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ABSTRACT 

 

Understanding the factors influencing nanocrystal formation is a challenge yet to be 

realized. In comparison to the large number of studies on nanocrystal synthesis and their 

applications, the number of studies on the effect of the precursor chemistry on nanocrystal 

composition and shape remains low. Although photochemical fabrication of metal-

semiconductor nano-heterostructures is reported in literature, control over the free particle 

formation and the site of metal deposition have not been achieved. Moreover, utilization of 

metal- semiconductor nano-heterostructures in photocatalytic reactions other than water 

splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor 

reactivity on the composition, morphology and the axial anisotropy of cadmium-

chalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength 

in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal 

semiconductor nano-heterostructures can be used as a photocatalyst for alcohol 

dehydrogenation reactions. 

We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and 

CdS0.4Se0.6 nanorods. This study revealed that the wavelength of irradiation is critical to 

control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. 

Additionally, we observed that metal photodeposition occurs on specific segments of axially 

anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential 

between their nano-domains. We used semiconductor-metal heterostructures for sunlight-

driven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition 

dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the 
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semiconductor surface significantly enhance activity and selectivity and also greatly stabilize 

the semiconductor against photoinduced etching and degradation.
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CHAPTER 1 

 INTRODUCTION 

General introduction 

This thesis describes progress toward building modular, photocatalytic nanocomposites 

capable of converting cheap and abundant solar energy into more useful chemical energy. 

The proposed nanocomposites consist of: a metal nanoparticle fused to a light-harvesting 

semiconductor nanorod, immobilized in a mesoporous support (figure 1). The semiconductor 

nanorod absorbs sunlight, including the visible and near-infrared region of the solar 

spectrum, thus producing electron-hole pairs (excitons). The charge-collecting metal particles 

extract free electrons from the photoexcited semiconductor, thus achieving charge separation 

and preventing recombination. The potential energy created by this charge separation is then 

employed to perform redox reactions in solution-phase. Internalization of the photoactive 

element inside controlled-polarity pores within mesoporous silica nanoparticles (MSNs) 

assures that charge transfer (redox) is facile, and prevents self-quenching of charge carriers 

of the otherwise freely diffusing photoactive elements. 

 

Figure 1. Photocatalytic nano-assembly design. 
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This thesis specifically describes the two first components of the afore-mentioned 

photocatalytic design, namely: semiconductor nanorods and surface bound metal 

nanoparticles. 

Semiconductor nanorods 

Semiconductor nanocrystals are ideal sunlight harvesters that benefit from: size- and 

composition-tunable band gaps (300-4000 nm; 4.1-0.3 eV),1,2,3 broad and intense absorption 

(ɛ ≈ 106 L·mol-1·cm-1),4, 5 long-lived excitons (up to 40 ns for CdSe,6 500 ns for CuInS2,7 1.8 

μs for PbS8), good solubility and colloidal stability, and chemical and photo stability.9 Large 

aspect ratio semiconductor nanocrystals, often referred to as semiconductor nanorods, are of 

particular interest in solar energy harvesting because of their ability to form multiple 

electron-hole pairs (excitons) following photo-excitation.10, 11 Multiple exciton generation 

can potentially lead to higher photocatalytic efficiencies than for other morphologies. 

Therefore, we chose rod-shaped semiconductor nanocrystals as the light harvesting material. 

Although spheres are the thermodynamically favored product in many colloidal reactions, 

highly anisotropic shapes such as rods and wires can be obtained through judicious control of 

reaction conditions. One way of achieving unidirectional growth is by adjusting precursor 

(monomer) concentrations. The growth rate of different crystallographic facets also plays a 

role in determining the final (observed) nanocrystal shape. The growth rate of crystal facets 

can be influenced by adjusting the types and ratios of organic ligands. 12, 13  For example, in 

the case of CdSe, it was proposed that alkyl phosphonic acid ligands promote the 

unidirectional growth along the (001) face of wurtzite crystal structure. However, the effect 

of chemical structure of the precursor on the final shape of the nanocrystal was not explored 

prior to our work in this area. 
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Nanorods lie in between zero-dimensional quantum dots and one-dimentional quantum 

wires. As a result, the ability to control both the diameter and length of a nanorod is critical 

in exploring this intermediate shape region. In solar energy conversion devices, unlike with 

quantum dots, nanorod length can be adjusted to match the device dimensions to facilitate the 

maximum solar energy absorption.14 Also, compared to nanowires, nanorods have a greater 

solubility and are therefore more convenient to utilize for catalysis applications in solution 

phase. 

 

 

 

 

 

 

Figure 2: (a) Band gap vs. length in quantum confined dot, wire, and well-shaped 
nanocrystals (b) The fraction of atoms on the surface for different shapes vs. total number of 
atoms in a nanocrystal. Reprinted with permission from reference 1. Copyright 2010 
American Chemical Society. 
 

In photocatalyst design, properties such as increased solubility, multiple exciton 

generation, and high surface to volume ratio (figure 2) make semiconductor nanorods 

superior and more desirable over nanodots or wires. Our initial focus was on CdS nanorods, 

which have a bulk band gap of 2.4 eV (520 nm).  They are easy to prepare by known 

procedures but their very high aspect ratios leads to poor colloidal stability.  In contrast, 

CdSe nanorods, with a bulk band gap of 1.7 eV (730 nm), are difficult to synthesize in pure 

form. CdSe nanorods are usually very short (11 nm ± 2 nm) and have low aspect ratios (≈ 
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1.3), although they are very soluble. In this thesis work, we report an intermediate solution to 

form CdS1-xSex nanorods using a mixture of chalcogen precursors.  

Recombination of photogenerated charge carriers in the semiconductor directly compete 

with the photocatalysis process. Among many systems designed to reduce recombination, 

coupling the semiconductor with a noble-metal nanoparticle has been the most well studied 

approach. Noble metals facilitate photo-induced charge separation in the semiconductor and 

help create a low overpotential redox pathway to discharge electrons to the reactants across 

the particle interface.15 Therefore, the next part of this thesis work explores the controlled 

fabrication of metal deposited semiconductor heterostructures. 

Metal- Semiconductor heterostructures  

Semiconductor heterostructures consist of two or more different materials permanently 

joined through chemically bonded interfaces. Examples include core/shell and phase 

segregated multi-component heterostructures made of discrete shaped particles fused via 

small connecting areas at specific locations.16 

When a secondary material deposits over a pre-existing substrate of a different material, 

several factors will decide the growth mode of the heterostructure. If the secondary material 

exposes lower energy crystal surfaces and/or the lattice mismatch between the two materials 

is minimum, then the secondary material will deposit in a layer-by-layer fashion, attaining a 

uniform coverage on the primary substrate, i.e. core/shell nanoparticles. Conversely, if the 

secondary material exposes higher energy crystal surfaces and/or lattice mismatch is high, 

the secondary material will deposit as separate islands on the primary substrate to minimize 

the interfacial strain between them, i.e. metal-semiconductor heterostructures. The most 

widely used method to synthesize nanoheterostructures is seeded growth, where ‘seeds’ serve 
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as the primary substrate centers for accommodating the secondary material upon reaction 

with the respective molecular precursors. This method agrees with the classical nucleation 

theory which states that activation energy barrier for heterogeneous nucleation is much lower 

than that for homogenous nucleation. Moreover, in anisotropic wurtzite cadmium 

chalcogenide nanorods, polar facets on the tip region are much reactive compared to non-

polar facets in the lateral region. This reactivity difference results in nucleation of the second 

material selectively on the tip region.  

Metal-semiconductor nanorod heterostructures are considered one of the important 

classes of heterostructures due to their interesting photocatalytic properties.17, 18 Specifically, 

II-VI semiconductor nanorods decorated with noble metals are investigated as photocatalysts 

because of their distinctive properties such as visible region absorption, high extinction 

coefficients, convenient processability, fast electron transfer rates, and slow electron-hole 

recombination rates.  

Metal semiconductor nanorods are synthesized using thermal as well as photochemical 

methods. Banin and co-workers demonstrated the first example of thermal deposition of Au 

on CdS and CdSe nanorods.19 The general synthesis involves mixing of organic capped II-VI 

semiconductor nanorods with AuCl3, organic amine and dodecyldimethylammonium 

bromide (DDAB) in toluene. This method deposit small Au nanoparticles along the nanorod 

length and gold nucleation sites are believed to be the defect-sites induced by missing surface 

ligands. 

Photochemical deposition of noble metals on semiconductor nanorods generally involves 

three reactants: a semiconductor as the light absorber, a Mn+ molecular complex as the metal 

precursor, and an amine or an alcohol as the sacrificial electron donor. Here, the 
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semiconductor absorbs photons to generate photoexcited electrons and these electrons reduce 

and deposit metal on the surface of the semiconductor. Photogenerated-holes are quenched  

 

Figure 2. Transmission electron microscopy (TEM) images of CdS-Au heterostructures 
prepared by thermal method.  
 

by the sacrificial electron donor to prevent the semiconductor etching. This method was first 

reported by Alivisatos and co-workers for synthesizing Pt-CdS and Pt-CdS/CdSe nanorods. 20 

Photocatalysis by metal-semiconductor heterostructures 

In recent years, metal semiconductor heterostructures have been used as a photocatalysts 

for water splitting and CO2 reduction.21 Photocatalytic reactions by metal semiconductor 

heterostructures can be described in three main steps. First, the semiconductor nanorod 

absorbs a photon with an energy value lager than the band gap of the semiconductor material 

and generates a photoexcited electron-hole pair. Second, photoexcited electrons get 

transferred to the metal nanoparticles on the surface where they are utilized in reduction of 

H+ or CO2. Finally, holes are scavenged by a sacrificial agent to prevent nanocrystal 

degradation by oxidizing holes. 

One of the key challenges in designing semiconductor based photocatalysts is the 

prevention of electron-hole recombination. It is shown that metal nanoparticles on the 
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semiconductor surface help to increase the rate of electron transfer to the reactants and 

therefore decelerate the electron-hole recombination.21 (a) In addition, the amount of metal 

loading plays an important role in photocatalytic properties of metal semiconductor 

nanorods. For instance, increasing Pt nanoparticle size or number of nanoparticles on the 

surface did not increase the production of H2 by Pt-CdS nanorods.22 The efficiency of hole-

scavenging also influences the rate of photocatalysis by metal semiconductor nanorods. 

According to a study by Feldmann et al, the driving force for hole scavenging increased in 

the order of: methanol > disodium ethylenediaminetetraacetic acid > triethanolamine > 

sodium sulfite. They showed that a high driving force for hole scavenging increased the 

generation of H2 by metal semiconductor nanorods. 2 

Thesis Organization 

This thesis is comprised mainly of synthesis of II-VI semiconductor based nano-

heterostructures and investigating their photocatalytic properties in alcohol dehydrogenation. 

Chapters 2 through 5 contain material that has already been published. 

As the thesis encompasses a diverse range of topics, relevant literature is reviewed in the 

introduction of each chapter to provide an adequate understanding of the background and 

significance of the results. 

Chapter 2 describes the synthesis of CdS1-xSex axially anisotropic nanorods using a single 

injection method. Chapter 3 discusses the controlled photochemical fabrication of CdS-Pt 

and CdS-Pd heterostructures as well as site-selective photodeposition of Pd on axially 

anisotropic CdSSe nanorods. Preliminary experiments on Pt deposition on CdS nanorods 

were performed by Dr. Mussie Alemsighed and remaining key experiments were performed 

by Purnima Ruberu. Chapter 4 shows the effect of chalcogenide precursor reactivity on 
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composition and morphology of II-VI semiconductor nanodots and nanorods. Haley R. 

Albright, Brandon Callis, Brittney Ward, and Joana Cisneros were undergraduate students 

who worked in Vela laboratory and helped in running some experiments and characterization 

of nanodots under the guidance of Purnima Ruberu. Other key experiments and 

characterizations were carried out by Purnima Ruberu, while initial DFT calculations for 

phosphine-chalcogenide bond dissociation energy were calculated by Dr. Hua-Jun Fan from 

Texas Prairie View University. Chapter 6 investigates the photocatalytic properties of CdS-M 

and CdS1-xSex- M (M=Pt, Pd) nano-heterostructures in benzyl alcohol dehydrogenation. 

Nicholas Nelson helped in running gas chromatography experiments and other key 

experimental work was performed by Purnima Ruberu. 
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CHAPTER 2 

 EXPANDING THE ONE-DIMENSIONAL CdS-CdSe COMPOSITION 

LANDSCAPE: AXIALLY ANISOTROPIC CdS1-xSex NANORODS 

Reprinted with permission from ACS Nano, 2011, 5, 5775. 

Copyright © 2011 

American Chemical Society 

T. Purnima A. Ruberu, Javier Vela 

Abstract 

We report the synthesis and characterization of CdS1-xSex nanorods with axial anisotropy. 

These nanorods were synthesized via single injection of a mixture of trioctylphosphine sulfur 

and selenium precursors to a cadmium-phosphonate complex at high temperature. 

