = 1,Φ(q),P(q))

f(xi|τij = 1,Φ(q),P(q))

=
J∑
j=1

τij
pjkfk(xi|θk)∑K
l=1 pjlfl(xi|θl)

=

J∏
j=1

[
pjkfk(xi|θk)∑K
l=1 pjlfl(xi|θl)

]τij
. (4.15)
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From Eq. (4.15) we see that marginal pattern probability Π does not affect a conditional

expectation of zik to be computed within EM algorithm. It implies that Π can be estimated

independently to Φ and P, which makes the estimation simpler. MLE of Π is estimated by

counting the observed label patterns:

π̂j =
1

n

n∑
i=1

τij , ∀j = 1, · · · , J. (4.16)

Hence the log-likelihood function we need to maximize by using EM algorithm under CPCML

is

Lps,cpcml(Φ,P, Π̂) =
n∑
i=1

J∑
j=1

τij log
K∑
k=1

z∗jkpjkfk(xi|θk) +
n∑
i=1

J∑
j=1

τij log π̂j ,

where the second additive term is fixed by Eq. (4.16). By ignoring the second additive term of

Eq. (4.17), we define a conditional log-likelihood function

Qps,cpcml(Φ,P|Φ(q),P(q)) =
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z∗jkpjkfk(xi|θk) (4.17)

where w
(q)
ik is defined by Eq. (4.15). In M-step of EM algorithm, we find new estimates Φ(q+1)

and P(q+1) of Φ and P, respectively, as optimal solutions to

max
Φ,P

Qps,cpcml(Φ,P|Φ(q),P(q))

s.t.

K∑
k=1

pjk = 1, ∀j

pjk ≥ 0, ∀j, k,

pk =

J∑
j=1

π̂jpjk.

(4.18)

In maximizing conditional log-likelihood Qps,cpcml(Φ,P|Φ(q),P(q)), we do not have nonlinear

constraints because a parameter πj in Eq. (4.14) has been replaced with a fixed estimate π̂j .

So we can easily have closed forms of updated parameters that

p
(q+1)
jk =

∑n
i=1 τijw

(q)
ik∑n

i=1 τij
, ∀j, k, (4.19)

p
(q+1)
k =

J∑
j=1

π̂jp
(q+1)
jk , ∀k. (4.20)
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1: π̂j ←
∑n
i=1 τij

/
n

2: q ← 0

3: Initialize P(1) with p
(1)
jk = 0 if z̃∗jk = 0.

4: Initialize Φ(1) with p
(1)
k =

∑J
j=1 π̂jp

(1)
jk .

5: repeat

6: q ← q + 1

7: E-step: w
(q)
ik ←

∑J
j=1 τij

[
p

(q)
jk fk(xi|θ(q)

k )
/∑K

l=1 p
(q)
jl fl(xi|θ

(q)
l )
]

8: M-step(1): p
(q+1)
jk ←

∑n
i=1 τijw

(q)
ik

/∑n
i=1 τij

9: M-step(2): p
(q+1)
k ←

∑J
j=1 π̂jp

(q+1)
jk

10: M-step(3): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

11: until Lps,cpcml(Φ
(q+1),P(q+1), Π̂)− Lps,cpcml(Φ(q),P(q), Π̂) < ε

12: return Φ̂← Φ(q), P̂← P(q)

Figure 4.2: Alternative EM-CPCML

We terminate the iteration when [Lps,cpcml(Φ
(q+1),P(q+1), Π̂) − Lps,cpcml(Φ(q),P(q), Π̂)] is less

than a predetermined threshold ε. A detailed EM algorithm for learning FMM under CPCML

assumption with the new parameterization is described in Figure 4.2.

4.2.3 Alternative EM algorithm for learning FMM under PCML

PCML needs additional equality constraints on pjk such that

pjk =
z̃∗jkpk∑K
l=1 z̃

∗
jlpl

, ∀j, k. (4.21)

Eq. (4.21) represents that pjk are determined by the overall K component mixture proportions

p1, · · · , pK . So P is a redundant parameter set if Φ exists. By removing P from parameter

sets, we have a sample probability density function that

f(xi, z̃i|Φ,Π) =

J∏
i=1

[
K∑
k=1

πj
z̃∗jkpk∑K
l=1 z̃

∗
jlpl

fk(xi|θk)

]τij
(4.22)
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and a log-likelihood function that

Lps,pcml(Φ,Π) =
n∑
i=1

log f(xi, z̃i|Φ,Π)

=

n∑
i=1

J∑
j=1

τij log

K∑
k=1

πj
z̃∗jkpk∑K
l=1 z̃

∗
jlpl

fk(xi|θk)

=
n∑
i=1

J∑
j=1

τij log
K∑
k=1

z̃∗jkpk∑K
l=1 z̃

∗
jlpl

fk(xi|θk) +
n∑
i=1

J∑
j=1

τij log πj . (4.23)

The following relations between pk and πj must hold under PCML:

J∑
j=1

z̃∗jkπj ≥ pk, ∀k = 1, · · · ,K, (4.24)

K∑
k=1

z̃∗jkpk ≥ πj , ∀j = 1, · · · , J. (4.25)

Eq. (4.24) describes that the probability of observing a label including class k should be larger

than the probability of observing an instance from class k at each observation. In addition

Eq. (4.25) implies that the probability of observing a specific label pattern should be less

than the probability of observing an instance from one of classes that the label pattern covers.

Eqs. (4.24)–(4.24) make πj cannot be estimated independently from the other parameters as it

does under CPCML. So, Π must be estimated within EM algorithm as well as Φ.

At the qth iteration in EM algorithm, let us have current estimates Φ(q) and Π(q). In E-step,

a conditional expectation of zik is computed by

w
(q)
ik = E

[
zik

∣∣∣xi, z̃i,Φ(q),Π(q)
]

=

J∏
j=1


z̃∗jkpk∑K

h=1 z̃
∗
jhph

fk(xi|θk)∑K
l=1

z̃∗jlpl∑K
h=1 z̃

∗
jhph

fl(xi|θl)


τij

=

J∏
j=1

[
z̃∗jkpkfk(xi|θk)∑K
l=1 z̃

∗
jlplfl(xi|θl)

]τij
. (4.26)

In M-step we need to update estimates of Φ and Π that maximize a conditional log-likelihood

function

Qps,pcml(Φ,Π|Φ(q),Π(q)) =
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log

z̃∗jkpk∑K
l=1 z̃

∗
jlpl

fk(xi|θk) +
n∑
i=1

J∑
j=1

τij log πj .

(4.27)
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Maximizing Eq. (4.27) should be conducted with constraints Eqs. (4.24)–(4.25) as well as

K∑
k=1

pk = 1

pk ≥ 0, ∀k.

The maximization of the conditional log-likelihood function does not look simpler or easier

than that in Section 4.2.3. Therefore, we follow the EM algorithm in Section to estimate FMM

under PCML.

4.3 EM Algorithm for AVT-guided Data

Now we specify the proposed EM algorithms for AVT-guided data. In this section we

directly use the AVT tree structure rather than explicitly generating binary pattern variables

z̃∗jk.

4.3.1 Notation

Let us start with the example in Figure 4.1. By indexing classes as

• 1: Not involved,

• 2: Celiac/Hepatic,

• 3: Other regional,

• 4: Distant,

we define seven observable patterns z̃∗1, · · · , z̃∗7 as shown in Table 4.1. By indexing nodes with

j = 1, · · · , 7, we develop a simplified tree T Figure 4.3.

General operators of trees are defined for AVT as follows:

• Nodes(T ): a set of nodes of T ,

• Leaf (T ): a set of leaf nodes of T ,

• Root(T ): the root node of T .
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Table 4.1: Observable label patterns z̃∗j for lymph nodes involvement of gastric cancer tumor

corresponding to Figure 4.1.

j Description z̃∗j1 z̃∗j2 z̃∗j3 z̃∗j4
1 Not involved 1 0 0 0

2 Celiac/Hepatic 0 1 0 0

3 Other regional 0 0 1 0

4 Distant 0 0 0 1

5 Regional 0 1 1 0

6 Involved 0 1 1 1

7 Unknown 1 1 1 1

7

1

5 4

32

6

Figure 4.3: A simplified AVT T with node indexes.
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In addition, for j ∈ Nodes(T ), the following operators are defined:

• Anc(j, T ): a set of ancestors of j,

• Desc(j, T ): a set of descendants of j,

• Child(j, T ): a set of child nodes of j,

• Subtree(j, T ): a subtree of T which consists of Desc(j, T ) with a root node j.

Additionally we define a depth of AVT be the maximum level of specification such that

Depth(T ) = max
k∈Leaf (T )

|Anc(k, T )|+ 1.

With T that represented in Figure 4.3 for example

Nodes(T ) = {1, · · · , 7},

Leaf (T ) = {1, 2, 3, 4},

Root(T ) = 7,

Anc(6, T ) = {7},

Desc(6, T ) = {2, 3, 4, 5},

Child(6, T ) = {4, 5},

Subtree(6, T ) =

5 4

32

6

.

For convenience, hereafter we index the K leaf nodes to be 1, · · · ,K and the root node to

be J without loss of generality. Then the followings are satisfied:

Nodes(T ) = {1, · · · , J},

Leaf (T ) = {1, · · · ,K},

Root(T ) = J.
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In addition for any node j the following relations between tree operators are generally hold:

Root(Subtree(j, T )) = j,

Nodes(Subtree(j, T )) = Desc(j, T ) ∪ {j},

Desc(j, T ) =
⋃

l∈Child(j,T )

Nodes(Subtree(l, T )).

Also sibling nodes l and h from the same parent j satisfy the following conditions that make

subtrees disjoint from each other:

Nodes(Subtree(l, T )) ∩Nodes(Subtree(h, T )) = ∅

Leaf (Subtree(l, T )) ∩ Leaf (Subtree(h, T )) = ∅.

To shorten notations in the following sections we let

Nodes(j, T ) = Nodes(Subtree(j, T )),

Leaf (j, T ) = Leaf (Subtree(j, T )).