Transmission electron microscopy shows nanoparticle morphology changes with relative 

sulfur and selenium loading. When the synthetic selenium loading is between 5% and 10% of 

total chalcogenides, the nanorods exhibit pronounced axial anisotropy characterized by a 

thick ‘head’ and a thin ‘tail.’ The nanorods' band gap red shifts with increasing selenium 

loading. X-Ray diffraction reveals CdS1-xSex nanorods have a wurtzite crystal structure with 

a certain degree of alloying. High resolution and energy filtered transmission electron 

microscopy, and energy dispersive X-ray spectroscopy confirms the head of the anisotropic 

nanorods is rich in selenium, whereas the tail is rich in sulfur. Time evolution and 

mechanistic studies confirm the nanorods form by quick growth of the CdSe-rich head, 

followed by slow growth of the CdS-rich tail. Metal photodeposition reactions with 575 nm 

irradiation, which is mostly absorbed by the CdSe-rich segment, show effective electronic 

communication between the nanorods head and tail segments. 
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Introduction 

One-dimensional (‘1D’) colloidal semiconductors (nanorods, nanowires) have been 

subject of much recent interest.1-7 For the particular case of cadmium chalcogenide nanorods, 

seminal papers have addressed their general synthesis,8-14 nucleation and growth,15 diameter 

and length control,13,16 and morphology variants such as arrow-, teardrop-, and branched 

(tetra- and multi-pod)-shaped nanocrystals.17,18 Significant attention has been paid to the 

microscopic mechanism of uncatalyzed anisotropic growth of cadmium chalcogenide 

nanorods made via hot injection methods. At low precursor concentrations, surface area 

minimization via Ostwald ripening favors formation of spherically shaped (‘0D’) colloidal 

nanocrystals (dots). However, typical nanorod preparations use cadmium oxide (CdO) and a 

bulky phosphonic acid such as octadecyl phosphonic acid (ODPA). The resulting cadmium-

phosphonic acid complex is very stable and serves as a slow, controlled source of cadmium 

ions helps maintain a high precursor concentration.19 At high precursor concentrations, the 

relative growth rates of different crystallographic facets play a major role in determining the 

final shape of the nanocrystals.17,20 This is particularly important for wurtzite-type cadmium 

chalcogenides, which are intrinsically anisotropic materials with a unique c axis.15,21 Two 

possible facets perpendicular to wurtzite c axis are 001 and  facets, which terminate 

respectively on positively-charged Cd and negatively-charged Se ions. Various studies have 

proven the  facet has the highest growth rate of all facets.17,21 These Se-rich  facets 

are relatively uncoated because ligands in solution are usually electron donating. In addition, 

the permanent dipole moment along the unique c axis enhances the chemical potential of the 

 facet.22,23 The unique structural features of the  facet favor unidirectional growth on 

this facet, that is, along the c axis.24 
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Continued research on synthesis of colloidal nanocrystals is quickly moving towards new 

preparative methods of increased power and complexity. Of particular interest is finding new 

ways to produce heterostructured and highly anisotropic nanocrystals –those made up by two 

or more distinct phases and containing very large aspect ratios and/or different shapes– that 

could be assembled into functional materials and devices. In the case of cadmium 

chalcogenide nanocrystals, different groups have reported syntheses for spherical (0D) 

alloyed CdS1-xSex,25-28 CdSexTe1-x
29 and Cd1-xHgxTe30 quantum dots, core/shell CdSe/CdS,31-

34 CdTe/CdS,35,36 CdSe/ZnS,37-40 and CdSe/ZnSe41 quantum dots, multishell 

CdS/Zn0.5Cd0.5S/ZnS quantum dots,42 as well as one-dimensional (1D) core/shell CdSe/CdS 

and CdSe/ZnS nanorods,43-46 CdSe-CdTe segmented nanorods,47-49 alloyed CdHgTe 

nanorods,50 alloyed CdS1-xSex nanowires,51 co-axial core/shell Si/CdSSe nanowires,52 

segmented CdS-CdSe53 and CdSe-ZnSe54 nanowires, seeded CdSe-CdS,45 CdTe-CdSe55 and 

CdSexTe1-x rods56 and tetrapods,57 CdS-Ag2S nanorod superlattices,9 and CdSSe 

nanoribbons.58,59 There is also increasing interest in cadmium chalcogenide-metal hybrid 

nanomaterials,60-63 including CdS, CdSe and CdSe/CdS nanorods bound to PbSe,64 Fe2O3,65,66 

Bi,54 Fe-Pt,67 Au,68,69 Pt,70-73  Pd,74 and Co nanoparticles.75,76 

In this paper, we report the synthesis of axially anisotropic, colloidal CdS1-xSex nanorods 

that are characterized by having distinct thick and thin ends. These nanocrystals form 

spontaneously over relatively long reaction periods (~1.4 h) when a mixture of trioctyl 

phosphine sulfide and selenide (TOPS and TOPSe) is used as chalcogenide source, 

specifically with TOPS to TOPSe ratios between 95:5 and 9:1. Using a combination of 

optical and structural characterization methods, we show the amount of Se in these nanorods 

is much higher (up to 6 ) than what could be expected from TOPSe loading used during their 
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synthesis. We also show axially anisotropic CdS1-xSex nanorods are single-crystalline, with 

an axial composition gradient between a CdSe-rich thick end, and a CdS-rich thin end. Using 

different control experiments, we explore the mechanism of formation of these axially 

anisotropic nanorods, and establish they form in a sequential manner, where quick growth of 

a CdSe-rich head (≤ 20 min) precedes slow growth of a CdS-rich tail (~85 min). Finally, we 

probe the degree of electronic communication between the two segments of the nanorods by 

carrying out palladium photodeposition experiments. We show palladium photodeposition 

occurs along the whole length of the nanorods using a lamp whose light is absorbed by the 

smaller band gap CdSe-rich segment, but not by the larger band gap CdS-rich segment. 

Results and Discussion 

As part of a study directed at harvesting sunlight with one-dimensional semiconductor 

colloids, we became interested in CdSe based on its relatively small band gap (1.7 eV bulk). 

However, we faced difficulties in making CdSe nanorods and frequently obtained instead 

mixtures of CdSe dots, rods, and multipods. While we amply recognize these complications 

arise from variable amounts of impurities present in different batches of chemicals, removing 

such impurities by purification added unwanted and lengthy extra steps to our synthesis. In 

contrast, we noted a procedure recently reported for making CdS nanorods is highly 

reproducible, even without prior purification of precursors or ligands.9 This procedure 

involves reaction between trioctylphosphine sulfide (TOPS) and an in-situ generated 

cadmium-octadecyl phosphonate complex in trioctylphosphine oxide at 315°C for 85 min, 

and results in long (154.1 ± 30.4 nm) and thin (5.6 ± 0.8 nm diameter) CdS nanorods with a 

high aspect ratio (length / diameter) of 27 and a small size-dispersion (Figure 1a and entry 1 

in Table 1). Unfortunately, CdS is a bluer, larger band-gap (2.4 eV bulk) material compared 
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to CdSe, and is less attractive for harvesting sunlight. Nonetheless, we reasoned that 

introducing small amounts of Se during synthesis might lead to CdS1-xSex nanorods with a 

smaller band gap compared to pure CdS.  

 

 

 

Figure 1. TEM micrographs showing CdS1-xSex morphology as a function of Se loading 
(actual EA composition in parenthesis): (a) 0% Se loading (CdS), (b) 5% Se loading 
(CdS0.68Se0.32), (c) 10% Se loading (CdS0.42Se0.58), (d) 20% Se loading (CdS0.33Se0.67), (e) 
100% Se loading (CdSe). Scale bars: 20 nm (a, e), 50 nm (b, c, d). 

Table 1. Composition and dimensions of axially-anisotropic CdS1-xSex nanorods 

Entr
y 

Rxn. 
time  
/ 
min 

%Se 
Loading
a 

%Se 
Compositio
n: EAb 
(XRD)c 

Total length  
/ nm  
(XRD)d 

Head 
diameter / 
nm 

Tail 
diameter   / 
nm 

Aspe
ct 
ratioe 

1 85 0 0b (0)c 154.1 ± 30.4  
(43.0)d 

5.6 ± 0.8 5.6 ± 0.8 27 

2 85 5 32b (45)c 91.3 ± 6.4  
(24.0)d 

12.8 ± 1.9 3.7 ± 0.4 7.0 

3 85 10 58b (63)c 59.3 ± 8.0  
(29.1)d 

17.8 ± 2.4 5.6 ± 0.8 3.3 

4 85 20 67b (81)c 20.5 ± 2.9  
(13.4)d 

11.8 ± 1.7 11.8 ± 1.7 1.7 

5 85 100 100b (100)c 11.4 ± 2.1  
(10.5)d 

8.5 ± 1.0 8.5 ± 1.0 1.3 

6 g 20 5 n.d.f (n.d.)f 51.8 ± 5.4g 
(n.d.)f 

14.0 ± 1.1g 14.0 ± 1.1g 3.7 

7h 85 - - - h n.d.f (n.d.)f 37.5 ± 7.4 
(n.d.)f 

10.2 ± 1.1 3.7 ± 0.6 3.7 
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CdS1-xSex nanorod morphology. To test this idea, we replaced TOPS in the injection 

solution with a mixture of TOPS and TOPSe while keeping the total chalcogenide 

concentration constant. To our surprise, replacing a fraction of TOPS with TOPSe not only 

leads to CdS1-xSex nanorods, but such CdS1-xSex nanorods can display a high degree of 

anisotropy along their main axis when the total amount of chalcogenides contains 10% or 

less Se loading. Figure 1 shows the morphology of CdS1-xSex nanocrystals that result from 

changing Se loading in each preparation. Figure 2 shows the corresponding changes in CdS1-

xSex nanorod length, diameter, and aspect ratio as a function of Se loading. These trends are 

quantitatively summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of %Se loading on CdS1-xSex length (a), diameter (b), and aspect ratio (c). 
 

a%Se used during synthesis. bDetermined by elemental analysis. cEstimated from XRD. 
dCalculated from (002) peak. eMinimum aspect ratio = Length / Head diameter. fNot 
determined. gAlso observed small dots with a diameter = 3.1 ± 0.8 (see Figure 8a). hMade in 
presence of pre-made pure CdSe nanorods, using a 0% Se loading. 
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At 0% Se loading, long nanorods form with a consistent diameter of 5.6 ± 0.8 nm along 

their whole length (Figure 1a and entry 1 in Table 1). Increasing Se loading between 1% and 

10% leads to axially anisotropic nanorods having two distinct fat (head) and thin (tail) ends 

(Figure 2b). For example, at 5% Se loading the nanorods have head and tail diameters of 12.8 

± 1.9 nm and 3.7 ± 0.4 nm, respectively, whereas at 10% Se loading the nanorods have head 

and tail diameters of 59.3 ± 8.0 nm and 17.8 ± 2.4 nm, respectively. We casually referred to 

these nanocrystals as having ‘tadpole’ (5% Se) or ‘drumstick’ (10% Se) morphology (Figure 

1b-c and entries 2-3 in Table 1). Qualitatively, these tadpole and drumstick CdS1-xSex 

nanocrystals appear to have similar morphology to ‘paddle’ CdS and ‘teardrop’ CdSe 

nanocrystals previously reported in the literature.13,17 Increasing Se loading above 10% Se 

leads to progressively shorter nanorods that once again retain a consistent diameter along 

their length (Figure 2b). For example, at 20% Se loading nanorods have a consistent diameter 

of 11.8 ± 1.7 nm (Figure 1d-e and entries 4-5 in Table 1). Across the CdS1-xSex series, the 

nanorods length dramatically decreases from 154.1 ± 30.4 nm to 11.4 ± 2.1 nm for 0% and 

100% Se loading, respectively (Figure 2a). 

Optical properties of CdS1-xSex nanorods. As initially expected, the absorption spectrum 

of CdS1-xSex nanorods is red-shifted compared to pure CdS nanorods. Figure 3a shows the 

absorption edge of CdS1-xSex nanorods shifts to longer wavelengths as Se loading increases, 

and Figure 3b shows the corresponding change in apparent band gap (estimated from 1st 

absorption peak). As shown in Figure 3b, even a modest increase in Se loading, from 0% to 

5% Se causes a dramatic drop in apparent band gap. This strongly indicates the concentration 

of Se in these nanocrystals is much higher than calculated based on synthetic Se loading 

alone (see further discussion below). The photoluminescence properties of CdS1-xSex 
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nanorods also change depending on the amount of Se present, and the observed changes are 

compounded by the nanorods’ complex composition and structure (presented below). 

Qualitatively, figures 3c and 3d show preparations that using Se loadings between 10-100% 

result in weakly luminescent nanorods, with maximum relative luminescence (QY ≈ 0.2%) 

corresponding to nanorods obtained with a 20% Se loading. 

 

Figure 3. CdS1-xSex optical properties: Change in absorption (a), band gap (b), and PL 
intensity (c, d) with increasing Se loading. (Low solubility of CdS nanorods results in 
scattering above 500 nm) 

CdS1-xSex nanorod structure and overall composition. Figure 4a shows powder X-ray 

diffraction patterns of several CdS1-xSex nanorod samples with different Se loadings. Each 

XRD pattern consists of a single set of peaks most consistent with a hexagonal, wurtzite 

crystal structure. We can rule out the presence of two separate pure CdS and CdSe phases in 

these samples based on the fact that each CdS1-xSex XRD pattern consists of a single set of 

peaks (Figure 4a). A control sample made by mixing pure CdS and CdSe nanorods (0% Se 

and 100% Se) has an XRD pattern that consists of two distinct sets of peaks, with two peaks 

showing for each set of lattice planes (Figure 4a). In contrast, all CdS1-xSex nanorod samples 

with 1 > x > 0 show a single peak for each set of lattice planes, and individual 2·theta values 

fall in between the values for pure wurtzite CdS and CdSe phases reported in the Inorganic 
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Crystal Structure Database (ICSD 2010-2/2010 from Fachinformationszentrum Karlsruhe 

(FIZ) and NIST. FindIt Version 1.7.1.). Individual diffraction peaks progressively shift to 

smaller 2·theta (2 ) values (wider d-spacings) with increasing Se loading, in agreement with 

lattice expansion to accomodate the incorporation of increasing amounts of larger Se ions. 