4.3.2 Learning finite mixture models with AVT under CPCML

With defined AVT T , a pdf of x corresponding to node j where the observed label pattern

is z̃∗j is defined by

f(j)(x) =
∑

k∈Leaf (j,T )

pjkfk(x|θk). (4.28)

In addition constraint Eq. (4.3) is specified by

∑
k∈Leaf (j,T )

pjk = 1, ∀j. (4.29)

It implies that values of x within each label pattern are distributed by finite mixture models.

Therefore learning FMM from AVT-guided data is learning FMM within each node on AVT

while all the nodes share the same component distribution parameters θk.

A marginal pdf of x is defined as

fT (x) =
∑

j∈Nodes(T )

πjf(j)(x). (4.30)
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Our objective is finding MLE of fT (x) by utilizing all the observed data. So the log-likelihood

function to be maximized is newly defined by

LT ,cpcml(Φ,P,Π) =
n∑
i=1

∑
j∈Nodes(T )

τij log πjf(j)(xi)

=

n∑
i=1

∑
j∈Nodes(T )

τijπj log
∑

k∈Leaf (j,T )

pjkfk(x|θk). (4.31)

As same to Section 4.2, MLE of Π is obtained by setting the partial derivative of Eq. (4.31)

on πj to be zero, so that

π̂j =
1

n

n∑
i=1

τij , (4.32)

since
∑

j∈Nodes(T ) τij = n. Therefore we define a conditional log-likelihood to be maximized

within M-step of the EM algorithm as

QT ,cpcml(Φ,P|Φ(q),P(q)) =
n∑
i=1

∑
j∈Nodes(T )

τij
∑

k∈Leaf (j,T )

w
(q)
ik log pjkfk(x|θk) (4.33)

where

w
(q)
ik =

∑
j∈Anc(k,T )∪{k} τijpjkfk(xi|θk)∑

j∈Anc(k,T )∪{k} τij
∑

l∈Leaf (j,T ) pjlfl(xi|θl)
. (4.34)

Updating estimates of pjk and θk is identical to Section 4.2 with newly defined w
(q)
ik . The

relation between pk and pjk is defined as

pk = π̂k +
∑

j∈Anc(k,T )

π̂jpjk, ∀k. (4.35)

The EM algorithm is described in Figure 4.4.

4.3.3 Learning finite mixture models with AVT under PCML

Under PCML mechanism, relations between marginal proportions of subpopulation pk and

pattern-conditional proportions of subpopulation pjk have been defined in Eq.(4.21). The

relations are specified on AVT as

pjk = I(k ∈ Leaf (j, T ))
pk∑

l∈Leaf (j,T ) pl
, ∀j, k. (4.36)

Eq. (4.36) represents that pjk are determined by the overall K component mixture proportions

p1, · · · , pK . So P is a redundant parameter set if Φ exists. By Eq. (4.36) a pattern-conditional
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1: π̂j ←
∑n
i=1 τij

/
n

2: q ← 0

3: Initialize P(1) with p
(1)
jk = 0 if k /∈ Leaf (j, T ).

4: Initialize Φ(1) with p
(1)
k =

∑J
j=1 π̂jp

(1)
jk .

5: repeat

6: q ← q + 1

7: E-step: w
(q)
ik ←

∑
j∈Anc(k,T )∪{k} τij

[
pjkfk(xi|θk)

/∑
l∈Leaf (j,T ) pjlfl(xi|θl)

]
8: M-step(1): p

(q+1)
jk ←

∑n
i=1 τijw

(q)
ik

/∑n
i=1 τij

9: M-step(2): p
(q+1)
k ← π̂k +

∑
j∈Anc(k,T ) π̂jpjk

10: M-step(3): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

11: until LT ,cpcml(Φ
(q+1),P(q+1), Π̂)− LT ,cpcml(Φ(q),P(q), Π̂) < ε

12: return Φ̂← Φ(q), P̂← P(q)

Figure 4.4: Alternative EM-CPCML on AVT

pdf of x in Eq. (4.10) is redefined as

f(j)(x) =

∑
k∈Leaf (j,T ) pkfk(x|θk)∑

k∈Leaf (j,T ) pk
. (4.37)

For j /∈ Leaf (T ) in particular Eq. (4.37) is specified as

f(j)(x) =

∑
l∈Child(j,T )

∑
k∈Leaf (l,T ) pkfk(x|θk)∑

k∈Leaf (j,T ) pk

=
∑

l∈Child(j,T )

[∑
k∈Leaf (l,T ) pk∑
k∈Leaf (j,T ) pk

][∑
k∈Leaf (l,T ) pkfk(x|θk)∑

k∈Leaf (l,T ) pk

]

=
∑

l∈Child(j,T )

[∑
k∈Leaf (l,T ) pk∑
k∈Leaf (j,T ) pk

]
f(l)(x). (4.38)

Therefore FMM corresponding to an inner node j is a mixture of FMMs corresponding to child

nodes under PCML, where the mixing proportions are determined by AVT structure as well

as overall subpopulation proportion pk.

The following relations between pk and πj must hold under PCML on AVT:

πk +
∑

j∈Anc(k,T )

πj ≥ pk, ∀k = 1, · · · ,K, (4.39)

∑
k∈Leaf (j,T )

pk ≥ πj , ∀j = 1, · · · , J.. (4.40)
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4.3.4 Further discussion about PCML

A pdf of x within a subtree of AVT can be defined by

fSubtree(j,T )(x) =

∑
l∈Nodes(j,T ) πlf(l)(x)∑

l∈Nodes(j,T ) πl

=
∑

k∈Leaf (j,T )

∑
l∈Nodes(j,T ) πlplk∑
l∈Nodes(j,T ) πl

fk(x|θk), (4.41)

which describes that a pdf of x within a subtree is a mixture of pdfs corresponding to leaf

nodes in the subtree with proportion
∑

l∈Nodes(j,T ) πlplk∑
l∈Nodes(j,T ) πl

. Under PCML, we know

plk∑
h∈Leaf (j,T ) plh

=
pk∑

h∈Leaf (j,T ) ph
(4.42)

for l ∈ Anc(j, T ) and k ∈ Leaf (j, T ). Then for k ∈ Leaf (j, T )

pk =
∑

l∈Nodes(T )

πlplk

=
∑

l∈Anc(j,T )

πlplk +
∑

l∈Nodes(j,T )

πlplk

=
∑

l∈Anc(j,T )

πl
pk∑

h∈Leaf (l,T ) ph
+

∑
l∈Nodes(j,T )

πlplk, (4.43)

so that ∑
l∈Nodes(j,T )

πlplk = pk

1−
∑

l∈Anc(j,T )

πl∑
h∈Leaf (l,T ) ph

 . (4.44)

Therefore a proportion of component k ∈ Leaf (j, T ) within FMM fSubtree(j,T )(x) is∑
l∈Nodes(j,T ) πlplk∑
l∈Nodes(j,T ) πl

=

∑
l∈Nodes(j,T ) πlplk∑

h∈Leaf (j,T )

∑
l∈Nodes(j,T ) πlplh

=
pk∑

h∈Leaf (j,T ) ph
. (4.45)

From Eqs. (4.37), (4.41) and (4.45) we can know that

f(j)(x) = fSubtree(j,T )(x) (4.46)

under PCML on AVT.

By replacing f(l)(x) with fSubtree(l,T )(x) in Eq.(4.38), we have

f(j)(x) =
∑

l∈Child(j,T )

[∑
k∈Leaf (l,T ) pk∑
k∈Leaf (j,T ) pk

]
fSubtree(l,T )(x) (4.47)
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for j /∈ Leaf (T ). So PCML implies that FMM corresponding to an inner node j is a mixture of

FMMs corresponding to subtrees whose root nodes are child nodes of the inner node. In this

mixture, contributions of subtrees on the mixture are proportional to the size of subpopulation

pk corresponding to the subtrees. This proportional constraint is relaxed in the new missing

label mechanism that we propose in the following section.

4.4 Learning FMM under Hierarchy-Conditional Missing Label

Mechanism (HCML)

In this section we propose another missing label mechanism that we name hierarchy-

conditional missing label (HCML) mechanism; it is a missing label mechanism only definable on

AVT. HCML represents a limited mechanism compared to CPCML but a generalized mecha-

nism compared to PCML. We therefore introduce HCML for robust estimation of FMMs when

PCML is violated but CPCML is too general to specify missing label mechanisms on given

data.

4.4.1 Hierarchy-conditional missing label mechanism (HCML)

Let us imagine that specifications of labeling information are conducted step-by-step from

the root node to the leaf nodes on AVT. HCML implies that a single step specification of labeling

information is conducted depending on its results but not on the following specification step.

A pattern-conditional pdf of x under HCML is defined by

f(j)(x) =


fk(x|θk) if j ∈ Leaf (T ),∑
l∈Child(j,T )

ξjlfSubtree(l,T )(x) if j /∈ Leaf (T ),
(4.48)

where ξjl denotes a proportion of subtree Subtree(l, T ) within node j, fSubtree(l,T )(x) is defined in

Eq. (4.41), and Leaf (T ) = {1, · · · ,K}. Under PCML we set ξjl to be
∑

k∈Leaf (l,T ) pk∑
k∈Leaf (j,T ) pk

as described

in Eq. (4.47). Under HCML we parameterize ξjl to allow flexibility of FMM estimates in cases

the underlying missing label mechanism on observed data violates PCML assumption. Now we

have a new set of parameters

Ξ = (ξK+1,1, · · · , ξK+1,J−1, · · · , ξJ1, · · · , ξJ,J−1).
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The reason we do not define ξjl for j = 1, · · · ,K is that nodes 1, · · · ,K are leaf nodes so that

they do not have any child nodes in our notations. In addition ξjl is not defined for l = J

because node J denotes the root node so that no nodes can have node J as a child node. Ξ

must satisfy the following three constraints:

∑
l∈Child(j,T )

ξjl = 1, j = K + 1, · · · , J, (4.49)

ξjl ≥ 0, j = K + 1, · · · , J, l = 1, · · · , J − 1, (4.50)

ξjl = I(l ∈ Child(j, T )) · ξjl, j = K + 1, · · · , J, l = 1, · · · , J − 1. (4.51)

So it is obvious that

ξjl = 0, if l /∈ Child(j, T ).