This indicates some type of alloying between CdS and CdSe phases in these nanostructures. 

To investigate this further we plotted the experimentally measured d spacings for each set of 

lattice planes as a function of Se loading. Figure 4b shows such plot is non-linear but highly 

curved, which is typical of non-Vegard behavior.77 This observation strongly indicates the 

nanocrystals may not be completely alloyed, but instead contain some degree of 

heterostructuring, perhaps in the form of a graded alloy. Note: A homogeneous alloy or solid 

solution could have formed based on relative S2- (1.7 Å) and Se2- (1.84 Å) ionic sizes (8.2% 

difference), and CdSe (7.010 Å), and CdS (6.749 Å) wurtzite lattice paramaters (3.9% lattice 

mismatch). 

 

Figure 4. (a) CdS1-xSex XRD patterns for different %Se loadings. XRD patterns of a pure 
CdS/pure CdSe mix. (0%+100% Se loading), and bulk wurtzite(hexagonal) CdSe and CdS 
are shown for comparison. (b) Change in CdS1-xSex interplanar d-spacings as a function of 
%Se loading. 
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Another feature observed from powder diffraction data is that the length of the nanorods 

calculated from the (002) XRD peak is almost always shorter than measured from TEM 

(Table 1). This behavior has been previously observed and attributed to the presence stacking 

faults along nanorods length, which effectively decreases the apparent nanocrystal size.17 

Figure 4b also shows individual XRD peaks occur at smaller 2·theta values and correspond 

to larger d spacings than could be expected from Se loadings used in the synthesis. Figure 5 

shows the actual composition of CdS1-xSex nanorods obtained from experimental XRD data 

as well as from chemical elemental analysis (EA). Both XRD and EA data confirm the 

nanorods’ actual Se content is always higher than the Se loading used during their synthesis, 

which strongly indicates Se has a higher tendency than S to incorporate into these 

nanostructures. By comparing experimental XRD and EA data with the corresponding Se 

loadings (Table 1), we estimate there is a three- to nine-fold (3-9 ) preference for Se over S 

to go into these nanostructures. 

 

Figure 5. CdS1-xSex composition obtained experimentally from elemental analysis and X-ray 
diffraction plotted against synthetic Se loading. 

S- and Se-atom distribution in CdS1-xSex nanorods. The unusual anisotropic morphology 

observed by TEM suggests CdS1-xSex nanorods possess an inhomogeneous composition 

along their length.25 To answer this question, we resorted to high-resolution HR-TEM, 
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energy dispersive X-ray spectroscopy (EDS), and energy-filtered (EF) TEM. Figure 6 shows 

representative EDS and HR-TEM data of drumstick-like CdS0.42Se0.58 nanorods that result 

from 10% Se loading. EDS line scans along the nanorods' main axis show Se content 

dramatically increases on going from tail to head regions (Figure 6a-b). HR-TEM confirms 

nanorods are single crystalline as judged by the continuity in lattice fringes along their 

structure (Figure 6b). We also used HR-TEM to measure interplanar d spacings at different 

points along the length of several of these nanorods, and found the d spacings get 

consistently larger on going from the tail to head regions. This can be attributed to a higher 

fraction of larger Se atoms at the head and a higher fraction of smaller S atoms at the tail of 

the nanorods. The net result of this composition gradient is lattice expansion towards the 

head of the nanorods. 

Figure 7 shows three registered TEM and energy-filtered (EF) TEM images of tadpole-

like CdS0.68Se0.32 nanorods that result from 5% Se loading. In agreement with what is 

observed by EDS and HR-TEM on the shorter nanorods, Se-channel EF-TEM indicates Se is 

preferentially located at the thicker head region of the nanorods (Figure 7a vs. b), whereas 

the S-channel EF-TEM image indicates S distributes along the whole length of the nanorods 

(Figure 7c vs. b). Taken together, these EDS, HR-TEM, and EF-TEM results unambiguously 

confirm Se incorporates preferentially at the head region of the nanorods, whereas mostly S 

is present at the tail region of the nanorods. The structural and single crystalline continuity of 

the nanorods along their axis, along with progressively increasing Se concentration towards 

their head is consistent with these structures being graded alloys. 
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Figure 6. Individual CdS0.42Se0.58 nanorod sample analyses: (a) Direction and length(x), and  
(b) composition plot of an EDS line scan (arrow length=50 nm; square area was used for drift 
correction). (c) HR-TEM micrograph showing interplanar (002) d spacings (perpendicular to 
c axis) become progressively larger from the tail to the head of the nanorods. 

Formation mechanism of anisotropic CdS1-xSex nanorods. Having established the 

heterostructured, graded-alloy composition of anisotropic CdS1-xSex nanorods, we turned our 

attention to their growth mechanism. Our most immediate question was whether CdSe-rich 

(head) and CdS-rich (tail) segments formed (a) concomitantly (that is, both segments form in 

parallel simultaneously), (b) sequentially (one segment forms first, the other forms from it), 

or (c) independently of each other. 

 

Figure 7. Registered EF-TEM images of tadpole-like CdS0.68Se0.32nanorods: (a) Se-channel, 
(b) regular-TEM, and (c) S-channel. 

To probe this question, we studied time evolution of particles by stopping the reaction 

and characterizing products at different times. Figure 8a-c shows key results from such 

experiments using CdS0.68Se0.32 nanorods obtained with a 5% Se loading as a model system. 
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At relatively short reaction times, for example after 20 min, we observed formation of thick 

nanorods (51.8 nm ± 5.4 nm in length, 14.0 nm ± 1.1 nm in diameter) along with a few small 

dots (3.1 nm ± 0.8 nm) (Figure 8a and entry 6 in Table 1). However, after 85 min thick 

nanorods appeared to grow a thin tail and produced tadpole-like, final anisotropic nanorods 

(91.3 nm ± 6.4 nm in length), whereas small dots disappeared (Figure 8b and entry 2 in Table 

1). Interestingly, the diameter of the 20 min nanorods (14.0 nm ± 1.1 nm) and head diameter 

of the 85 min nanorods (12.8 nm ± 1.9 nm) are the same within experimental error, strongly 

suggesting both shares the CdSe-rich composition described above. Formation of a few small 

dots and their eventual disappearance along with formation of long nanorod tails is consistent 

with initial formation of CdS homo-nuclei, which dissolve over time in favor of 

heterogeneous nucleation on one side of the thick CdSe nanorods along the c-axis, 

perpendicular to the (002) set of planes. To confirm these results, we repeated the procedure 

used to make pure CdS nanorods (using only TOPS or with a 0% Se loading) in presence of 

pure CdSe nanorods (pre-made using only TOPSe or with a 100% Se loading) (Figure 8d-f). 

In absence of CdSe nanorods, pure and long CdS nanorods are formed as shown previously 

(see above).9 However, in presence of CdSe nanorods, these acted like seeds for formation of 

highly anisotropic, drumstick-like CdS1-xSex nanorods (Figure 8e), in agreement with the 

time-dependent mechanistic experiment above. 

We then attempted to form anisotropic nanorods from preformed CdS nanorods by 

reacting pure CdS nanorods with TOPSe (Figure 8g-i). This experiment was unsuccessful, in 

that the length (188.3 nm ± 53.4 nm), diameter (9.1 nm ± 4.6 nm), and overall aspect of the 

initial CdS nanorods remained constant within experimental error. Some etching of the CdS 

nanorod surface occurred however, as judged by formation of a few medium size dots 
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consistent with formation of CdSe (10. 8 nm ± 2.6 nm) (Figure 8h). Additional experiments 

where we treated CdS nanorods with both TOPSe and Cd-phosphonate precursors were 

similarly unsuccessful, leading to rectangular ‘block’-shaped nanocrystals with dimensions 

(65.2 nm ± 8.8 nm)  (18.7 nm ± 3.8 nm) instead of axially anisotropic nanorods (not 

shown). Together, these results demonstrate that while ‘thin’ CdS tails can form starting from 

‘fat’ CdSe nanorod seeds, the opposite cannot happen, namely ‘fat’ CdSe heads cannot form 

from ‘thin’ CdS tail seeds. In other words, formation of heterostructured, graded-alloy 

anisotropic CdS1-xSex nanorods is a sequential process that starts by quick growth of a CdSe-

rich nanorod head, followed by slow growth of a CdS-rich tail. 

Perhaps an even more intriguing question is the reason behind sequential formation of axially 

anisotropic CdS1-xSex nanorods. It is clear from our observations that under the experimental 

conditions used in this study the rate of CdSe nanorod (head) growth (≤ 20 min) is much 

faster than the rate of CdS nanorod (tail) growth (~85 min). The relative ease of formation of 

these nanorods cannot be a consequence of relative thermodynamics of crystalline energies, 

since CdS is a much more stable crystalline system compared to CdSe: Based on literature 

thermochemical data,78 we calculate the lattice energy of CdS, 834 kcal/mol is significantly 

higher than for CdSe, 798 kcal/mol. These values are consistent with the melting points of 

CdS, 1748°C, and CdSe, 1512°C. Instead, we believe the relative ease of formation of 

nanorods is a consequence of relative reactivity of TOPS and TOPSe in solution. For tertiary 

alkyl phosphines such as TOP, the strength of a terminal P-Se bond is 75 kcal/mol, whereas 

the strength of a terminal P-S bond is 96 kcal/mol.79 Because of the significantly weaker P-

chalcogen bond strength in TOPSe compared to TOPS, by 21 kcal/mol, one can expect 

TOPSe to be much more reactive towards the Cd-phosphonate precursor than TOPS, leading 
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to faster formation of CdSe compared to CdS. This suggests it may be possible to control 

relative degrees of Se and S in these and other nanostructures by judicious control of 

molecular precursor but further work is needed to confirm this idea. 

 

Figure 8. Mechanistic investigations of anisotropic CdS1-xSex nanorod formation: (a-c) Time 
evolution of CdS0.68Se0.32 nanorods: At short reaction times (20 min), the nanorods head has 
already formed, along with very small CdS nuclei (circled) (a). Over time (85 min total 
reaction time), small CdS nuclei dissolved and only final CdS0.68Se0.32 nanorods were 
observed. (d-i) Independent formation of CdS1-xSex nanorods from preassembled elements: 
(d-f) Reaction of CdSe nanorods (d) with Cd and S precursors results in CdS1-xSex nanorod 
formation (e), (g-i) whereas reaction of CdS nanorods (g) with Se does not (a few CdSe 
nuclei, circled, formed instead) (h). 
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Electronic communication among CdSe- and CdS-rich segments. A key feature 

sought for many potential applications of heterostructured nanomaterials is good optical and 

electronic communication between the heterostructure's different components. To probe this 

aspect, we carried out photodeposition of palladium nanoparticles on axially anisotropic 

CdS1-xSex nanorods (Figure 9). Others, 60-76 and we (to be communicated) have independently 

observed photodeposition of metals on the surface of colloidal semiconductor nanocrystals 

can be selectively carried out using lasers or fluorescent lamps. Light absorption by the 

semiconductor results in formation of electron-hole pairs that can be subsequently quenched 

by surface defect or ‘trap’ states. The resulting surface-localized electrons can serve as 

reduction and seeding points for formation of metal nanoparticles from soluble 

organometallic precursors. Here, we used a 575 nm lamp ( 75 nm fwhm) and 

(TMEDA)PdMe2 to deposit Pd on CdS0.42Se0.58 nanorods obtained with a 10% Se loading 

(Figure 9). After 1 h irradiation, Pd nanoparticles formed having a size of 5.0 ± 1.5 nm, with 

an average of 1.3 Pd particles per nanorod, and a maximum of 3 Pd particles per nanorod. 

After 3 h irradiation, Pd nanoparticles formed having a size of 5.1 ± 1.4 nm, with an average 

of 8.0 Pd particles per nanorod, and a maximum of 15 Pd particles per nanorod (Figure 9). 

Clearly, irradiation time does not impact Pd nanoparticle size, however Pd loading greatly 

increases with longer irradiation times as evidenced by the non-linear, large increase (6 ) in 

number of Pd particles per rod on going from 1 h to 3 h irradiation (1.3 Pd particles to 8.0 Pd 

particles, respectively). Based on the band edge position of the two different CdS- or CdSe-

rich domains, light emitted by the 575 nm lamp is strongly absorbed by the CdSe-rich head 

(~650 nm absorption edge), but not by the CdS-rich tail (~500 nm absorption edge). Because 
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Pd nanoparticles form not only on the head but also on the tail of the nanorods (Figure 9c), 

we infer excitons can travel unimpeded across whole CdS1-xSex graded alloy nanocrystals. In 

other words, exciton quenching by surface defects appears to occur at any point on the 

surface of these nanorods, leading to photoreduction of the Pd molecular precursor and 

surface seeding of Pd nanoparticles along the whole length of CdS0.42Se0.58 nanorods. A full 

detailed account on metal photodeposition behavior, characterization, and application of the 

resulting nanostructures will be the subject of a separate article.  