Then the following condition must hold for j /∈ Leaf (T ) and k = 1, · · · ,K under HCML:

pjk = P (zik = 1|τij = 1)

=
∑

l∈Child(j,T )

ξjlP

zik = 1

∣∣∣∣∣∣
∑

h∈Nodes(l,h)

τih = 1


=

∑
l∈Child(j,T )

ξjl

∑
h∈Nodes(l,T ) πhphk∑
h∈Nodes(l,T ) πh

.

Therefore pjk is completely determined by ξjl for l ∈ Child(j, T ) as well as phk for h ∈

Desc(j, T ). Our labeling strategy on AVT sets pkk to be 1 for k = 1, · · · ,K because a leaf

node k represents completely specified label on class k. It implies that all pjk are completely

determined by multiplying all ξjl’s on a path from an inner node j to a leaf node k

pjk =
O−1∏
o=1

ξlolo+1 , (4.52)

where lo = j, lO = k, lo+1 ∈ Child(lo, T ), and lo ∈ Anc(k, T ) for o = 1, · · · , O − 1. So we

can remove P from our parameter sets by taking Ξ as a parameter set. In addition pk is also

completely determined Ξ and Π by replacing pjk with Eq. (4.52) in computing

pk =

J∑
j=1

πjpjk.
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By using new parameter set Ξ, we define a sample probability density function

f(xi, z̃i|Φ,Π,Ξ) =

J∑
j=1

τijf(xi, τij = 1|Φ,Π,Ξ)

=
J∑
j=1

τijπjf(j)(xi|Φ,Ξ)

=

J∏
j=1

[
πjf(j)(xi|Φ,Ξ)

]τij , (4.53)

where f(j)(x|Φ,Ξ) denotes a pattern-conditional pdf f(j)(x) that is defined by Eq. (4.48). So a

log-likelihood function for FMM is defined by incorporating a constraint Eq. (4.51) as follows:

LT ,hcml(Φ,Π,Ξ) =
n∑
i=1

log f(xi, z̃i|Φ,Π,Ξ)

=

n∑
i=1

J∑
j=1

τij log πjf(j)(xi|Φ,Ξ)

=
n∑
i=1

J∑
j=1

τij log πj +
n∑
i=1

K∑
j=1

τij log fj(xi|θj) +

n∑
i=1

J∑
j=K+1

τij log πj
∑

l∈Child(j,T )

ξjlfSubtree(l,T )(x), (4.54)

where fSubtree(l,T )(x) is defined in Eq. (4.41).

4.4.2 EM-HCML: EM algorithm for learning FMM under HCML

The recursive multiplication of ξjl is however not intuitive for studying estimation. We

therefore recall a parameter set Γ = (γjk) that has been defined in Chapter 3 as

γjk = P (τij = 1|zik = 1).

HCML defines an equality constraint that

γjk = γjl, if ∃h ∈ Child(j, T ) such that k, l ∈ Leaf (h, T ). (4.55)
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Therefore MLE of FMM under HCML is defined as an optimal solution to

max
Φ,Γ

Lps(Φ,Γ)

s.t.
K∑
k=1

pk = 1

pk ≥ 0, ∀k
J∑
j=1

γjk = 1, ∀k

γjk ≥ 0, ∀j, k

γjk = z̃∗jkγjk, ∀j, k

γjk = γjl, if ∃h ∈ Child(j, T ) such that k, l ∈ Leaf (h, T ),

(4.56)

where

Lps(Φ,Γ) =
n∑
i=1

J∑
j=1

τij log
K∑
k=1

γjkpkfk(xi|θk).

By incorporating the second last constraint on Eq. (4.56) into the log-likelihood function,

we define a HCML-specified log-likelihood function

LT ,hcml(Φ,Γ) =
n∑
i=1

K∑
j=1

τij log γjjpjfj(xi|θj) +

n∑
i=1

J∑
j=K+1

τij log
∑

h∈Child(j,T )

∑
k∈Leaf (h,T )

γjkpkfk(xi|θk). (4.57)

Then an optimization problem Eq. (4.58) can be reformulated as

max
Φ,Γ

LT ,hcml(Φ,Γ)

s.t.

K∑
k=1

pk = 1

pk ≥ 0, ∀k
J∑
j=1

γjk = 1, ∀k

γjk ≥ 0, ∀j, k,

γjk = γjl, if ∃h ∈ Child(j, T ) such that k, l ∈ Leaf (h, T ).

(4.58)

To solve Eq. (4.58) we propose a new EM algorithm.
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At starting the EM algorithm we initial an estimate of Φ and Γ. Particularly Γ is estimated

by

γ
(1)
jk =


0 if j = 1, · · · , J , k /∈ Leaf (j, T )

1/Depth(T ) if j = K + 1, · · · , J , k ∈ Leaf (j, T )

1−
∑

l = K + 1Jγ
(1)
lk if j = 1, · · · ,K, k = j

(4.59)

Let us have current estimates Φ(q) and Γ(q) at starting the qth iteration of the EM algorithm.

In E-step, a conditional expectation of zik is computed by

w
(q)
ik = E

[
zik

∣∣∣xi, z̃i,Φ(q),Γ(q)
]

=
∏

j∈Anc(k,T )∪{k}

 γ
(q)
jk p

(q)
k fk(xi|θ

(q)
k )∑

l∈Leaf (j,T ) γ
(q)
jl p

(q)
l fl(xi|θ

(q)
l )

τij . (4.60)

With the conditional expectation, a conditional log-likelihood function is defined by

QT ,hcml(Φ,Γ|Φ(q),Γ(q)) =
n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjkpkfk(xi|θk)

=

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log z̃∗jkγjk +

n∑
i=1

J∑
j=1

τij

K∑
k=1

w
(q)
ik log pkfk(xi|θk)

= QT (Γ|Γ(q)) +Q(Φ|Φ(q)), (4.61)

whereQ(Φ|Φ(q)) =
∑n

i=1

∑J
j=1 τij

∑K
k=1w

(q)
ik log pkfk(xi|θk) is defined in Eq. (2.4) andQT (Γ|Γ(q))

is defined by

QT (Γ|Γ(q)) =
n∑
i=1

 K∑
j=1

τij log γjj +

J∑
j=K+1

τij
∑

k∈Leaf (j,T )

w
(q)
ik log γjk

 . (4.62)

Sets of constraints on Φ and Γ in Eq. (4.58) are independent from each other. The M-step

of maximizing a conditional log-likelihood function is therefore composed of two parts: maxi-

mization of Q(Φ|Φ(q)) and maximization of QT (Γ|Γ(q)).

First let Φ(q+1) be a solution to the following maximization problem:

max
Φ

Q(Φ|Φ(q))

s.t.

K∑
k=1

pk = 1

pk ≥ 0, ∀k.
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Solving the optimization problem is identical to the M-step in unsupervised learning that is

described in Section 2.1.2:

p
(q+1)
k =

n∑
i=1

w
(q)
ik

/
n,

θ
(q+1)
k = arg max

θk

n∑
i=1

w
(q)
ik log fk(xi|θk).

In addition we obtain Γ(q+1) by solving the following optimization problem:

max
Γ

Q(Γ|Γ(q))

s.t.

J∑
j=1

γjk = 1, ∀k

γjk ≥ 0, ∀j, k,

γjk = γjl, if ∃h ∈ Child(j, T ) such that k, l ∈ Leaf (h, T ).

(4.63)

Because of difficulties in finding a closed form optimal solution to Eq. (4.63), we can use the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to obtain Γ(q+1) as done under PCML in

Section 4.2.3.

A detailed EM algorithm for learning finite mixture models on AVT under HCML is de-

scribed in Figure 4.5.

4.5 Model Selection

It is noteworthy that PCML is feasible a feasible model of missing label mechanisms for

partially supervised learning on AVT. In Section 3.4.1 we have discussed that we always find

a feasible estimate of FMM if all the precise labels are observable or if unlabeled data is

observable. On AVT all the precise labels are represented by the leaf nodes, while unlabeled

data is corresponding to the root node. We therefore do not need concern feasibility when we

find MLEs of FMM under PCML. In fact Eq. (4.59) that has been used to generate initial

estimates of γjk under HCML also represents feasible estimates of γjk for PCML.

A solution space under HCML includes PCML solution space. In Eq. (4.48) HCML param-

eterizes ξjl which is completely determined by the other parameters under PCML. Therefore

the maximum log-likelihood under HCML is obviously as large as the maximum log-likelihood
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1: q ← 0

2: Initialize γ
(1)
jk by Eq. (4.59).

3: Initialize Φ(1)

4: repeat

5: q ← q + 1

6: E-step: w
(q)
ik ←

∑J
j=1 tauij

[
γ

(q)
jk p

(q)
k fk(xi|θ(q)

k )
/∑

l∈Leaf (j,T ) γ
(q)
jl p

(q)
l fl(xi|θ(q)

l )
]

7: M-step(1): p
(q+1)
k ←

∑k
i=1 w

(q)
ik

/
n

8: M-step(2): θ
(q+1)
k ← arg maxθk

∑n
i=1 w

(q)
ik log fk(xi|θk)

9: M-step(3): Obtain γ
(q+1)
jk by solving Eq. (4.63) using BFGS method.

10: until LT ,hcml(Φ
(q+1),Γ(q+1))− Lps,pcml(Φ(q),Γ(q)) < ε

11: return Φ̂← Φ(q), Γ̂← Γ(q)

Figure 4.5: EM-HCML: EM algorithm for learning FMM under HCML mechanism on AVT

under PCML. In addition CPCML generalizes HCML by relaxing constraint Eq. (4.55). We

therefore find that

Lps,pcml(Φ̂, γ̂) ≤ LT ,hcml(Φ̂, Γ̂) ≤ Lps,cpcml(Φ̂, Γ̂)

on AVT T , where the MLE of estimates are the results from EM-PCML, EM-HCML, and

EM-CPCML, respectively.