 

Figure 9. Photodeposition of Pd nanoparticles on CdS0.42Se0.58 nanorods obtained with a 
10% Se loading: (a, b) 575 nm lamp, 1 h irradiation. (c) 575 nm lamp, 3 h. (The arrows in b 
point to Pd particles on tail and head segments). (d) Pd nanoparticle size histogram. (e) Pd 
nanoparticle count per nanorod histogram. (Size measurements and statistics were obtained 
for at least 50-100 particles) 
 

Conclusions 

In summary, we have prepared axially anisotropic CdS1-xSex nanorods via a single 

injection of a mixture of TOPS and TOPSe precursors to a hot cadmium-phosphonate 

complex. The morphology of the resulting nanocrystals strongly depends on relative amounts 

of S and Se used. Axially anisotropic nanorods with a thick head segment and a thin tail 
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segment are obtained when the Se loading is between 5% and 10% of total chalcogenides. 

The aspect ratio of the nanorods decreases as Se loading increases. The optical properties of 

the nanostructures are tunable with composition. The absorption band edge of these 

nanostructures red-shifts with increasing Se loading. X-Ray diffraction and elemental 

analyses show the actual Se content in CdS1-xSex nanorods is consistently higher than 

synthetic Se loading. X-Ray diffraction data, Vegard’s plots, and high-resolution TEM 

studies confirm axially anisotropic nanorods possess a graded alloyed structure. Elemental 

mapping by energy dispersive spectroscopy and energy filtered TEM showed the head region 

of anisotropic nanorods is rich with Se and the tail region is rich with S. Time dependent 

evolution studies show formation of these nanorods starts with homogeneous nucleation and 

quick growth of a thick CdSe-rich head, followed by heterogeneous nucleation and slow 

growth of a CdS-rich thin tail. This anisotropic growth can be attributed to the stability of 

chalcogenide precursors. TOPSe is less stable and more reactive compared to TOPS. As a 

result, TOPSe reacts with cadmium-phosphonate much faster, forming the head segment 

first. Over time, TOPS slowly reacts with cadmium-phosphonate, forming the thin tail 

segment along the c axis. Mechanistic experiments show the opposite synthetic sequence is 

not possible. Namely, formation of a CdSe-rich head does not occur starting from a CdS-rich 

tail. Metal deposition experiments conducted using 575 nm light irradiation show there is 

good electronic communication between the CdS-rich and CdSe-rich segments. We are 

currently exploring using axially anisotropic CdS1-xSex nanorods and CdS1-xSex-Pd 

heterostructures as building blocks for more complex nanostructures and devices. 
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Experimental Section 

Materials. Cadmium oxide (99.998%) and sulfur (99.999%) were purchased from 

AlfaAesar, octadecylphosphonic acid (ODPA) from PCI Synthesis, selenium (99.999%), 

trioctylphosphine oxide (TOPO) (99%), triethylamine (≥99.5%), and anhydrous toluene from 

Sigma-Aldrich, and trioctylphosphine (TOP) (97%) and cis-dimethyl(N,N,N,’N’-

tetramethylethylenediamine)palladium(II) ((TMEDA)PdMe2) (99%) from Strem. Materials 

were used as received unless specified otherwise. CdS nanorods (154.1±30.4 nm length, 

5.6±0.8 nm diameter) were prepared according to a literature procedure.9 Elemental analyses 

were performed by Galbraith Laboratories, Inc., of Knoxville, Tennessee. 

Synthesis of CdS1-xSex nanorods. TOP-Chalcogen stock solutions. A solution of S (407.7 

mg, 12.5 mmol) in TOP (4.61 g, 12.5 mmol) (2.25 M TOPS stock solution), and a solution of 

Se (987.0 mg, 12.5 mmol) in TOP (4.61 g, 12.5 mmol) (2.25 M TOPSe stock solution) were 

prepared under a dry N2 atmosphere inside a glove box. TOPS and TOPSe solutions were 

mixed in varying ratios to make different injection solutions (2.25 M TOP-chalcogen). 

General synthesis procedure. CdO (105.0 mg, 0.810 mmol), TOPO (1.375 g, 3.56 mmol) and 

ODPA (535 mg, 0.937 mmol) were weighed onto a three-neck round bottom (RB) flask. The 

flask was fitted with a glass-coated stir bar, a condenser and a stainless steel thermocouple. 

The apparatus was sealed and brought onto an Schlenk line. Using a heating mantle, the 

mixture was heated to 100°C and evacuated under vacuum for 15 min, refilled with argon 

and heated to 320°C to form a completely colorless solution. The solution was cooled to 

120°C and evacuated under vacuum for 15 min, refilled with argon and heated back to 

320°C. When the temperature reached 300°C, TOP (1.20 ml, 2.69 mmol) was injected into 

the flask. When the temperature reached 320°C, a mixture of TOPS and TOPSe (1 mL total 
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volume, 2.25 mmol total chalcogens) was rapidly injected, causing a gradual color change. 

Upon injection, the temperature was allowed to equilibrate at 315°C and kept constant for a 

total reaction time of 85 minutes. The final reaction mixture was removed from the heating 

mantle and cooled to room temperature. After dilution with toluene (5 mL), nanocrystals 

were isolated by addition of a 1:1v/v iso-propanol/nonanoic acid mixture (24 mL), followed 

by centrifugation (5,000 rpm for 10 min). 

Mechanistic experiments. Time evolution. We used the general synthetic procedure above 

starting from CdO (105.0 mg, 0.810 mmol), TOPO (1.375 g, 3.56 mmol), ODPA (535 mg, 

0.937 mmol), and TOP (1.20 ml, 2.69 mmol), using a mixture of TOPS (0.95 ml, 2.1375 

mmol) and TOPSe (0.05 ml, 0.1125 mmol) as chalcogenide injection solution (5% Se 

loading). We repeated this procedure stopping the reaction at different times by removing the 

heating mantle and cooling to room temperature. Products were isolated as described above. 

Reaction of CdSe nanorods with Cd-phosphonate and TOPS. We first prepared pure CdSe 

nanorods by the general synthetic procedure starting from CdO (105.0 mg, 0.810 mmol), 

TOPO (1.375 g, 3.56 mmol), ODPA (535 mg, 0.937 mmol), TOP (1.20 ml, 2.69 mmol), and 

using TOPSe (1.00 ml, 2.25 mmol). The reaction was stopped after 85 min and products 

were isolated as described in the general synthetic procedure above. Isolated CdSe nanorods 

were dissolved in toluene (3 mL), transferred to a new three-neck RB flask, and the solvent 

removed under vacuum. In a separate flask, CdO (105.0 mg, 0.810 mmol), TOPO (1.375 g, 

3.56 mmol) and ODPA (535 mg, 0.937 mmol) were weighed, heated to 100°C and evacuated 

under vacuum for 15 min, refilled with argon and heated to 320°C to form a completely 

colorless solution. The solution was allowed to cool to 120°C, evacuated under vacuum for 

15 min, refilled with argon, and transferred to the flask containing the CdSe nanorods via 
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syringe. The mixture of Cd-phosphonate precursor and CdSe nanorods was heated to 320°C. 

When the temperature reached 300°C, TOP (1.20 ml, 2.69 mmol) was injected into the flask. 

When the temperature reached 320°C, a solution of TOPS (1 mL, 2.25 mmol) was rapidly 

injected. Upon injection, the temperature was allowed to equilibrate at 315°C and kept 

constant for a total reaction time of 85 minutes. Products were isolated as described above. 

Reaction of CdS nanorods with TOPSe. We first prepared pure CdS nanorods9 by the general 

synthetic procedure above starting from CdO (105.0 mg, 0.810 mmol), TOPO (1.375 g, 3.56 

mmol), ODPA (535 mg, 0.937 mmol), and TOP (1.20 ml, 2.69 mmol), and using TOPS (1.00 

ml, 2.25 mmol). The reaction was stopped after 85 min and products isolated as described 

above. Isolated CdS nanorods were transferred to a three-neck RB flask containing TOPO 

(1.375 g, 3.56 mmol). The mixture was heated to 100°C and evacuated for 15 minutes, 

refilled with Argon and heated to 320°C. At this temperature a mixture containing TOP (1.2 

ml, 3.56 mmol) and TOPSe (0.05 ml, 0.1125 mmol) was rapidly injected. The temperature 

was allowed to equilibrate at 315°C and kept constant for a total reaction time of 85 minutes. 

Products were isolated as described above. 

Synthesis of CdS0.42Se0.58-Pd heterostructures. CdS0.42Se0.58 nanorods obtained with a 

10% Se loading were dissolved and diluted in toluene to give an optical density (absorbance) 

of 1.3 at 630 nm. A 2.0 mL volume of this solution was degassed, refilled with dry argon, 

and stored in the dark for 12 h in a re-sealable Schlenk tube. Under a dry atmosphere, 

(TMEDA)PdMe2 (30.0 mg, 0.118 mmol) was dissolved in anhydrous toluene (1 mL), and 

added to CdS1-xSex nanorod solution via syringe along with triethylamine (0.5 mL, used as 

terminal electron donor).71 Deposition was carried out for 1-3 h photochemically at R.T. in a 

Rayonet® photoreactor containing 16 side-on fluorescent lamps (575 nm/75 nm fwhm). 
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Products were purified twice by precipation with methanol (30 mL) and centrifugation (5,000 

rpm for 10 min). All products could be redispersed in toluene. 

Structural characterization. X-Ray Diffraction. Powder X-ray diffraction (XRD) data 

were measured using Cu-Kα radiation on a Scintag XDS-2000 diffractometer equipped with 

a theta-theta goniometer, a sealed-tube solid-state generator, and an air-cooled Kevex Psi 

Peltier silicon detector. Transmission Electron Microscopy. Transmission electron 

microscopy (TEM) of samples was conducted on carbon-coated copper grids using a FEI 

Technai G2 F20 Field Emission scanning transmission electron microscope (STEM) at 200 

kV (point-to-point resolution <0.25 nm, line-to-line resolution <0.10 nm). Nanorods' 

elemental axial composition was characterized by energy dispersive spectroscopy (EDS) line 

scans in STEM mode, and by energy-filtered (EF) imaging spectroscopy (EF-TEM). Particle 

analysis. Dimensions were measured manually and/or by using ImageJ. Size measurements 

and particle counts/statistics were obtained for at least >50-100 CdS1-xSex and Pd particles. 

Average sizes are reported along with ±standard deviations. For axially anisotropic nanorods, 

we report two diameters: ‘Head’ diameter is the largest observed diameter. ‘Tail’ diameter is 

mid-point on thinner half of nanorods. 

Optical characterization. Absorption spectra were measured with a photodiode-array 

Agilent 8453 UV-Vis spectrophotometer. Solvent absorption was recorded and substracted 

from all spectra. Steady state photoluminescence (PL) spectra were measured with a Horiba-

Jobin Yvon Nanolog scanning spectrofluorometer equipped with a photomultiplier detector. 

Photoluminescence (PL) quantum yields (QYs) were measured following literature 

procedures.80 Nanorod samples were diluted in hexane or toluene to give an optical density 

of 0.05-0.2 at 510 nm. Their PL emission was compared to rhodamine 590 in methanol, with 
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QY=95%. Excitation wavelength was 510 nm and emission was recorded between 525-800 

nm. QYs were calculated as: QYQD = 0.95  (ODrhodamine590/ODQD)  

(PLareaQD/PLarearhodamine590)  (RIQD
2/RIrhodamine590

2), where RIrhodamine590 was taken as the 

refractive index of methanol (1.3288), and RIQD as the refractive index of toluene (1.4941). 

Absorption and PL emission spectra of QD and dye samples were measured at least twice 

and average QYs recorded. 
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Abstract 

We demonstrate molecular control of nanoscale composition, alloying, and morphology 

(aspect ratio) in CdS-CdSe nanocrystal dots and rods by modulating the chemical reactivity 

of phosphine-chalcogenide precursors. Specific molecular precursors studied were sulfides 

and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), 

tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphoroustriamide 

(HPT). Computational (DFT), NMR (31P and 77Se), and high temperature crossover studies 

unambiguously confirm a chemical bonding interaction between phosphorous and chalcogen 

atoms in all precursors. Phosphine-chalcogenide precursor reactivity decreases in the order: 

TPPE ˃ DPPE ˃ TBPE ˃ TOPE ˃ HPTE (E = Se ˃ S). For a given phosphine, the selenide is 

always more reactive than the sulfide. CdS1-xSex quantum dots were synthesized via single 

injection of a R3PS-R3PSe mixture to cadmium-oleate at 250°C. X-Ray diffraction (XRD), 

transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal 
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relative R3PS and R3PSe reactivity dictates CdS1-xSex dot chalcogen content and extent of 

radial alloying (alloys vs. core/shells). CdS, CdSe, and CdS1-xSex quantum rods were 

synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS–R3PSe mixture 

to cadmium phosphonate at 320°C or 250°C. XRD and TEM reveal the length-to-diameter 

aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. 

Purposely matching or mismatching R3PS-R3PSe precursor reactivity leads to CdS1-xSex 

nanorods without or with axial composition gradients, respectively. We expect these 

observations will lead to scalable and highly predictable “bottom-up” programmed syntheses 

of finely hetero-structured nanomaterials with well-defined architectures and properties that 

are tailored for precise applications. 

Introduction 

Preparative nanotechnology or “nano-manufacturing” is rapidly evolving toward 

fabrication of ever more complex materials with precise structure and properties. Tuning 

composition, relative configuration and spatial arrangement of hetero-structured 

nanomaterials can impact our ability to engineer and direct energy flows at the nanoscale. In 

the case of II-VI and IV-VI semiconductors, composition control has been demonstrated for 

homogeneously alloyed CdS1-xSex,1-4 CdS1-xTex,5 CdSe1-xTex,6 PbSxSe1-x, PbSxTe1-x and 

PbSexTe1-x
7 nanocrystals with size- and composition-tunable band gaps.4,8,9 In some cases, a 

nonlinear relationship between composition and absorption/emission energies, called optical 

bowing, resulted in new properties not obtainable from the parent binary systems.3 For 

example, CdSxTe1-x nanocrystals displayed small absorption–emission spectral overlap, up to 

150 nm Stokes shifts, and significantly red-shifted PL with respect to CdS and CdTe 

nanocrystals.5 
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Controlling nanocrystal morphology is key to controlling nanocrystal proper-ties.10-14 A 

common technique to produce nanorods, for example, is to perform slow and/or subsequent 

reactant injections.15-17 In intrinsically anisotropic systems such as hexagonal (wurtzite) II-VI 

semiconductors, unidirectional (nanorod) growth occurs along the c(z) axis under high 

precursor concentrations. Bulky cadmium-phosphonate complexes are known to maintain 

high precursor concentrations via controlled release of Cd2+ ions to the medium.18 Nearly 

spherical to rod-like shapes are produced using ligands such as hexylphosphonic acid.19 

Aspect ratio is sensitive to phosphonic acid alkyl chain length; the shorter the chain, the more 

elongated and branched are the nanorods.18,20 Aspect ratio control has been studied for ZnS, 

ZnSe,16,21 ZnTe, CdS,15 CdSe,17-19 CdTe, ZnS1-x-ySexTey and CdSe1-xTex
22 nanorods. ZnTe 

aspect ratio was controlled by temperature-tuning nanocrystal growth kinetics.23 

Composition-tunable CdSe, CdTe and CdSexTe1-x tetrapods, the latter with nonlinear 

composition-dependent absorption and emission and spectral coverage up to 1000 nm (near-

IR), were also reported.22 

 The mechanism by which cationic and phosphine-chalcogenide precursors react to form 

II-VI and IV-VI nanocrystals is currently under intense study and debate.24,25 Two 

mechanisms, one involving Se2- and another involving Se0 transfer, were found to be 

simultaneously responsible for PbSe nanocrystal formation from Pb(oleate)2 and phosphine-

selenides.26 A kinetic model was used to describe combined nanocrystal nucleation and 

growth phenomena.27 Reaction of Pb(oleate)2 and trioctylphosphine selenide (TOPSe) at low 

temperature produced spherical PbSe nanocrystals, while reaction with 

hexaethylphosphorous-triamide (HPT, also called tris(diethylamino)-phosphine selenide) at 
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high temperature produced PbSe nanorods. Coupled thermo gravimetric-mass spectrometry 

analysis (TGA-MS) showed HPT accelerates precursor decomposition by releasing amines.28 

Trioctyl- and tributyl-phosphine chalcogenides (TOPE and TBPE; E = S, Se, Te) react 

with Cd and Zn oleates or alkylphosphonates via a Lewis acid-substitution mechanism, 

producing ME (M = Cd, Zn) nanocrystals, phosphine oxides (TOPO or TBPO) and oleic or 

phosphonic anhydrides.29 Using a high throughput synthesis platform, CdSe yield as well as 

nucleation and growth rates from Cd(ODPA)2 in TOPO were found to depend on phosphine 

selenide concentration and number of aryl groups.30 Trialkyl-phosphine selenide P=Se bond 

cleavage starts by nucleophilic attack of carboxylate on Cd2+-activated phosphine selenide, 

followed by proton transfer from carboxylic acid to Se and Cd-Se bond formation. The rate-

limiting step lies at or before formation of acyloxytrialkylphosphonium ion, which was 

trapped with alcohols.31 Reaction of DPPSe and Cd(benzoate)2 in dodecylamine proceeds 

through a diphenyldiselenophosphinate intermediate and generates tetraphenyldiphosphine as 

a byproduct.32 Magic-sized CdSe clusters are thought to be intermediates during CdSe 

nanorod synthesis from Cd(phosphonate)2 and TOPSe in TOP-TOPO. Interestingly, acidic 

impurities accelerate reaction rates when technical grade rather than pure TOPO is used.33 

Tertiaryphosphine selenide sources such as TOPSe were recently proposed to be unreactive 

toward metal carboxylates; small quantities of secondary phosphine impurities were 

proposed to be responsible for nanocrystal nucleation.34 Whether this effect is catalytic or 

stoichiometric remains unknown. 

In this paper, we use a combined experimental and theoretical approach to demonstrate 

molecular precursor reactivity determines the relative ease of formation between nanocrystal 

phases. This opens new avenues for achieving predictable, molecular-level or “bottom-up” 
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control of nanoscale-composition and morphology. Based on our recent observation of 

spontaneous formation of compositionally graded nanorods, this idea is consistent with 

Hammond's postulate, whereby the transition state energy for the rate determining step, 

nucleation, is closest in energy to the precursors rather than to the much more stable 

nanocrystalline products, effectively a thermodynamic sink. We specifically focus on tuning 

sterics and electronics and therefore altering reactivity of different phosphine chalcogenides 

(sulfides and selenides) in order to control architecture, composition and aspect ratio of CdS-

CdSe colloidal nanocrystals (dots and rods). 

Results and Discussion 

Initial observation: Spontaneous formation of composition-graded, axially-anisotropic 

CdS1-xSex nanorods.35 Using a single injection of premixed trioctyl-phosphine sulfur (TOPS) 

and trioctyl-phosphine selenium (TOPSe) to a bis(phosphonate)-cadmium Cd(ODPA)2 

complex at 320°C, we recently synthesized axially anisotropic CdS1-xSex nanorods having a 

thick “head” and a thin “tail” (Scheme 1).38 X-ray dif-fraction (XRD), high-resolution (HR) 

and energy-filtered (EF) transmission electron microscopy (TEM), and energy-dispersive X-

ray spectroscopy (EDS) showed nanorod heads are CdSe-rich, whereas nanorod tails are 

CdS-rich.35 This axial anisotropy and composition gradient is accompanied by a marked 

band-gap differential, and allows directing metal (Pt, Pd) nanoparticle photodeposition 

toward either side of CdS0.42Se0.58 nanorods by changing irradiation wavelength.36 

 Time evolution and mechanistic studies showed CdS1-xSex nanorods form sequentially, 

starting with quick CdSe head nucleation (<20 min), followed by slow CdS tail growth (~85 

min) (Scheme 1). The relative ease of formation between these two nanorod segments cannot 

be a consequence of relative crystalline energies: CdS is much more stable (m.p. 1748°C, 
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lattice energy ~834 kcal/mol) compared to CdSe (m.p. 1512°C, lattice energy ~798 

kcal/mol).35, 37 Instead, this must be a consequence of relative TOPS vs. TOPSe precursor 

reactivity. This idea is consistent with Hammond's postulate,38 whereby the transition state 

energy for the rate determining step, nucleation, is closest to the precursors than to the much 

more stable crystalline nanorods, effectively a thermodynamic sink.39 If true, this could open 

new avenues for achieving molecular-level or “bottom-up” control of nanoscale-composition 

and morphology. By tuning sterics and electronics and therefore altering molecular precursor 

reactivity, one could control relative formation rates of different nanocrystalline phases. 

 

Figure 1. Phosphine-chalcogenide precursors used in this study. 

Here, we focused our attention on the reactivity of chalcogenide (sulfide and selenide) 

derivatives, R3P=E, of five commercially available phosphines, R3P: Triphenylphosphite 

(TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), 

and hexaethyl-phosphorous-triamide (HPT) (Figure 1). All of the phosphines in this series 

are liquid at room temperature (R.T.), which facilitates precursor preparation by chemical 

“dissolution” of chalcogen (sulfur or selenium). On the contrary, triphenylphosphine, another 

commercially available phosphine, was not used here because it is a solid at R.T. (m.p. 79-

81°C). Qualitatively, we predicted more electron-donating groups would lead to better 
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stabilization of a partial positive charge on phosphorous, thus to stronger phosphorous-

chalcogen (P=E) bonds and less reactive precursors (Figure 1). 

Estimating phosphine-chalcogen bond strength and relative precursor reactivity from 

DFT calculations. To better understand these phenomena, we first turned our attention to 

computational modeling of the factors that control precursor reactivity at the atomic level. 

We focused on geometric and electronic properties around the reactive phosphorous-

chalcogen bond. Table 1 lists relative energetic parameters, including zero-point energy 

correction (ΔE°
ZPE), enthalpies (ΔH°), and free energies (ΔG°) corrected to R.T. for the 

reaction R3P + S → R3PE (E = S or Se). In the optimized geometries, P=S bond lengths 

slightly increase from TPPS (1.921 Å), to DPPS (1.974 Å), TBPS (1.978 Å), TOPS (1.978 

Å), and HPTS (1.982 Å). Similarly, P=Se bond lengths slightly increase from TPPSe (2.073 

Å), to DPPSe (2.129 Å), TBPSe (2.131 Å), TOPSe (2.131 Å), and HPTSe (2.141 A). 

However, we do not believe this is an indication of relative P=E (S, Se) bond strength, but 

rather a consequence of size and steric bulk of phosphorous substituents as reflected in the 

cone angles available for three phosphines in the series: TOP (128°), TBP (132°), DPP 

(136°).40-43 

Table 1. The relative reaction energetic parameters with zero-point energy correction 

(ΔE°ZPE), enthalpy (ΔH°) and free energies (ΔG°) corrected to room temperature. 

 
 ΔE° ΔE°ZPE ΔH° ΔG° ΔE° 

Basis set 6-
311G* 

   cc-pVTZ 

Sulfides      

TPP+S TPPS -76.20 -74.06 -74.87 -64.66 -79.55 

DPP+S DPPS -75.21 -73.35 -74.01 -63.91 -80.03 



45 
 

 

Table 1 continued 

TBP+S TBPS 

 

-79.88 

 

-77.71 

 

-78.41 

 

-68.38 

 

-83.42 

TOP+S TOPS -82.86 -80.99 -81.57 -71.60 -86.95 

HPT+S HPTS -89.77 -86.71 -87.57 -77.60 -91.78 

Selenides      

TPP+Se TPPSe -62.42 -60.84 -61.40 -51.67 -63.77 

DPP+Se DPPSe -62.96 -61.63 -62.07 -52.10 -65.98 

TBP+Se TBPSe -67.04 -65.43 -65.87 -56.23 -69.75 

TOP+Se TOPSe -70.07 -68.60 -68.99 -59.10 -72.98 

HPT+Se HPTSe -76.81 -74.38 -75.00 -65.22 -77.52 
 

From Table 1, chalcogenide (E = S or Se) formation is exothermic or “downhill” 

(ΔG°<0), i.e. all phosphine-chalcogenides (R3PE) are thermo-dynamically more stable than 

the reactants (R3P + E). We believe the negative values -ΔG° or -ΔE° are good predictors of 

relative P=E bond strength and precursor reactivity. For example, calculated -ΔE° values for 

trioctyl-phosphine (TOP) sulfide and selenide are ~87 kcal/mol and ~73 kcal/mol, 

respectively. These values roughly agree with previous results, which gave P=S and P=Se 

bond strengths of 96 kcal/mol and 75 kcal/mol, respectively.44 The ΔE° difference between 

two phosphine-chalcogenides at the end of the series, TPPE and HPTE is ~13 kcal/mol for S 

and ~14 kcal/mol for Se (solvation increases this difference to ~23 kcal/mol for S and ~16 

kcal/mol for Se, see Supporting Information). Both -ΔG° and -ΔE° calculations clearly show 

phosphine-chalcogenide stability relative to the release of free phosphine and chalcogen 

increases in the order: TPPE ~ DPPE < TBPE < TOPE < HPTE. Single point energy ΔE° 

results using optimized geometries with 6-311G* and cc-pVTZ basis sets mirror this trend. 

Phosphine-chalcogenide precursor reactivity, understood as the ability to give off or release 
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chalcogen, significantly decreases in the order: TPPE ~ DPPE > TBPE > TOPE > HPTE (E = 

S, Se). This trend explains our afore-mentioned sequential formation of axially anisotropic 

CdS1-xSex nanorods: Because of significantly weaker P=E bond in TOPSe compared to 

TOPS (by 21 kcal/mol, Table 1), Cd(ODPA)2 reacts faster with TOPSe than with TOPS, 

leading to faster CdSe nucleation compared to CdS.35 

Figure 2 shows the highest occupied molecular orbital (HOMO) for HPTE and TPPE (E 

= S, Se). HOMOs are based on the 1-node p-orbital interaction between P and E, and are π-

bond in character. The TPPSe HOMO has a small contribution from phenyl substituents, 

while the HPTS and HPTSe HOMOs have large amide nitrogen contributions. In TPPE, the 

oxygen between phenyl and P creates an electron density gap, and the oxygen lone pairs do 

not facilitate a π-interaction. In HPTE, the amine nitrogen directly connects to P, and the 

amide groups are situated perfectly for extensive π-interaction with P, making HPT bind S 

and Se very strongly. Much weaker π-interactions in TPP are observed in atomic polar tensor 

(APT) atomic popu-lations analysis (unlike Mülliken analysis,45-47 APT48 analysis exhibits 

modest basis set sensitivity and models atomic populations more realistically).49,50 Both 

analyses place positive and negative charges on P and E (S or Se), respectively. APT analysis 

shows a progressive increase of positive P charge upon going from free phosphine to 

phosphine-chalcogenide. Upon binding to E, APT P charge increases from TPP (0.622, S; 

0.528, Se), to DPP (0.979, S; 0.872, Se), TBP (0.846, S; 0.750, Se), TOP (0.867, S; 0.767, 

Se), and HPT (0.866, S; 0.781, Se). Thus P polarization increases precursor stability; it is 

lowest for TPP, confirming TPPS and TPPSe as most reactive chalcogen sources in the series 

(Figure 1). 
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Estimating phosphine-chalcogen bond strength and reactivity from 31P and 77Se NMR. 