We again use AIC criteria to select the most plausible missing label mechanism on the

observed data set Dobs. Let |Φ| be the number of parameters in Φ to be used in computing

AIC. Then |Φ| is the same under PCML, HCML, and CPCML. In addition to |Φ|, the number

of parameters in Γ affects AIC values under HCML. Now we recall another parameterization

of FMM in Section 4.4.1 that has used Ξ rather than Γ to represent FMM. Because of the

equality constraint ∑
l∈Child(j,T )

ξjl = 1, j = K + 1, · · · , J,

that has been defined in Eq. (4.49), we have that the number of parameters on Ξ is

J∑
j=K+1

(|Child(j, T )| − 1). (4.64)
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Therefore AIC under HCML is defined by

AICT ,hcml = −2LT ,pcml(Φ̂, Γ̂) + 2|Φ|+ 2

J∑
j=K+1

(|Child(j, T )| − 1), (4.65)

where |Child(j, T )| represents the number of child nodes of j on T . We define that the best

or the most plausible missing label mechanism on Dobs on AVT is corresponding to the least

AIC value among AICps,pcml, AICT ,hcml, and AICps,cpcml.

4.6 Summary

In this chapter we have newly parameterized FMM and specified previously proposed EM

algorithms in Chapter 3 to cases that observable labels are defined by attribute value tax-

onomies. This chapter delivered an intuitive concept of partially supervised FMM learning

that the overall FMM is composed of component FMMs each of which is corresponding to

each specific partial label. Partially supervised FMM learning therefore tries to estimate a

mixture of mixtures. Such insight led to newly defined missing label mechanism, which is

named hierarchy-conditional missing label mechanism (HCML). We proposed EM algorithm of

estimating FMM under HCML (EM-HCML) that provides flexibilities compared to EM-PCML

and specificities compared to EM-CPCML. We suggested AIC to be used for selecting the most

plausible missing label mechanism underlying on the observed data.

In the following chapter we evaluate the performance of EM-PCML, EM-HCML, and EM-

CPCML on synthetic data on exponential survival trees by comparing with supervised, un-

supervised, and semi-supervised FMM learning. We also conduct a case study of exponential

survival time modeling for gastric cancer patients from which this research has originally been

motivated.
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CHAPTER 5. EXPERIMENTAL RESULTS

In this chapter we show how the proposed EM algorithms for partially supervised learning

perform compared to supervised learning, unsupervised, and semi-supervised learning. First

we show how the MLEs obtained by the proposed algorithms are close to the true exponential

survival tree model that has been introduced by Davis and Anderson (1989). Second we apply

the proposed EM algorithms to estimate survival time models for patients with the gastric

signet ring cell carcinoma on the cardia on SEER research data (National Cancer Institute,

2011).

5.1 Simulations on Exponential Survival Tree

In this section we show the performance and the advantages of partially supervised learning

algorithms on AVT-guided survival time data by using a synthetic data set introduced by Davis

and Anderson (1989).

{1,2,3,4,5}

{1,2}

1 2

{3,4,5}

3 {4,5}

4 5

V3 = 1,2 V3 = 3,4,5

V4=1 V4=2 V5=2 V5=1

V6=2 V6=1

Figure 5.1: An exponential survival tree simulated in Davis and Anderson (1989).
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Table 5.1: Parameters of the mixture of exponential survival time distributions in Davis and

Anderson (1989)

Class k Proportion pk Death rate λk
1 0.20 0.35

2 0.20 0.60

3 0.30 0.80

4 0.15 1.00

5 0.15 1.75

5.1.1 Data description

Davis and Anderson (1989) studied an classification tree algorithm to split heterogeneous

population into subgroups that have a homogeneous exponential survival time distribution

within each subgroup. In their simulation studies they have defined a data set with five classes

which are hierarchically specified by using four variables (Figure 5.1). V 3 is an ordinary variable

that take integer values from one to five with equal chances. The other three variables, V 4, V 5

and V 6, are binary variables which take value one or two with probability 1/2 in each. Each

data i has been categorized into one of five classes by the following classification rules after

observing variables from V 3 to V 6:

• Class 1 if V 3 ∈ {1, 2} and V 4 = 1

• Class 2 if V 3 ∈ {1, 2} and V 4 = 2

• Class 3 if V 3 ∈ {3, 4, 5} and V 5 = 2

• Class 4 if V 3 ∈ {3, 4, 5}, V 5 = 1 and V 6 = 2

• Class 5 if V 3 ∈ {3, 4, 5}, V 5 = 1 and V 6 = 1

Let λk be a constant death rate within class k, which has been set to be

λ1 = 0.35, λ2 = 0.60, λ3 = 0.80, λ4 = 1.00, λ5 = 1.75.

As a result a mixture of exponential survival time distributions is defined with parameters in

Table 5.1.
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1: Define right-censoring time distribution fTc
(t) and coarsening probabilities Γ

2: for i = 1 to n do

3: Generate V 3, V 4, V 5, V 6

4: Set class k by following the predefined classification rules, zik ← 1

5: Generate survival time T from fT (t) = λke
−λkt

6: Generate right-censoring time Tc from fTc
(t)

7: ti ← min{T, Tc}

8: ci ← I(T ≤ Tc)

9: end for

Figure 5.2: Generation of synthetic data set based on Davis and Anderson (1989)

Time to death T within class k is distributed by

P (T > t|class k) = e−λkt.

Davis and Anderson (1989) conducted separate simulations by using two right-censoring time

distribution: Uniform(2,4) and Uniform(0.25,1.25). After generating survival time T and cen-

soring time Tc for each instance, the earlier time between T and Tc is stored with indicating

the stored time is whether actual failure time or not. With the first censoring time distribution

about 85% instances are supposed to be observed with their actual survival time so that ti = T

and ci = 1 while 15% are observed with right-censoring time so that ti = Tc and ci = 0. On

the other hand with the second censoring time distribution actual survival time for only 43%

instances is observed so that the ambiguity of data is increased from the first censoring time

distribution. A detail of data generation is described in Figure 5.2.

A difference of this study from Davis and Anderson (1989) is that we allow missing data to

appear. By assuming the classification of instances is performed by sequentially observing V3

to V6 based on splitting criteria in Figure 5.1, we define nine observable class labels as shown

in Table 5.2. After generating synthetic data by using the algorithm in Figure 5.2 for each data

i we generate a coarsened version of class label z̃i by coarsening probability γjk such that

γjk = P (z̃i = z̃∗j |zik = 1).
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(b) PCML2
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(c) PCML3

Patt Class k

ern j 1 2 3 4 5

1 .6

2 .2

3 .4

4 .7

5 .3

6 .1 .5

7 .1 .5

8 .5 .1 .1

9 .3 .3 .1 .1 .1

(d) HCML1
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(e) HCML2
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(f) CPCML1
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(g) CPCML2
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(h) CPCML3

Figure 5.3: Eight sets of coarsening probabilities γjk
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Table 5.2: Observable class label patterns based on the classification tree in Davis and Anderson

(1989). ‘-’ represents missing data.

Pattern Classification variables Coarsened label z̃∗j
j V3 V4 V5 V6 z̃∗j1 z̃∗j2 z̃∗j3 z̃∗j4 z̃∗j5
1 {1,2} 1 - - 1 0 0 0 0

2 {1,2} 2 - - 0 1 0 0 0

3 {3,4,5} - 2 - 0 0 1 0 0

4 {3,4,5} - 1 2 0 0 0 1 0

5 {3,4,5} - 1 1 0 0 0 0 1

6 {1,2} - - - 1 1 0 0 0

7 {3,4,5} - 1 - 0 0 0 1 1

8 {3,4,5} - - - 0 0 1 1 1

9 - - - - 1 1 1 1 1

We use eight different sets of γjk that three sets represent PCML, two sets represent HCML,

and the other three sets represent CPCML missing label mechanisms (Figure 5.3). It must be

noted that OCML is impossible to be defined with this simulation. To show how the sample

size affects the performance of the estimation, we used three levels of sample sizes n: 500, 2000

and 8000. We randomly generated 100 sample data sets for each combination of two censoring

time distributions, eight missing label mechanisms and six sample sizes. So we have performed

the estimation of finite mixture models on 4800 data sets in total. For each random data set we

estimated finite mixture models by using seven learning algorithms: supervised, unsupervised,

semi-supervised under CML (Semi-CML), semi-supervised under CCML (Semi-CCML), and

three partially supervised learning methods (EM-PCML, EM-HCML and EM-CPCML). The

first four methods from existing studies have been described in Chapter 2, while the latter

three have been proposed in Chapters 3–4. Therefore we obtain 100 estimates of a mixture of

exponential survival time distributions under each combination of simulation parameter values

in Table 5.3. The 100 estimates are capable for pairwise comparisons across learning algorithms

because all the seven algorithms shared the data sets for each combination of the other three

simulation parameters.
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Table 5.3: Simulation parameters for estimating the mixture of five exponential survival time

distributions in Davis and Anderson (1989)

Parameter Level

Censoring time distribution U(2,4), U(0.25,1.25)

Missing label mechanism PCML1, PCML2, PCML3, HCML1, HCML2,

CPCML1, CPCML2, CPCML3

Sample size 500, 2000, 8000

Learning algorithm Supervised, Unsupervised, Semi-CML, Semi-CCML,

EM-PCML, EM-HCML, EM-CPCML

5.1.2 Comparison between partially supervised learning algorithms

Figure 5.4 shows model selection criteria with U(2,4) censoring time distribution. For

PCML1, PCML2 and PCML3, the estimates from EM-PCML were consistently preferred to

the estimates from EM-HCML or EM-CPCML as they are supposed to be. Because EM-PCML

involves all the assumptions on PCML mechanisms with the least number of parameters, the

estimates from EM-PCML on data sets for PCML1, PCML2, and PCML3 are expected to be

unbiased and more robust than the results from EM-HCML and EM-CPCML. Regardless the

sample size EM-PCML has shown the least AIC values in over than 80% cases. For HCML1

and HCML2 on the other hand EM-HCML was consistently preferred to EM-PCML. For data

sets with HCML mechanisms EM-CPCML was also superior to EM-PCML for large sample

sizes (n = 2000, 8000), while EM-PCML was still preferred to EM-CPCML with small samples

(n = 500). Even with large sample sizes however AIC values from EM-CPCML were slightly

greater than AIC values from EM-HCML. With three data sets under CPCML1, CPCML2 and

CPCML3 that violate HCML mechanisms, the preferences of estimates depended on data sets.