We used nuclear magnetic resonance (NMR) spectroscopy to gather experimental evidence 

that could substantiate these results. Specifically, we measured 31P and 77Se NMR spectra of 

the different phosphines, phosphine-sulfide and phosphine-selenide precursors (Table 2). 

Critically, 31P resonances of all phosphine-selenides (R3PSe) show satellites characteristic of 

strong 31P coupling (J = 330-520 Hz) to NMR active 77Se (S = 1/2 nucleus with 7.58% 

natural abundance) (Figure 3a). Similarly, 77Se resonances of all phosphine-selenides (R3PE) 

appear as doublets characteristic of strong 77Se coupling to 31P (S = 1/2, 100% natural 

abundance) (Figure 3b). Observation of this coupling unambiguously corroborates presence 

of phosphorous-selenium bonds in all selenide precursors; it also indirectly corroborates 

phosphorous-sulfur bonds in all sulfide precursors because P=S bonds are stronger than 

corresponding P=Se bonds (Table 1).44 

Phosphine-chalcogenide (R3P=Se, R3P=S) 31P NMR chemical shifts (δ) are more 

“downfield” (higher δ ) compared to parent phosphines (R3P), indicating P atom becomes 

more electron deficient upon chalcogenide formation (HPT is the only exception, see 

Figure 2. DFT-calculated highest occupied 
molecular orbitals (HOMO's) for HPTS (a), 
HPTSe (b), TPPS (c), and TPPSe (d) 
(viewed down the pseudo-C3(z) axis). The 
1-node π-interaction from the phenyl ring in 
TPPS is isolated from the P=S π-bond 
interaction. 
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Supporting Information). 31P chemical shifts (δ) reflect relative P=E (S, Se) bond strengths; 

they correlate well with reported electron-donating abilities of phosphines, as reflected by 

available pKa values: TOP (pKa = 8.4), TBP (pKa= 8.4), DPP (pKa =4.9) and TPP (pKa = 2.0) 

(TPP is the strongest base because its conjugate acid has the smallest pKa).51,52 31P NMR 

chemical shifts (δ) also correlate well with relative P=Se and P=S bond energies (-ΔG°'s, 

Table 1) (HPT is again the exception, see below). Phosphine-sulfide (R3P=S) 31P δ values are 

more downfield compared to phosphine-selenide (R3P=Se) δ values because S is smaller, 

more electronegative and forms stronger P=E bonds than Se. 

Table 2. 31P and 77Se NMR analysis of phosphine-chalcogenides.a 

 R3Pb 
31P /ppm 

R3PSb 
31P /ppm 

R3PSeb 
31P /ppm 

(J 31P-77Se/Hz) 

R3PSec 
77Se /ppm 

(J 77Se-31P/Hz) 

TPP 128.43 (s) 53.65 (s) 58.99 (s)d 

(513) 

291.70 (d) 

(513) 

DPP -16.04 (s) 42.89 (s) 34.15 (s)d 

(360) 

342.53 (d) 

(360) 

TBP -30.02 (s) 49.39 (s) 37.12 (s)d 

(339) 

381.70 (d) 

(340) 

TOP -30.07 (s) 49.28 (s) 36.99 (s)d 

(339) 

390.30 (d) 

(358) 

HPT 122.58 (s) 82.37 (s) 82.21 (s)d 

(392) 

258.78 (d) 

(386) 
as = singlet, d = doublet. bReferenced against 85% phosphoric acid, H3PO4 (δ 0 ppm). 
cReferenced against PPh3Se/CDCl3 (δ -266.20 ppm vs. Me2Se δ 0 ppm). d 77Se satellites 
(7.58%) observed. 
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Minimizing phosphine-chalcogen exchange: High-temperature crossover experiments. 

We also probed the tendency of chalcogens to exchange or “crossover” between different 

phosphines (Scheme 2a). This question is important when two or more phosphine-

chalcogenides are used as nanocrystal precursors (Scheme 2b, c); it also serves as an indirect 

test for the existence of P=S and P=Se bonds at high temperature. Specifically, we performed 

chalcogen crossover experiments between DPPS and TOPSe to give DPPSe and TOPS. 

According to Table 1, this exchange reaction is slightly exothermic (favorable), with a ΔG° = 

-0.69 kcal/mol. Experimentally, we premixed DPPS and TOPSe at R.T., and injected this 

mixture to a Cd-free solution containing only oleic acid and dioctylamine under argon at 

different temperatures. Aliquots were drawn at different times, and the extent of chalcogen 

exchange monitored by 31P NMR. As shown in Figure 4, exchange at R.T. is very slow, with 

neither DPPSe nor TOPS being observed after 5 min. Exchange at very high temperature, 

e.g. 300°C, is too fast, with as much as half of DPPS and TOPSe converted to DPPSe and 

TOPS after 5 min.  
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Figure 3. Sample (a) 31P and (b) 77Se NMR spectra of phosphine (R3P) and phosphine-
chalcogenide (R3PE) precursors (E = S, Se). J(31P-77Se) coupling (330-520 Hz) is observed 
for R3PSe by both 31P and 77Se NMR. * = 85% H3PO4 internal standard. 
 

Nevertheless, decreasing temperature somewhat and shortening reaction time helps 

minimize exchange. At 250°C, the minimum temperature at which we see appreciably 

reaction between phosphine-chalcogenides and Cd(oleate)2 or Cd(ODPA)2 with immediate 

nuclei formation, DPPSe is unobserved and TOPS is a minor product after 0.5 min (Figure 

4b). 
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Figure 4. Chalcogen exchange between DPPS and TOPSe as a function of reaction 
temperature and time monitored by 31P NMR. 
 

Controlling CdS1-xSex nanodot composition. Having theoretical and experimental data at 

hand, we probed the effect of chalcogenide precursor reactivity on nanocrystal composition 

by synthesizing CdS1-xSex nanodots using different phosphine-sulfide (R3PS) and phosphine-

selenide (R'3PSe) combinations. According to Vegard's Law, 53 complete CdS1-xSex solid 

solutions are possible over whole composition range (0≤x≤1). Both CdS and CdSe form zinc 

blende (cubic) and wurtzite (hexagonal) crystals, and four-coordinate S2- and Se2- ionic radii 

differ little, under <15% (4-7%).54 Specific syntheses involved injecting fresh R3PS–R'3PSe 

mixtures to Cd(oleate)2 at 250°C, keeping the same (growth) temperature for 5 min. After 

isolation, we examined the resulting dots' optical properties, particle size (diameter) and 

composition using a combination of UV-Vis absorption and photoluminescence (PL) 

spectroscopies, XRD, TEM, and EDS (Table 3 and Figure 6). 
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Table 3. Controlling CdS1-xSex nanodot composition.a 

Precursor mix. 
(ratio)a 

(-ΔG°P=S) - 

(-ΔG°P=Se)b 

Particle size/nm Band 
gap/eVd 

%S 

 /kcal/mol XRDc TEM   

TOPSe -  2.2 4.6±1.0 2.18 0 

TOPS–TOPSe 

(3:1) 

12.5 3.4 5.2±0.9 2.13 

 

1.8 

DPPS–TOPSe 

(99:1) 

4.81 3.2 4.8±0.7 2.09 41 

DPPS–TOPSe 

(199:1) 

4.81 3.4 5.1±0.9 2.12 54 

TOPS -  2.6 4.0±0.6 2.80 100 
aPhosphines premixed at R.T. before injection to Cd(oleate)2 at 250°C; dots grown 5 
min at 250°C. bDifference in -ΔG°'s for chalcogenide formation estimated from Table 
1. cFrom peak widths using Scherrer equation. dObserved (apparent) band gap = 
1240/λ1S. 

XRD shows CdS1-xSex nanodots have cubic, zinc blende structures (Figure 5a). d-

Spacings extracted from XRD correlate well with chalcogenide (S:Se) composition 

obtained from EDS and chemical elemental analysis (%S, Figure 5b). DPPE, TBPE 

and TOPE (E = S, Se) are reliable and useful chalcogen sources with varying 

reactivities. However, phosphines at the ends of the series in Figure 1, TPPE and 

HPTE are too reactive and unreactive, respectively. TPPSe reacts with Cd(oleate)2 too 

fast and forms aggregates rather than dots, whereas HPTS does not react at all. The 

P=Se bond in HPTSe is also very strong: According to XRD and EDX, DPPS-HPTSe 

mixtures reacted with Cd(oleate)2 to produce CdS1-xSex and Cd3P2 (Figure 5a).28 
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Figure 5. XRD patterns (a) and Vegard's plot (b) for CdS1-xSex dots obtained from different 
R3PS–R3PSe mixtures. In (a), reacting DPPS-HPTSe with Cd(oleate)2 resulted in a mixture 
of CdSSe and Cd3P2. 
 

Observed nanodot band gaps appear erratic at first glance (Figure 6a, b), however this is 

in great part due to different nanodot sizes across batches: Single crystalline domain sizes 

(diameters) obtained from XRD peak widths are all smaller than Bohr radii for CdS (<3.0 

nm) and CdSe (<5.6 nm) and are thus confined (quantized) 55 (Table 3). When corrected for 

size, 56 CdS1-xSex nanodot band gaps progressively widen (blue-shift) with increasing sulfur 

content (Figure 6c). Critically, the band gap of nanocrystals made from sulfide and selenide 

precursors that are closer in reactivity, such as TOPSe–DPPS (ΔΔG°P=E = 4.81 kcal/mol), 

lie on or very near a straight line between the size-corrected band gaps of pure CdS and CdSe 
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dots (Figure 6c). When two precursors have similar reactivity, they nucleate concomitantly at 

similar rates, forming true CdS1-xSex solid solutions. Solid solution band gaps are determined 

by the content-weighed band gap average between CdS and CdSe (Figure 6c). In contrast, the 

band gap of nanocrystals made from sulfide and selenide precursors with highly disparate 

reactivity, such as TOPSe–TOPS (ΔΔG°P=E = 12.5 kcal/mol), lie far from the straight line 

between the size-corrected band gaps for pure CdS and pure CdSe, a phenomenon known as 

“bowing” (Figure 6c).3 When two precursors have very different reactivity, they nucleate 

separately at different rates (and times), forming CdSe/CdS core/shells. Core/shell band gaps 

are determined by CdSe core and degree of electron and hole delocalization into CdS shell.57-

59 In other words, purposely matching or mismatching molecular precursor reactivity can 

control degree of radial alloying and overall architecture of nanodots. 

As reflected by XRD d-spacings and size-corrected band gaps, nanodot elemental 

composition (EDS and elemental analysis) correlates well with relative phosphine-

chalcogenide reactivity. Plotting (%S)/ (%Se) content vs. relative P=S and P=Se bond 

energies (estimated as the difference in -ΔG° values from Table 1) shows %S increases and 

%Se decreases as P=S bond becomes weaker and P=Se bond becomes stronger (Figure 6c). 

We have used these data to develop an empirical expression that describes relative chalcogen 

content (S/Se) in CdS1-xSex nanodots as a function of theoretical and experimental 

parameters: The amount of each chalcogen incorporated should be (1) directly proportional 

to its precursor concentration (the more precursor molecules available, the more likely they 

will react with Cd), and (2) inversely proportional to its P=E bond energy (the stronger the 

bond, the more difficult it is to release chalcogen). Mathematically: 

S/Se ≈ k × ([R3PS]/ [R3PSe]) × [(-ΔG°P=Se)/ (-ΔG°P=Se)] 
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where k is an empirically fitted dimensionless constant (Figure 6d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6. (a) UV-Vis, (b) PL, and (c) size-corrected band gaps of CdS1-xSex dots obtained 
from different R3PS–R3PSe mixtures. In (c), faster CdSe compared to CdS nucleation with 
TOPSe–TOPS leads to CdSe/CdS core/shells, whereas concomitant CdSe and CdS 
nucleation with TOPSe–DPPS leads to CdS1-xSex alloys. (d) Sulfur to selenium ratio (S/Se) 
in CdS1-xSex dots as a function of relative precursor concentration and reactivity:  {([R3PS]/ 
[R3PSe]) ×[(-ΔG°P=Se)/(-ΔG°P=S)]}. In (d), k = 0.00688. 
 

Controlling CdE nanorod aspect ratio (E = S or Se). We then moved our attention to the 

effect of phosphine-chalcogenide precursor reactivity on length-to-diameter “aspect ratio” of 
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hexagonal (wurtzite) CdS and CdSe nanorods.35 To probe this effect, we separately 

synthesized CdS and CdSe nanorods by single injection of one R3PS or R3PSe precursor, 

respectively, into a solution of Cd(ODPA)2 at 320°C for CdS or 250°C for CdSe, and 

continued growth for 85 min. Lower reaction temperature was necessary for CdSe because 

phosphine-selenides are less stable (more reactive) precursors compared to phosphine-

sulfides.23 Figure 7 shows representative TEM images of CdS (a,b,c) and CdSe (e,f,g) 

nanorods obtained in this way. For both CdS and CdSe, nanorod length and aspect ratio 

consistently decrease as the phosphorous-chalcogen (P=E) bond energy decreases (Figure 

7d,h and Table 4). In other words, nanorod length and aspect ratio decrease with increasing 

precursor reactivity. 