Under CPCML1 the preferences of estimates were similar to those under HCML mechanisms,

so EM-HCML was most preferred regardless sample sizes. On the other side under CPCML2

and CPCML3 EM-CPCML was most preferred with very large sample sizes (n = 8000), while

estimates with less parameters from EM-PCML or EM-HCML led to less AIC values for smaller

sample sizes (n = 500, 2000).

MLEs of the FMM that were obtained from the three partially supervised EM algorithms

under U(2,4) censoring time are shown in Figure 5.5. On data sets generated under PCML
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Figure 5.5: MLE of FMM from partially supervised learning on synthetic data sets with U(2,4)

censoring time
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Figure 5.5: (Continued)

MLE of FMM from partially supervised learning on synthetic data sets with U(2,4) censoring
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Figure 5.5: (Continued)

MLE of FMM from partially supervised learning on synthetic data sets with U(2,4) censoring

time
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mechanisms EM-PCML and EM-HCML consistently led to unbiased estimates, while EM-

CPCML tended to underestimate p3 and overestimate p4. In addition the variances of estimates

from EM-PCML were smaller than those from EM-HCML and EM-CPCML. We therefore

consider EM-PCML be the best partially supervised learning algorithm for data under PCML

mechanism. Under HCML mechanisms on the other hand EM-PCML produced biased esti-

mates because PCML assumption was violated. EM-CPCML still produced biased estimates

of p3 and p4, which looks caused by insufficient numbers of samples. By looking p̂3 and p̂4 we

can see that the estimates from EM-CPCML are getting closer to the true parameter values as

sample sizes increase. With a small number of samples however EM-HCML produced unbiased

estimates. In simulations under HCML mechanisms therefore EM-HCML was considered the

best learning algorithm. Under three CPCML mechanisms we have found that all the partially

supervised learning algorithms produced biased estimates. EM-PCML and EM-HCML were

supposed to obtain biased estimates because PCML and HCML assumptions were violated on

the CPCML data sets. The reason of biased estimates from EM-CPCML is that sample sizes

were not enough to obtain unbiased estimates by using a large number of parameters. So we

could observe that bias of estimates obtained by EM-CPCML has been decreased as sample

sizes increase, while bias of estimates obtained by EM-PCML and EM-HCML has been con-

sistent or even increased. For a large sample size (n = 8000) therefore EM-CPCML looked

superior to EM-PCML and EM-HCML. Such observations agree with model selections based

on the AIC criteria that have been shown in Figure 5.4. In Figure 5.5 ‘PART-BEST’ represents

the MLE with the least AIC values among MLEs from the three algorithms for each random

data set. So we consider PART-BEST as the best estimates we obtained by using partially

supervised learning.

With U(0.25,1.25) censoring time distribution model selections based on AIC values simi-

larly performed to the previous simulation under PCML. Under HCML mechanisms EM-PCML

tended to be more frequently selected with a small sample size (n = 500) than U(2,4) censoring

time cases. EM-HCML however still dominated to the other learning methods under all the

HCML mechanisms. On the other side under CPCML mechanisms EM-CPCML has not been

preferred to EM-PCML or EM-HCML even with a large sample size (n = 8000). As sam-
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ple sizes increase EM-HCML has been preferred to EM-PCML on data sets generated under

CPCML mechanisms because EM-HCML allowed more flexibilities to estimate missing label

mechanisms than EM-PCML. Although EM-CPCML used the most appropriate models on

data sets under CPCML mechanisms, observed data sets contained too many ambiguities to

obtain robust estimates by using EM-CPCML algorithm. While 85% of actual survival time

is observed with U(2,4) censoring time distribution, only 43% of actual survival time is ob-

served with U(0.25,1.25) censoring time. Such reduced chances of observing actual survival

time require more sample sizes to obtain estimates as informative as U(2,4) cases.

MLEs of λk in Figure 5.7 obtained from data sets with U(0.25,1.25) have larger variances

than Figure 5.5. It shows that increased ambiguities in observed survival time data led to

increased uncertainties in estimating survival time distributions. In addition MLEs of pk

from EM-CPCML in Figure 5.7 were far from the true parameter values compared to the

results in Figure 5.5 under CPCML mechanisms. Although EM-CPCML looks superior to

EM-PCML and EM-HCML under CPCML mechanisms in Figure 5.7, AIC-based model selec-

tion approaches have been failed to select EM-CPCML as the best learning method because

increased likelihoods of observed data were not sufficiently large to make increased complexities

of statistical models beneficial.

5.1.3 Comparison of partially supervised learning to conventional learning meth-

ods

In the previous section we compared the results from three different partially supervised

learning methods. In this section we compare the best estimates from partially supervised

learning methods to the estimates from supervised, unsupervised, and semi-supervised learning

methods. Several issues in estimating finite mixture models by using the competitive methods

are described below.

• Supervised: To estimate a five-component mixture by supervised learning methods we

must observe at least one precisely labeled data from each of five classes. Such limitation

occasionally made supervised learning methods fail to estimate the finite mixture models.
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Figure 5.7: MLE of FMM from partially supervised learning on synthetic data sets with

U(0.25,1.25) censoring time
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Figure 5.7: (Continued)

MLE of FMM from partially supervised learning on synthetic data sets with U(0.25,1.25)

censoring time
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Figure 5.7: (Continued)

MLE of FMM from partially supervised learning on synthetic data sets with U(0.25,1.25)

censoring time
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We drop the cases in evaluating the performance of supervised learning, while estimates on

the same data sets from unsupervised, semi-supervised, and partially supervised learning

are still reported.

• Unsupervised: Unsupervised learning does not use the order of class labels. It possibly

causes mismatching of estimates λ̂k and p̂k to the parameter λk and pk for each k. In

this simulation we constrain the order of λ̂k’s to be

λ̂1 ≤ λ̂2 ≤ λ̂3 ≤ λ̂4 ≤ λ̂5

in unsupervised learning cases. Because it includes additional valid information that has

not been used in the other types of learning, we may overrate the performance of unsu-

pervised learning compared to the others. Even with such advantages for unsupervised

learning we will show partially supervised learning outperforms.

• Semi-supervised In Chapter 2 we introduced two types of semi-supervised learning

methods: semi-supervised under CML mechanisms (Semi-CML) and semi-supervised

under CCML mechanisms (Semi-CCML). We particularly found the best estimates in

semi-supervised learning in the same way that we decided the best results in partially

supervised learning based on AIC criteria (Figure 5.8). All the eight missing label mecha-

nisms in Figure 5.3 violate CML mechanism that Semi-CML assumes. Therefore for large

sample sizes (n = 8000) Semi-CCML has dominated Semi-CML. However for a small sam-

ple size (n = 500) the results from Semi-CML were more frequently selected as the better

ones. We denote the better estimates in semi-supervised learning by Semi-BEST.

Figures 5.9 and 5.10 describe the MLEs obtained from supervised, unsupervised, semi-

supervised, and partially supervised learning on 100 random data sets with U(2,4) and U(0.25,

1.25) censoring time distributions, respectively. We could find some remarkable advantages of

using partial labels from the results.

For data sets under PCML mechanisms, distributions of MLEs from partially supervised

learning (PART-BEST) were centered to the true parameter values regardless sample sizes,

while the other learning methods produced biased estimates. Variances of λ̂k from partially
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Figure 5.9: Comparison of MLEs on synthetic data sets with U(2,4) censoring time
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Figure 5.9: (Continued)

Comparison of MLEs on synthetic data sets with U(2,4) censoring time
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Figure 5.9: (Continued)

Comparison of MLEs on synthetic data sets with U(2,4) censoring time
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Figure 5.10: Comparison of MLEs on synthetic data sets with U(0.25,1.25) censoring time
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Figure 5.10: (Continued)

Comparison of MLEs on synthetic data sets with U(0.25,1.25) censoring time
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Figure 5.10: (Continued)

Comparison of MLEs on synthetic data sets with U(0.25,1.25) censoring time
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supervised learning were consistently smaller than those from unsupervised learning and as

small as those from supervised and semi-supervised learning except λ̂4 with n = 500. The

amount of variance reductions in λ̂k were the largest under PCML3 that was designed for the

smallest number of precisely labeled data and the largest number of partially labeled data

among PMCL mechanisms. MLEs of proportion parameters pk further emphasized the merits

of partially supervised learning. Supervised and unsupervised learning methods produced quite

biased estimates of pk. Semi-supervised learning tended to reduce such bias as a sample size

increases. However p̂k from semi-supervised learning showed very large uncertainties compared

to the others. Partially supervised learning consistently produced unbiased estimates whose

variances were smaller than or as small as those from the other types of learning methods.

For a small sample size (n = 500) under PCML3 mechanism partially supervised learning

produced p̂4 and p̂5 whose variances were considerably larger than variances of the estimates

from the other learning methods. Such demerits have disappeared with larger sample sizes.

In this simulation study therefore the proposed partially supervised learning outperformed

supervised, unsupervised and semi-supervised learning under PCML mechanisms.

The same interpretations come from the results on data sets under HCML mechanisms.