Table 4. Controlling CdE nanorod aspect ratio (E = S or Se). 

# R3PE P=E energya 
(kcal/mol) 

length  /nm diameter /nm Aspect ratio 
(l/d) 

CdS nanorodsb 

1 TOPS 71.60 267.0±38.7 3.2±0.6 83 

2 TBPS 68.38 127.1±2.5 2.5±0.6 51 

3 DPPS 63.91 64.4±4.6 4.4±1.1 15 

CdSe nanorodsc 

4 TOPSe 59.10 34.3±8.9 5.9±1.1 6 

5 TBPSe 56.23 13.2±1.9 3.2±1.9 2 

6 DPPSe 52.10 5.9±1.6 4.4±1.4 1 
aEstimated as ΔG° from Table 1. bSynthesized at 320°C. cSynthesized at 250°C. 

 

We note the biggest contribution to observed changes in aspect ratio are nanorod lengths: 

CdS nanorod length changes from 267.0nm±38.7nm, to 127.1nm±2.5nm, and 64.4nm±4.6nm 
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when TOPS, TBPS, and DPPS are used as sulfur precursors, respectively (Table 4, en-tries 1-

3). CdSe nanorod length changes from 34.3nm±8.9nm, to 13.2nm±1.9nm, and 5.9nm±1.6nm 

when TOPSe, TBPSe, and DPPSe are used as selenium precursors, respectively (Table 4, 

entries 4-6). In contrast, changes in nanorod diameter are too small to be statistically 

significant: CdS nanorod diameters are 3.2nm±0.6nm, 2.5nm±0.6nm, and 4.4nm±1.1nm 

when TOPS, TBPS, and DPPS are used as sulfur precursors, respectively (Table 4, entries 1-

3). CdSe nanorod diameters are 5.9nm±1.1nm, 3.2nm±1.9nm, and 4.4nm±1.4nm when 

TOPSe, TBPSe, and DPPSe are used as selenium precursors, respectively (Table 4, entries 4-

6). 

We rationalize these observations as follows: A decrease in phosphorous-chalcogen 

(P=E, E = S or Se) bond strength, i.e. lower P=E bond energy, increases phosphine-

chalcogenide precursor reactivity. More reactive R3PE precursors react faster and more un-

controllably with Cd(ODPA)2, leading to lower selectivity for anisotropic (unidirectional) 1D 

growth along wurtzite's z-axis and resulting in smaller nanorod aspect ratios. At the 

molecular level, we believe this is a nucleation-dominated effect: Each nanorod arises from a 

single initial nucleus or “seed” (small CdE cluster). Be-cause nanorod diameters stay the 

same –within experimental error– for different precursors, we assume they all grew from 

seeds formed at a similar, very early stage, i.e. nucleation. Upon injection, more reactive 

precursors such as DPPS or DPPSe form many more nuclei compared to less reactive 

precursors such as TOPS or TOPSe. After this fast nucleation event, there is less of the more 

reactive pre-cursor left in the reaction medium than of the less reactive precursor. This leads 

to more and shorter, lower aspect ratio nanorods for more reactive precursors than for less 

reactive (more stable) precursors. 
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Figure 7. Change in nanorod aspect ratio as a function of precursor reactivity: CdS nanorods 
made with trioctyl-phosphine-sulfide, TOPS (a), tributyl-phosphine-sulfide, DPPS (b), and 
diphenylpropyl-phosphine-sulfide, DPPS (c). Plot of CdS nanorod length (nm) and aspect 
ratio as a function of calculated P=S bond strength (energy in kcal/mol) (d). CdSe nanorods 
made with trioctyl-phosphine-selenide, TOPSe (e), tributyl-phosphine-selenide, TBPSe (f), 
and diphenylpropyl-phosphine-selenide, DPPSe (g). Plot of CdSe nanorod length (nm) and 
aspect ratio as a function of calculated P=Se bond strength (energy in kcal/mol) (d). XRD 
shows all nanorods have mainly hexagonal (wurtzite) crystal structures. 
 

The rate of chalcogen release from different molecular precursors during growth may 

also play a role in controlling nanorod aspect ratio. High precursor concentrations are known 

to favor unidirectional (1D) growth of wurtzite nanocrystals along the z-axis. A decrease in 

phosphorous-chalcogen bond strength accelerates the rate of chalcogen release to the reaction 

medium. More reactive precursors such as DPPS and DPPSe have weaker P=E bonds and 

cannot maintain high precursor concentrations for as long as less reactive precursors such as 

TOPS or TOPSe. Because high precursor concentrations are required for nanorod growth, 

more reactive precursors lead to shorter nanorods compared to less reactive (more stable) 

precursors. 

The afore-mentioned trends also hold for analogous precursors across chalcogens (Table 

4, entries 1-3 vs. 4-6). Phosphine-selenide precursors (R3P=Se) have weaker phosphine-
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chalcogen bonds and are much more reactive than phosphine-sulfide precursors (R3P=S). As 

a result, CdSe nanorods form at lower temperatures (250°C) compared to CdS nanorods 

(320°C). Aspect ratio greatly decreases with increasing injection temperature: Only CdSe 

dots (l/d = 1) were formed at 320°C. 

Table 5. Controlling axial anisotropy and composition gradients along CdS1-xSex 
nanorods.a 

Precursor mix. 
(ratio)a 

(-ΔG°P=S)- 

(-ΔG°P=Se)b 

Length 

/nmc 

Head 
diameter/nm

c 

Tail 
diameter/nm

c 

Aspect 
ratiod 

TOPS–
TOPSe(9:1) 

12.5a 59.3±8.0 17.8±2.4 5.6±0.8 3 to 11e 

TBPS–
TBPSe(9:1) 

12.1a 13.2±0.8 6.9±0.8 6.9±0.8 1.9 

aPhosphines premixed at R.T. before injection to Cd(ODPA)2 at 320°C; rods grown 85 
min. bDifference in -ΔG°'s for chalcogenide formation estimated from Table 1. cFrom 
TEM. dLength/diameter. eMin.-max. 

Controlling CdS1-xSex nanorod axial anisotropy and composition gradient. As mentioned 

above, we previously observed spontaneous formation of axially anisotropic CdS0.42Se0.58 

nanorods by reacting a 9:1 TOPS–TOPSe mixture with Cd(ODPA)2 at 320°C for 85 min 

(Scheme 1); these graded nanorods have a length of 17.8nm±2.4nm and diameters of 

17.8nm±2.4nm (CdSe “head”) and 5.6nm±0.8nm (CdS “tail”) (Table 5 and Figure 8a).35 We 

explained the formation mechanism of these nanorods by considering relative TOPS and 

TOPSe reactivities. Our calculations show P=E bond in TOPS is 12.5 kcal stronger (less 

reactive) than in TOPSe. Because of this large energy difference, fast (<20 min) CdSe 

homogeneous nucleation, followed by slow ( 85 min) CdS- heterogeneous nucleation 

(epitaxial growth) along the nanorods z-axis leads to axially anisotropic rods (Figure 8a, c, 

e). 
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Figure 8. TEM images (a,b) and EDS line scans (c,d,e,f) of axially anisotropic CdS0.42Se0.58 
nanorods made with a 9:1 TOPS–TOPSe precursor mixture (a,c,e), and regular CdS0.34Se0.66 
nano-rods made with a 9:1 TBPS–TBPSe precursor mixture (b,d,f). Arrows represent 50 nm 
in (c) and 17.5 nm in (d). Other conditions: Cd(ODPA)2, 320°C, 85 min. XRD shows all 
nanorods have mainly hexagonal (wurtzite) crystal structures. 
 

In contrast, we have observed formation of more regularly shaped CdS0.34Se0.66 nanorods 

by reacting a 9:1 TBPS–TBPSe mixture with Cd(ODPA)2 at 320°C for 85 min; these 

nanorods have a length of 13.2nm±0.8nm and a consistent diameter of 6.9nm±0.8 nm (Table 

5 and Figure 8b). The overall aspect ratio (1.9) is smaller compared to the aspect ratio of the 

axially anisotropic nano-rods (3 to 7) (Table 5). Critically, EDS line scans show no 

composition gradient along the nanorods' length. We explain this uniform composition and 

consistent diameter (lack of axial anisotropy) based on relative TBPS and TBPSe reactivities. 

Our calculations show P=E bond in TBPS is somewhat closer in energy compared to (12.1 
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kcal stronger less reactive than) TOPSe. Because of this smaller energy difference, nanorods 

form by concomitant nucleation and growth of CdS1-xSex along the nanorods z-axis. As 

shown above for pure CdS and CdSe binary nanorods, overall aspect ratio is determined by 

relative precursor bond energies (and reactivities) in each case. The weighed averaged P=E 

bond energy (-ΔGave°) for a 9:1 TOPS–TOPSe mix is 70.4 kcal/mol, whereas that for a 9:1 

TBPS–TBPSe mix is 67.2 kcal/mol. As a result, axially anisotropic CdS0.42Se0.58 nanorods 

obtained with TOPS–TOPSe have a significantly higher aspect ratio (l/d up to 11) compared 

to regular CdS0.34Se0.66 nanorods obtained with TBPS–TBPSe (l/d = 1.9). 

Conclusions 

In summary, we have demonstrated predictable, “bottom-up” control of nanoscale 

composition, architecture, and morphology (aspect ratio) in CdS-CdSe nanocrystal quantum 

dots and rods by purposely altering and modulating the chemical reactivity of molecular 

phosphine-chalcogenide precursors, R3PE (E = S, Se). Computational (DFT), NMR (31P and 

77Se), and high temperature crossover studies unambiguously confirmed a chemical bonding 

interaction between phosphorous and chalcogen atoms in all R3PE precursors. These studies 

showed phosphine-chalcogenide reactivity decreases in the order: TPPE ˃ DPPE ˃ TBPE ˃ 

TOPE ˃ HPTE (E = Se ˃ S). Structural (XRD, TEM, EDS) and optical (UV-Vis, PL) 

characterization of CdS1-xSex nanodots, synthesized by a single high-temperature injection of 

a R3PS–R3PSe mixture to cadmium-oleate, reveal their elemental composition and degree of 

radial alloying depends on relative R3PS and R3PSe reactivity. Similarly, structural (XRD, 

TEM, EDS) characterization of CdS, CdSe, and CdS1-xSex nanorods, synthesized by high 

temperature injection of individual R3PE (E = S or Se) or R3PS–R3PSe precursor mixtures to 

cadmium-phosphonate, reveal their length-to-diameter (aspect) ratio and degree of axial 
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alloying (composition gradient) depends on R3PE precursor reactivity. We expect these 

observations will contribute to the development of more predictable, “bottom-up” synthetic 

routes to fabricate well-defined hetero-structures with highly specific properties. We are 

currently exploring this idea in the fabrication of nanomaterials for catalytic and 

thermoelectric applications. 

Experimental Section 

Materials. Cadmium oxide (99.998%), sulfur (99.999%), oleic acid (tech., 90%), and 

diphenylpropyl phosphine (DPP) (97%) were purchased from AlfaAesar; 

octadecylphosphonic acid (ODPA) from PCI synthesis; selenium (99.999%), 

trioctylphosphine oxide (TOPO) (99%), anhydrous toluene, hexaethylphosphorous-triamide 

(HPT) (97%), and dioctylamine (98%) from Sigma-Aldrich; triphenylphosphite (TPP) 

(97%), tributylphosphine (TBP) (99%), and trioctylphosphine (TOP) (97%) from Strem. 

Materials were used as received unless specified otherwise. NMR data were collected on 

either a Varian 400-MR or Varian VXR-400 spectrometer. 31P NMR spectra were referenced 

to 85% phosphoric acid, H3PO4 (δ 0 ppm). 77Se NMR spectra were referenced to 

PPh3Se/CDCl3 (δ -266.20 ppm vs. Me2Se δ 0 ppm).60, 61 Standards were sealed within 

capillaries in NMR tubes. Chemical elemental analyses were performed by Galbraith Labs., 

Inc. (Knoxville, TN). 

Synthesis. CdS1-xSex nanodots. R3PS and R3PSe stock solutions were made by dissolving 

12.5 mmol of chalcogen (0.40 g S or 0.98 g Se) in 25 mmol phosphine (7.7 g TPP, 5.7 g 

DPP, 5.1 g TBP, 9.3 g TOP, or 6.2 g HPT) in a dry-N2 filled glove box. Synthesis. CdO (24 

mg, 0.18 mmol), OA (0.24 g, 0.85 mmol) and dioctylamine (8 g, 0.937 mmol) were heated to 

100°C, evacuated under dynamic vacuum for 15 min, refilled with argon and heated to 
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300°C to form a completely colorless solution. Solution was allowed to cool to 120°C, 

evacuated under dynamic vacuum for 15 min, refilled with argon and heated back to 250°C. 

At 250°C, a premixed R3PS–R3PSe (1 mL total volume, 1.14 mmol total chalcogens) was 

swiftly injected, causing a rapid color change. Mixture was stirred for 0.5 or 5 min at 250°C, 

allowed to cool to R.T. and diluted with toluene (5 mL). Nanocrystals were isolated by 

addition of methanol (24 mL), followed by centrifugation (5,000 rpm for 10 min). Chalcogen 

crossover control experiments. TOPS (1.14 M, 0.3 mL) and DPPSe (1.14 M, 0.3 mL) were 

added to an NMR tube inside a dry-N2 filled glove box. The tube was sealed and 31P NMR 

was recorded R.T. as well as after heating to 100°C, 200°C and 300°C. 