Partially supervised learning consistently obtained less biased MLEs than the other learning

methods. A use of partial labels has reduced variances of λ̂k from the results of unsupervised and

semi-supervised learning that did not use partial labels. Variances of λ̂k obtained by partially

supervised learning were also smaller than those from supervised that only used precisely

labeled instances. MLEs of pk from partially supervised learning showed the largest variance

with a small sample size (n = 500). For n = 2000, partially supervised learning still produced

the largest uncertainty in estimating some pk. For n = 8000 sample data sets with U(2,4)

censoring time, such uncertainties has been decreased as small as those from semi-supervised

learning. With U(0.25,1.25) censoring time however partially supervised learning showed the

largest variance of p̂k even for n = 8000. It implies that the proposed partially supervised

learning methods possibly produce less robust p̂k than conventional learning methods with

insufficient amount of informative data. Partially supervised learning however consistently

found the closest p̂k to the true value of pk. We therefore still prefer the results from partially
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supervised learning to the others on data sets under HCML mechanisms.

On data sets under CPCML mechanisms, the advantages of using partial labels have been

dramatically decreased. For proportion parameters pk the proposed partially supervised learn-

ing algorithms have not produced unbiased estimates even with a large sample size (n = 8000).

Partially supervised learning often produced significantly more biased estimates than conven-

tional supervised, unsupervised or semi-supervised learning method. In estimating pk therefore

partially supervised learning may not be the best choice of learning methods, unless data con-

tain enough information for partially supervised learning to produce unbiased estimates. On

the other side, partially supervised learning still have benefits of precision estimation of compo-

nent survival distribution parameters λk. From the box-plots for λ̂k under CPCML1, CPCML2

and CPCML3 in Figures 5.9 and 5.10, we can observe that PART-BEST consistently produced

unbiased estimates with n = 2000 and n = 8000, while the unsupervised learning method led to

biased estimates. Compared to supervised or semi-supervised learning, PART-BEST obtained

λ̂k with less uncertainties. We therefore claim that the proposed partially supervised learning

methods are still beneficial to obtain MLE of each component survival time distribution even

they fail to obtain robust MLE of the mixture model.

A possible reason that partially supervised learning have not outperformed conventional

learning methods under CPCML mechanisms can be found in the previous section. Although

EM-CPCML exactly includes the CPCML mechanism in its learning procedure, the provided

data models required more than 8000 instances to obtain unbiased estimate of FMM by using

EM-CPCML. EM-PCML and EM-HCML assumed biased data models from CPCML that

lead to biased MLEs. However they improved precision of MLEs from EM-CPCML, because

they used less number of parameters. We however can expect that EM-CPCML produces

asymptotically unbiased estimates of FMM. A sufficient number of data to obtain unbiased

estimates may depend on learning algorithms as well as data models. Comparison of learning

methods based on such required number of data would be helpful in evaluating the performances

of partially supervised learning algorithms compared to the conventional methods. We leave

such issues for further studies.
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5.2 A Case Study on Surveillance Data of Gastric Cancer

In this section we conduct a study of partially supervised learning of survival time distribu-

tions for gastric cancer patients by using a real clinical database that is provided by Surveillance,

Epidemiology and End Results (SEER) program (www.seer.cancer.gov) of the National Cancer

Institute. We intend to find how the level of lymph nodes involvement affects survival time of

gastric cancer patient.

5.2.1 Data description

Among various kinds of gastric cancer, we select a specific histologic type called signet ring

cell carcinoma, because it is the most frequently observed specific histologic type of gastric

cancer in SEER database. In addition we restrict the first malignant primary site of gastric

cancer to be cardia to reduce heterogeneities in a data set except the risk factors in which we are

interested. In addition we filtered out cases that were diagnosed before year of 1988. Because

the SEER data scheme was dramatically changed in 1988, we had difficulties in integrating

all the cases into a single data scheme. We therefore use only cases that have been diagnosed

since 1988, which still major proportion of SEER database. For the population that we are

interested in, 832 cases have been collected from 1988 to 2008, while only 107 cases have been

collected until 1987.

Unspecified

Not involved Involved, NOS

Regional, NOS Distant

Other regionalCeliac / Hepatic

Figure 5.11: Attribute value taxonomy of lymph nodes involvement by gastric cancer tumor
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Table 5.4: Number of cases corresponding to each level of the lymph node involvement. (*NOS:

not otherwise specified)

Farthest lymph nodes involved Number of cases Dead due to cancer Right-censored

Unspecified 212 182 30

Not involved 192 115 77

Involved, NOS∗ 4 4 0

Regional, NOS∗ 144 118 26

Celiac/Hepatic 46 40 6

Other regional 178 137 41

Distant 56 51 5

Total 832 647 185

Data scheme on the lymph nodes involvement attribute was changed in 2004 to separate

cases of hepatoduodenal lymph nodes involvement from other celiac / hepatic lymph nodes

involvement cases. We however could find only one case explicitly indicating that hepato-

duodenal lymph nodes were involved. Such extremely small number of precisely labeled data

cannot sufficiently represent a particular class; it can be an obstacle to find reliable estimates

of survival time distribution for the class. We therefore use the data scheme that has been used

from 1988 to 2003 (Figure 5.11) with migrating data collected since 2004 to the old version of

data scheme. One hepatoduodenal case and 16 other celiac / hepatic cases collected since 2004

were labeled Celiac/Hepatic in this case study. We indexed classes as follows:

• class 1: Not involved,

• class 2: Celiac/Hepatic,

• class 3: Other regional,

• class 4: Distant.

Table 5.4 describes the 832 selected cases of the gastric signet ring cell carcinoma on the

cardia. Actual survival time of 647 cases has been observed, while 185 cases were right-censored

either because a patient is still alive or because a patient died of other causes than cancer. In

addition while 472 cases were precisely labeled based on AVT in Figure 5.11, 360 cases were

imprecisely labeled. So we can expect that improving precisions of labeling for those 360 cases
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will lead to better estimates of the survival time distribution within each of four classes of lymph

nodes involvement. In particular 148 cases of Involved,NOS and Regional,NOS may be fully

utilized only by partially supervised learning methods. We expect fully utilizing 148 partially

labeled data leads to more reliable knowledge about the risks of lymph nodes involvement.
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Figure 5.12: Kaplan-Meier curves for patients with the gastric signet ring cell carcinoma on

the cardia, with 95% confidence intervals.

Figure 5.12 shows Kaplan-Meier curves (Kaplan and Meier, 1958) corresponding to the

subpopulations, which were estimated by using only 472 cases whose origins were exactly

known based on the hierarchical structure of observable labels in Figure 5.11. The inner curves

represent the expected probabilities of survival longer than time t within precisely labeled Not

involved cases (black solid line), Celiac/Hepatic cases (red dashed line), Other regional

case (green dotted line), and Distant cases (blue dot-dash line). The outer two curves represent

95% confidence intervals of the survival time distribution at each risk. The difference between
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expected survival rates shows that the lymph node involvement is an important risk factor

for a death caused by the gastric cancer. However, large uncertainties of the estimation can

be barriers to clarify the effects of lymph nodes involvement on survival time. This study will

make the incomplete diagnostic information in the remaining 360 cases contribute in improving

precision of the expected survival time at each risk level.
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Figure 5.13: Box-plots of MLEs on 20 random noise sets

In SEER database survival time is an integer value with a measurement unit of month.

Therefore the data set is inappropriate to estimate exponential survival time distributions that

assume continuous time rather than discrete one. Moreover SEER database set survival time
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to be zero month for very short time to death, which makes MLE cannot be found. Although

there are existing approaches to estimate survival time distributions with such observed survival

time intervals, we do not follow such methods because the issue of imprecisely observed survival

time is not of our primary interest. We rather simply overcome the feasibility problems by

adding small positive random noises to observed survival time; we added a random noise

generated from a uniform distribution U(0,1) to each observed or censored survival time in

SEER database. Although our approach leads to slightly biased estimates from the estimates

learned from interval values, we supposed such bias is ignorable compared to differences in

estimates between learning algorithms. We have generated 20 data sets with independent

random noises in survival time to show robustness of the results for random noises. Figure 5.13

represents MLEs of FMM obtained from each learning method on 20 data sets with randomly

noised survival time. Very small variation of estimates within algorithm compared to differences

between algorithms implies that random noise effects on survival time data will not affect the

preference of learning algorithms on the given data. We therefore add small random noises

on survival time data without expected critical effects on the results of estimations based on

interval survival time data.

5.2.2 Exploratory data analysis

In contrast to simulations on synthetic data in Section 5.1 we do know what the true finite

mixture distribution is. It is therefore impossible to evaluate MLEs based on the agreement with

the true parameter values. In addition the underlying missing label mechanism is not known,

so we cannot evaluate whether AIC-based model selection agrees with the true knowledge.

However we may find some hints about the true model by conducting exploratory analysis of

SEER data with the some attributes that have not been used in the FMM learning. Because

only four cases that were labeled Involved,NOS do not significantly affect the results, we have

focused on exploratory data analysis for 212 Unspecified cases and 144 Regional,NOS cases.
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Figure 5.14: Comparison of Kaplan-Meier curve for Unspecified cases to Kaplan-Meier curves

for precisely labeled cases

5.2.2.1 Missing label mechanisms on unspecified data

212 cases that were labeled Unspecified are supposed to belong to any of four classes.

When we compare nonparametric survival distribution within Unspecified cases to those for

precisely labeled cases by using Kaplan-Meier curves, the survival patterns within Unspecified

cases was very close to the survival patterns of Distant cases (Figure 5.14). In particular,

survival patterns up to 20 months which cover over than 80% of Unspecified cases were

almost the same to each other. We therefore can expect that Distant class takes a major

proportion of Unspecified cases, while only 12% of precisely labeled cases have been labeled

as Distant.

To assure that a major proportion of Unspecified cases belongs to Distant class, we have

investigated how the lymph nodes involvement is correlated with the following two attributes

that have not been used in defining classes:
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Table 5.5: SEER coding system for EOD extension (1988-2003)

Code Description

00, 05 Noninvasive

10–16 Invasive tumor confined to a specific inner stomach layers

20 Muscularis propria invaded

30 Localized, NOS

40 Extension to/through wall

45 Extension to adjacent (connective) tissue

50 Invasion of/through serosa

55 (45) + (50)

60 Extended to adjacent structures (e.g. liver, diaphragm, esophagus, duodenum)

70 Extended to abdominal wall, retroperitoneum, kidney, and/or adrenal gland

80 FURTHER contiguous extension

85 Metastasis

99 UNKNOWN if extension or metastasis

Table 5.6: SEER coding system for historic stage A

Code Description

0 In situ - noninvasive

1 Localized - confined entirely to the organ of origin

2 Regional- extended into surrounding organs or tissues and/or regional lymph nodes

4 Distant - extension or metastasis to distant organ / includes distant lymph nodes

9 Unstaged
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• EOD extension: the farthest documented extension of tumor away from the primary

site, either by contiguous extension or distant metastases,

• SEER historic stage A: a stage of cancer that collapses the detailed EOD information

collected by SEER.

The EOD extension represents important diagnostic information that the lymph nodes in-

volvement does not completely explain. However the EOD extension and the lymph nodes

involvement are expected to be strongly correlated, because both of them represent how far the

cancer tumor has been extended. The SEER historic stage A represents a severity of cancer

based not only on lymph nodes involvement but also on extensions of tumor and metastasis

as well. A data filed of the EOD extension in SEER database has been valid until 2003 but

has not been used since 2004. We therefore use only 596 cases that have been collected until

2003 for exploratory analysis of correlation between the EOD extension and the lymph nodes

involvement. On the contrary the SEER historic stage A has been coded for all the 832 cases

that have been used in this study. The SEER coding system of the EOD extension and the

SEER historic stage A are described in Tables 5.5 and 5.6, respectively. A common characteris-

tic of two coding systems is that the severity of cancer increases as the coded number increases.

Code 99 for the EOD extension 9 for the SEER historic stage A represent unknown cases on

each attribute. More details of the SEER coding system can be found on the SEER website

www.seer.cancer.gov.

Figure 5.15(a) shows the distribution of EOD extension values within Unspecified group is

very similar to the distribution for Distant group. In particular, code 85 on the EOD extension

is most frequently observed within each of Distant group and Unspecified group, while other

values are more frequently observed within the other classes: 30 within Not involved, 60 within

Celia / Hepatic, and 40 within Other regional. So the largest proportion of Unspecified

cases is expected to belong to the Distant class.

Because the staging relied on lymph nodes involvement, we can find a strong correlation

between lymph nodes involvement and SEER historic stage in Figure 5.15(b). In particular

we observe that all the cases of Celiac/Hepatic and Distant groups are matched to code 4
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Figure 5.15: Distributions of (a)EOD extension and (b)SEER historic stage A within

Unspecified cases as well as each group of precisely labeled cases

of SEER historic stage. We also can see that the major proportion of Unspecified lymph

node involvement cases has been staged 4. Moreover in Figure 5.16 60% of the earliest died

of unstaged cases (stage 9) show a death rate as high as cases of stage 4. We therefore expect

that a major proportion of stage 9 would be belonging to stage 4. From those observations, we

can expect that a major proportion of Unspecified cases involve Celiac/Hepatic or Distant

classes. On the other hand a considerable proportion of Unspecified group is corresponding

to stage 1 that only appears for Not involved group. We therefore expect that a considerable

number of Unspecified cases do not involve lymph nodes in cancer tumor.

The above observations consistently lead to an implication that “Distant class covers the

largest proportion of 212 Unspecified cases,” which violates the assumption of common miss-

ing label mechanism in the Semi-CML algorithm, the assumption of pattern-conditional miss-

ing label mechanism in the EM-PCML algorithm, and the assumption of hierarchy-conditional

missing label mechanism in the EM-HCML algorithm on the given data set.
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Figure 5.16: Kaplan-Meier curves depending on SEER historic stage A for gastric signet ring

cell carcinoma on the cardia

5.2.2.2 Missing label mechanisms on the Regional,NOS group

Now we conduct the same exploratory data analysis for 144 cases of the Regional,NOS

group. For a case that was labeled by Regional,NOS the most specific information about

lymph node involvement is supposed to be either Celiac/Hepatic or Other regional. Fig-

ure 5.17 represents Kaplan-Meier (KM) curve for the Regional,NOS group and KM curves for

precisely labeled two groups that are possible true classes for Regional,NOS cases. To show

how the difference in survival rates between Celiac/Hepatic class and Other regional class

Table 5.7: p-values of statistical tests for differences in survival patterns between

Celiac/Hepatic and Other regional groups

Test p-value

Mental-Haenszel 0.0913

Gehan-Wilcoxon 0.0373
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Figure 5.17: Comparison of Kaplan-Meier curve for Regional,NOS cases to Kaplan-Meier curves

for precisely labeled data that regional lymph nodes were involved

is reliable, we conducted Mental-Haenszel log-rank test and Gehan-Wilcoxon test by using

survdiff function that has been implemented in survival package of R. It is noteworthy that

Gehan-Wilcoxon test is good to detect early differences between two groups, while Mental-

Haenszel test is used for testing differences in overall survival rates. The p-values from the

statistical tests (Table 5.7) imply that the two classes have significantly different survival rates

in early periods, while overall survival rates across the whole time periods are less significant.

In Figure 5.17 the survival rate within Regional,NOS group is closer to the survival rate of

Other regional class during the first 30 months and lies at the middle of two precisely labeled

groups after the the 30th month. By combining observations from Table 5.7 and Figure 5.17

we can have an insight that about 80% of Regional,NOS cases who were or might be died in

first 30 months are more likely to be belonging to the Other regional class rather than the

Celiac/Hepatic class.

It was unclear whether the distribution of EOD extension within Regional,NOS group is



104

0

10

20

30

40

10 12 16 20 30 40 45 50 55 60 70 80 85 99
EOD Extension (1988−2003)

co
un

t Celiac / Hepatic
Other regional
Regional, NOS

(a) EOD Extension

0

50

100

150

200

250

2 4
SEER.historic.stage.A

co
un

t Celiac / Hepatic
Other regional
Regional, NOS

(b) SEER historic stage A

Figure 5.18: Distributions of (a)EOD extension and (b)SEER historic stage A within

Regional,NOS cases as well as precisely labeled regional lymph nodes involvement cases

closer to that of Celiac/Hepatic class or that of Other regional in Figure 5.18(a). We

however observed that SEER historic stage for 77% Regional,NOS cases was stage 2 that has

not come with Celiac/Hepatic group. It is therefore expected that the major proportion of

the Regional,NOS group is belonging to the Other regional class.

The observations of the KM curves and the SEER historic stages imply that “Other

regional class covers the largest proportion of 144 Regional,NOS cases,” which still makes

assumptions of the following missing label mechanisms plausible: common missing label mech-

anism, pattern-conditional missing label mechanism, or hierarchy-conditional missing label

mechanism.

5.2.3 Estimated survival time model

From exploratory data analysis in Section 5.2.2, we have built the following two reasonable

implications:

• Implication 1 - Distant class covers the largest proportion of 212 Unspecified cases;
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• Implication 2 - Other regional class covers the largest proportion of 144 Regional,NOS

cases.

In this section we evaluate which learning algorithm most agrees with such implications.
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Figure 5.19: Box-plots of MLEs on 4000 bootstraps

To avoid sampling bias, we have generated 200 bootstraps from each of 20 randomly noised

data sets. As a result we had estimated finite mixture models on each of 4000 bootstraps

(Figure 5.19). Distributions of λ̂2, λ̂3 and λ̂4 from unsupervised learning were almost identical;

it does not agree with our observations on Kaplan-Meier curves in Figure 5.12 that shows

significant differences of the survival rate for Distant group from the others. Thus we ignore
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Table 5.8: Averaged expectations of class proportions within the Unspecified group for 20

randomly noised data sets

Class

Method Not involved Celiac/Hepatic Other regional Distant

Semi-CML 0.26 0.13 0.39 0.22

Semi-CCML 0.16 0.00 0.00 0.84

EM-PCML 0.21 0.18 0.45 0.16

EM-HCML 0.01 0.35 0.44 0.20

EM-CPCML 0.12 0.00 0.00 0.88

Table 5.9: Averaged expectations of class proportions within the Regional,NOS group for 20

randomly noised data sets

Class

Method Not involved Celiac/Hepatic Other regional Distant

Semi-CML 0.35 0.11 0.38 0.16

Semi-CCML 0.27 0.00 0.00 0.73

EM-PCML - 0.23 0.77 -

EM-HCML - 0.56 0.44 -

EM-CPCML - 0.45 0.55 -

the results from unsupervised learning hereafter.

Our first implication is that p̂4 should be much higher than 12%, which is the proportion of

Distant group among 472 precisely labeled cases. Figure 5.19 shows that p̂4 from supervised

learning, Semi-CML, EM-PCML and EM-HCML is still very close to the proportion within

precisely labeled cases, while distributions p̂4 from Semi-CCML and EM-CPCML are centered

around 30%. Table 5.8 more directly guides the agreement of the estimates with the first

implication by representing how each learning method expects the class proportion within cases

that whose true classes were unspecified. Among two semi-supervised learning algorithms and

three partially supervised learning algorithms, only Semi-CCML and EM-CPCML has agreed

to the first implication.

Table 5.9 shows the agreement of each learning methods with our second implication on

the given data set. To agree with the second implication the expected proportion of Other

regional should be significantly higher than the expected proportion of Celiac/Hepatic. The

results from Semi-CML and EM-PCML strongly agreed with the second implication, while EM-
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CPCML moderately agreed. A fundamental difference between semi-supervised learning and

partially supervised learning is that semi-supervised learning algorithms still expected some

proportions of Regional,NOS group belongs to Not involved or Distant classes, which is not

a valid expectation. In particular, Semi-CCML did give extremely small expectations to the

proportions of Celiac/Hepatic and Other regional classes whose sum is supposed to be one

in valid expectations. We therefore conclude that partially supervised learning outperforms

semi-supervised learning from the perspective of our second implication.
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(a) Semi-supervised learning
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(b) Partially supervised learning

Figure 5.20: AIC-based comparison of the results within (a)semi-supervised learning methods

and (b)partially supervised learning methods for 4000 bootstraps

Figure 5.20 represents AIC-based comparisons of the results from different learning algo-

rithms within (a)semi-supervised learning and (b)partially supervised learning. For all the 4000

bootstraps Semi-CCML consistently outperformed Semi-CML. EM-CPCML also outperformed

other partially supervised learning algorithms on all the 4000 bootstraps. Even Semi-CML

and EM-PCML showed better agreement with our second implication than Semi-CCML and

EM-CPCML respectively, their poor agreements to our first implication demerited them to

be selected as the best model within each type of learning methods. Although the results

from both Semi-CCML and EM-CPCML strongly agreed with our first implication, they have

shown extremely different agreements to the second implication. EM-CPCML expected 55%
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Table 5.10: Estimates of a finite mixture model obtained by EM-CPCML on SEER data: mean,

median, 2.5th percentile and 97.5th percentile that were simulated from 4000 bootstraps

Parameter Mean Median 2.5th percentile 97.5th percentile

λ1 0.019 0.019 0.015 0.025

λ2 0.064 0.065 0.024 0.106

λ3 0.037 0.035 0.028 0.053

λ4 0.123 0.124 0.070 0.155

p1 0.260 0.260 0.225 0.296

p2 0.143 0.138 0.066 0.324

p3 0.312 0.312 0.247 0.383

p4 0.284 0.292 0.076 0.330

of partially labeled Regional,NOS cases would belong to Other regional; its agreement to

the second implication was not strong but still agreed rather than disagreed. In addition EM-

CPCML expected the remainder would belong to Celiac/Hepatic, which is a valid expectation

for partial label Regional,NOS. On the other side Semi-CCML provided invalid expectations

and disagreed with our second implication. We therefore conclude that EM-CPCML is the best

algorithm for learning a mixture of exponential survival time distribution on the given SEER

data set.

Estimates of FMM obtained by EM-CPCML on 4000 bootstraps are summarized in Ta-

ble 5.10. In addition we compared the estimated survival functions to those from Semi-CCML

as well as Kaplan-Meier curves on precisely labeled data in Figure 5.21. We used the 97.5th

percentile of λ̂k for the lower bound survival function, mean for center, and the 2.5th percentile

for upper bound. We summarize several findings and implications from the comparison.

• Survival time for Not involved class did not look exponentially distributed. However

Kaplan-Meier curves in the other classes fairly matched the estimated exponential distri-

butions. Modeling survival function for class 1 with different types of distribution may

improve the reliability of the estimated mixture models.

• Semi-CCML estimated FMM with less variance than EM-CPCML. It means benefits of

reducing variances by using additional data were not enough to countervail increased

variances caused by increasing complexity of the model.



109

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t: time to death

S
(t

):
 s

ur
vi

va
l f

un
ct

io
n

Kaplan−Meier
Semi−CCML
EM−CPCML

(a) Not involved

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t: time to death

S
(t

):
 s

ur
vi

va
l f

un
ct

io
n

Kaplan−Meier
Semi−CCML
EM−CPCML

(b) Celiac/Hepatic
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(d) Distant

Figure 5.21: Comparison of estimated survival functions to Kaplan-Meier curves

• EM-CPCML slightly better agreed with Kaplan-Meier curves than Semi-CCML did. It

might be because EM-CPCML outperformed Semi-CCML in computing expected mem-

berships of Regional,NOS cases to each class. Semi-CCML however better agreed with

Kaplan-Meier curve for Other regional class. A plausible reason for this phenomenon

is that EM-CPCML estimated that too much proportion of the Regional,NOS group

belongs to Celiac/Hepatic class. Assigning Regional,NOS cases with short survival

time to Celiac/Hepatic class caused the overestimation of survival chances in Other

regional class, which caused bias.



110

5.3 Summary

In this chapter we conducted a numerical simulation study as well as a case study on SEER

data. Both studies clearly showed benefits of using the proposed partially supervised learning

methods compared to conventional supervised, unsupervised, and semi-supervised learning. In

our simulation study partially supervised learning methods outperformed or performed as well

as the others unless information from partially labeled data is too small to countervail increased

model complexity. CPCML mechanisms often required more samples than PCML or HCML

mechanisms to obtain reliable estimates from partially supervised learning. In a case study

we EM-CPCML best agreed with our implications from exploratory data analysis. Although

we could not reduce uncertainties of estimates from semi-supervised learning, we still could

reduce bias of estimates by using additional valid data that semi-supervised learning has not

used. It is supposed that there was model bias caused by a wrong assumption on survival

time distribution for Not involved class. Reducing such bias is desired to fairly evaluate the

performance of partially supervised learning to the conventional learning on the given data set.

In next chapter we conclude our contributions from findings in this study and discuss

potentially valuable future works.



111

CHAPTER 6. CONCLUSIONS

Medical surveillance data is composed of observed survival time of patients and covariates

that characterize patients. We are usually faced with a lot of data that have only partially

specified values on such covariates when we want to learn how patients’ characteristics affect

their survival time from a surveillance database. Partially specified class values may be caused

by either incomplete data-intake practices or changes in data-intake procedures. Despite of

potential advantages of using such partial labels like reduced bias or uncertainties in estimating

the relations between class covariates and survival time, a systematic study of learning from

partial labels has not been popularly conducted in the field of medical data mining. The main

contribution of our study is fully utilizing the partially labeled data for learning finite mixture

models of survival time distributions.

Throughout this study we have focused on the mechanisms that caused partially specified

class labels. By defining four different missing label mechanisms we proposed the following

four Expectation-Maximization algorithms for maximum likelihood estimation of finite mixture

models:

• EM-OCML: EM algorithm under overall common missing label mechanism,

• EM-PCML: EM algorithm under pattern-conditional missing label mechanism,

• EM-HCML: EM algorithm under hierarchy-conditional missing label mechanism,

• EM-OCML: EM algorithm under class-pattern-conditional missing label mechanism.

In fact EM-OCML has already been described by Ambroise and Govaert (2000). We how-

ever made additional contribution by uncovering an underlying assumption on the algorithm

in Ambroise and Govaert (2000) and showed feasibility problems that makes EM-OCML ap-
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plicable under very restricted conditions. The other three methods (EM-PCML, EM-HCML,

EM-OCML) are our original contributions that allowed generalized conditions that EM-OCML

cannot deal with. In particular we focused on partial labels that are hierarchically defined by

attribute value taxonomy that represents a coding system of a covariate in medical surveillance

databases. EM-HCML is only feasible to hierarchically defined partial labels. We emphasize

that all the three EM algorithms originally proposed in this study are always feasible to hier-

archically defined partial labels, whereas EM-OCML often fails to obtain a feasible solution.

Even though the proposed algorithms are applicable to finite mixtures of any parametric

distributions that allow maximum likelihood estimation, we only conducted experiments on

finite mixtures of survival time distributions from which this study has been motivated. Specif-

ically we used exponential distributions to represent the survival time distribution within each

class. First a simulation study for a mixture of five exponential distributions has been con-

ducted by varying sample sizes and missing label mechanisms. The proposed EM algorithms

often outperformed conventional supervised, unsupervised, and semi-supervised methods by

reducing bias as well as variance of estimates; it is the advantage what we expected to take

by using additional valid information compared to the conventional methods. The proposed

algorithms performed well especially when a sufficient number of samples are given. With a

limited number of samples however there was still a chance that the conventional methods

outperform the proposed methods.

We also conducted a case study for gastric cancer cases collected by Surveillance, Epidemi-

ology and End Results (SEER) program. By considering the farthest area that lymph nodes

involved by tumor as a class label, we concluded that EM-CPCML is the best algorithm for

learning the finite mixture survival time model on the sampled SEER data. EM-CPCML agreed

with our two implications from explanatory data analysis that 1) a case whose status of lymph

nodes involvement has been unknown is most likely to involve distant lymph nodes by tumor

and 2) a case whose has been known only that regional lymph nodes were involved is most likely

to involve regional lymph nodes other than celiac and hepatic. Supervised, unsupervised and

semi-supervised methods have been failed to agree with the implications. In the above experi-

ments we found AIC criteria perform well for selecting the best partially supervised algorithm
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among our proposed methods.

We conclude with suggesting three important future works for making this research richer.

• Extension to a variety of survival time models – In this study we restricted a

component survival time model to a univariate survival time distribution with right-

censored time. In our case study however we found that attributes that have not been used

to produce class labels delivers additional information about survival time that the class

labels cannot explain. We therefore expect that a study for learning mixtures of survival

time regression models will lead to more reliable survival time models. Also a study

for partially supervised learning of non-parametric or semi-parametric mixtures whose

component distributions are Kaplan-Meier curves or Cox-regression models, respectively,

will be a greatly valuable extension of this study to allow more flexibility in data models.

• Constraints on parameters from experts – In our simulation study we added an

ordering constraint to unsupervised learning method, which incorporated the true knowl-

edge in estimation. The results from the proposed algorithms disagreed with such orders

by chance for small sample sizes due to huge sampling bias. We will have better chances

to obtain reliable estimates if expert knowledge about the parameters can be incorporated

into partially supervised learning.

• Systematic comparison across different learning types – We suggested AIC based

comparison between the results from partially supervised learning methods and have

shown that it fairly works. We however performed comparison of partially supervised

learning to the others by either visualizing the results or conducting explanatory data

analysis. From our simulations we found semi-supervised learning still best performs on

some data sets even though it uses less information than partially supervised learning.

Comparison of estimates based on visualization or explanatory data analysis requires

much additional efforts. Moreover its performance depends on a person who analyzes

data, so it is not reproducible. A method for systematic comparison of estimates from

partially supervised learning to those from conventional learning methods will help people

efficiently select the best estimates across learning classes.
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