CdS nanorods. CdS nanorods were made by a modified literature procedure.35,62 R3PS 

stock solutions were made by dissolving S (0.40 g, 12.5 mmol) in 12.5 mmol phosphine (2.9 

g DPP, 2.5 g TBP, or 4.6 g TOP) in a dry-N2 filled glove box. Synthesis. CdO (105 mg, 0.81 

mmol), TOPO (1.3 g, 3.6 mmol) and ODPA (530 mg, 0.94 mmol) were heated to 100 °C, 

evacuated under dynamic vacuum for 15 min, refilled with argon, and heated to 320 °C to 

form a completely colorless solution. Solution was cooled to 120 °C, evacuated under 

dynamic vacuum for 15 min, refilled with argon, and heated back to 320 °C. When 

temperature reached 300°C, phosphine (1.20 mL of DPP, TBP, or TOP) was injected into the 

flask. When temperature reached 320°C, R3PS stock solution (1 mL, 2.25 mmol DPPS, 

TBPS, or TOPS) was swiftly injected, causing a gradual color change. Temperature was 

equilibrated at 315°C and stirring con-tinued for 85 min. Final mixture was al-lowed to cool 

to R.T. and diluted with toluene (5 mL). Nanocrystals were isolated by addition of 1:1 v/v 2-

propanol/nonanoic acid mixture (24 mL), followed by centrifugation (5,000 rpm for 10 min). 

CdSe nanorods. R3PSe stock solutions were made by dissolving Se (0.98 g, 12.5 mmol) in 
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12.5 mmol phosphine (2.9 g DPP, 2.5 g TBP, or 4.6 g TOP) in a dry-N2 filled glove box. 

Synthesis. CdSe nanorods were made by a similar procedure as reported above for CdS 

nanorods, except that injection and growth were performed at 250°C. 

CdS1-xSex nanorods. R3PS and R3PSe stock solutions were made as reported above for 

CdS and CdSe nanorods. Axially anisotropic CdS0.42Se0.58 nanorods with a ‘drumstick’-like 

morphology were synthesized by a literature procedure.35 Regular (axially isotropic) 

CdS0.34Se0.66 nanorods were made as follows: CdO (105 mg, 0.81 mmol), TOPO (1.38 g, 

3.6 mmol) and ODPA (540 mg, 0.94 mmol) were heated to 100°C, evacuated under dynamic 

vacuum for 15 min, refilled with argon and heated to 320°C to form a completely colorless 

solution. Solution was cooled to 120°C, evacuated under dynamic vacuum for 15 min, 

refilled with argon and heated back to 320°C. When temperature reached 300°C, TBP (1.20 

ml) was injected into the flask. When temperature reached 320°C, a premixed, 9:1 TBPS–

TBPSe solution (1 mL total volume, 2.25 mmol total chalcogens) was swiftly injected, 

causing a gradual color change. Temperature was equilibrated at 315°C and stirring 

continued for 85 min. Final mixture was allowed to cool to R.T. and diluted with toluene (5 

mL). Nanocrystals were isolated by addition of 1:1 v/v 2-propanol/nonanoic acid mixture (24 

mL), followed by centrifugation (5,000 rpm for 10 min). 

Structural characterization. X-Ray Diffraction. Powder X-ray diffraction (XRD) data 

were measured using Cu-Kα radiation on a Scintag XDS-2000 diffractometer equipped with 

a theta-theta goniometer, a sealed-tube solid-state generator, and an air-cooled Kevex Psi 

Peltier silicon detector. Transmission Electron Microscopy. Transmission electron 

microscopy (TEM) was conducted on carbon-coated copper grids using a FEI Technai G2 

F20 Field Emission scanning transmission electron microscope (STEM) at 200 kV (point-to-
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point resolution <0.25 nm, line-to-line resolution <0.10 nm). Nanorods' elemental axial 

composition was characterized by energy dispersive spectroscopy (EDS) line scans in STEM 

mode, and by energy-filtered (EF) imaging spectroscopy (EF-TEM). Particle analysis. 

Dimensions were measured manually and/or by using ImageJ. Size measurements and 

particle statistics were obtained for at least >100 CdS1-xSex, CdS and CdSe particles. Average 

sizes are reported along ±standard deviations. 

Optical characterization. Absorption spectra were measured with a photodiode-array 

Agilent 8453 UV-Vis spectrophotometer. Solvent absorption was subtracted from all spectra. 

Steady state photoluminescence (PL) spectra were measured with a Horiba-Jobin Yvon 

Nanolog scanning spectrofluorometer equipped with a photomultiplier detector. 

Photoluminescence (PL) quantum yields (QYs) were measured following literature 

procedures.63 Absorption and PL emission spectra were measured ≥twice and average QYs 

recorded. 

Computational details. Calculations were carried out using the Gaussian 03 package64 

running on CenterOS based Linux cluster at the Prairie View A&M University. Tao-Perdew-

Staroverov-Scuseria (TPSS) method, 65 a new generation of density functional implemented 

in Gaussian 03, was used for geometry optimization, solvation modeling and frequency 

calculations. TPSS matches or exceeds in accuracy prior functionals, including the popular 

B3LYP with hybrid exchange functional.66 TPSS recognizes relatively weak in-teractions 

such as agostic interactions, while B3LYP significantly underestimates them. Because 

hydrogen atoms in the mod-eled system do not play significant roles, a 6-311G* basis set67, 68 

was used for all elements in our system. Not ap-plying polarization functions on H's far away 

from P does not significantly de-grade computational precision and accuracy and can 
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considerably accelerate calculations.69 All structures were fully optimized and frequency 

analyses were performed until minima were achieved, with zero imaginary vibrational 

frequencies derived from vibrational frequency analysis. Thermodynamic functions including 

enthalpies, entropies and free energies were calculated at 298.15 K and 1 atm. To examine 

basis set effects, a Dunning/Huzinaga full double zeta70 with Stuttgart/Dresden effective core 

poten-tial basis set (SDD) and a triple-zeta Dunning’s correlation consistent basis set (cc-

pVTZ)71 were used for all atoms with TPSS functionals to perform a sin-gle point energy 

(SPE) calculation. 
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CHAPTER 4 

 CONTROLLED FABRICATION OF COLLOIDAL SEMICONDUCTOR-METAL 

HYBRID HETEROSTRUCTURES: SITE SELECTIVE METAL PHOTO 

DEPOSITION 
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Abstract 

Reliable synthesis of semiconductor-metal heterostructures would increase their 

availability for fundamental studies and applications in catalytic, magnetic, and opto-

electronic devices. Here we demonstrate there are three main pathways for the formation of 

Pt and Pd nanoparticles on CdS and CdS0.4Se0.6 nanorods. A thermal pathway and a 

photochemical pathway occur when the metal precursor is heated or irradiated directly in the 

presence of an electron donor, leading to homogeneous nucleation and formation of 

freestanding metal nanoparticles. A separate photochemical pathway occurs in the presence 

of semiconductor nanorods, leading to exciton formation and quenching by electron trapping 

at surface defect sites. The localized electrons act as seeding points, leading to heterogeneous 

nucleation and formation of surface-bound metal nanoparticles. Careful selection of synthetic 

conditions allows deposition of Pt and Pd particles on CdS and CdS0.4Se0.6 nanorods with a 

high degree of selectivity (90-95% surface-bound obtained photochemically) over the 

formation of freestanding metal particles (70-94% unattached under thermal conditions). In 

addition, metal photo deposition occurs on specific segments of CdS0.4Se0.6 nanorods with 
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compositional anisotropy by taking advantage of the band gap differential between different 

nano-domains. Irradiation at short wavelengths favors formation of Pd nanoparticles on the 

large band-gap CdS-rich region of the nanorods (57% and 55% at 350 nm and 420 nm, 

respectively), while irradiation at longer wavelengths favors the formation of Pd 

nanoparticles on the small band gap CdSe-rich region of the nanorods (83% at 575 nm). The 

ability of tuning the spatial composition of these and similar heterostructures will impact the 

ability to engineer and direct energy flows at the nanoscale. 

Introduction 

Semiconductor-metal hybrid heterostructures are promising building blocks for 

applications in catalytic, magnetic, and optoelectronic devices.1-7 The semiconductor's 

tunable band gap (300-4000 nm 4.1-0.3 eV),8,9 broad and intense absorption (ε ≈ 105-106 

L·mol-1·cm-1),10 and long-lived exciton (up to 40 ns for CdSe, 1.8 μs for PbS)11,12 provide 

unmatched light absorption and emission capabilities. Large aspect ratio semiconductors 

such as nanorods are of particular interest due to their ability to generate multiple 

excitons.13,14 The metal can serve as an additional chromophore, a fluorescence enhancer, a 

paramagnet, or a charge collecting material where carriers localize after exciton quenching. 

For example, semiconductor-metal hybrid heterostructures have been shown to convert solar 

energy into potential and chemical energy. They become redox-active upon illumination and 

remain redox-active after being stored in the dark for several hours.15 In addition, 

semiconductor and metal nanocrystals display a high degree of chemical-, photo-, and 

colloidal-stability (solubility) unmatched by other materials such as organic polymers and 

transition metal complexes. The ability to selectively build semiconductor-metal 



73 
 

 

heterostructures with several morphologies and spatial relationships between their individual 

components could be used to engineer and direct energy flows at the nanoscale.4 

Interest in the synthesis of colloidal semiconductor-metal hybrid nanostructures has 

grown exponentially in recent years.1,2 Different research groups have used thermal and 

photochemical methods to synthesize CdS, CdSe, and core/shell CdSe/CdS nanorods tipped 

with Au,16-20 Ag2S,19 Co,21,22 Pt, PtM (M = Co, Ni),23 PdO and Pd4S24 nanoparticles, ZnO 

nanorods-tipped with Ag nanoparticles,25 a-TiO2 nanorods tipped with Co nanoparticles,26 

and CdSe tetrapods tipped with Au nanoparticles.18 Similarly, metal nanoparticle deposition 

along the whole length of semiconductor nanorods has been demonstrated for CdS-Au,16,27 

CdSe/CdS-Au,19 CdSe-Pt,28 CdS-PdO and CdS-Pd4S,24 CdS-Pt,29 CdSe/CdS-Pt,29 CdS-

FePt,30 and a-TiO2-Co.26 Other reports include CdSe nanowires decorated with Au, Pt, PtCo, 

and PtNi nanoparticles,31 PbS nanocubes coated with Au nanoparticles,32 and nanoporous 

CdS loaded with Pt nanoparticles.33 Some of these reports build upon earlier work on the 

surface modification of microcrystalline semiconductors using platinum group metals as a 

way to generate hydrogen evolving photocatalysts, for example CdS-Pt doped wth Zn and Ag 

sulfides,34,35 and powders made of MS/CdS/M (M = Pt, Ir),36 CdSxSe1-x-Pt,37 CdS/Pt/Na2S,38 

CdS-Pt and TiO2-Pt,39 and CdS/TiO2.40 

Perhaps the most important aspect from a synthetic perspective is to prepare 

semiconductor-metal and other semiconductor-based hybrid heterostructures with ‘open’ 

(non-core/shell) 41,42 configurations in a controlled and selective fashion. Reliable synthetic 

routes would increase the availability of these materials for fundamental study and systematic 

testing, allowing the establishment of structure-activity relationships and facilitating their 

eventual application. It is valuable to investigate selective syntheses of colloidal 



74 
 

 

semiconductor-metal heterostructures that are highly reproducible and amenable to scale-up. 

In the case of CdS-Au heterostructures, photochemical deposition leads to growth of Au 

particles at the tips of CdS nanorods, whereas thermal deposition (in the dark) leads to 

growth of Au particles along the whole length of CdS nanorods.1, 43 Deposition throughout 

the semiconductor surface is more desirable for solar energy harvesting because it could lead 

to more efficient multiple exciton quenching via charge separation. The opposite trend is 

observed in CdS-Pt heterostructures where photochemical deposition leads to growth of Pt 

particles along the whole length of CdS nanorods29 and thermal deposition at high-

temperature (200 °C) leads to growth of Pt particles at the CdS nanorod tips.23 The exact 

deposition behavior varies depending on the particular metal and semiconductor surface 

under study. For CdS-PtM (M = Ni, Co), thermal deposition at low precursor concentrations 

results in PtM particles at the CdS nanorod tips (particularly for PtCo), whereas thermal 

deposition at high concentrations results in PtM particles along the whole length of the CdS 

nanorods.23 For CdSe/CdS-Au and CdSe/CdS-Pt heterostructures, the position of the Au and 

Pt particles correlates with the position of CdSe core or ‘seed’.16,29 For CdSe/CdS-AuPd and 

CdSe/CdS-AuFexOy heterostructures, ultraviolet irradiation results in particles at the 

CdSe/CdS nanorod tips.44 A majority of the documented photochemical deposition methods 

on nanostructures employ laser irradiation16,17,19,25 which invariably occurs over small sample 

areas or ‘spots’ leading to low material yields and thus limiting its synthetic utility. Few 

researchers and virtually no synthetic chemists have direct and reliable access to expensive 

lasers. 

In this paper we use thermal and large throughput lamp photochemical methods to 

address the controllable and site selective deposition of metal nanoparticles on single-phase 
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and heterostructured semiconductor nanorods. We use Pt and Pd deposition on regular CdS 

nanorods in addition to axially anisotropic CdS1-xSex nanorods as model systems. Based on 

the results of several deposition experiments under different temperature and illumination 

conditions, the formation of metal particles proceeds by at least three fundamental pathways. 

Two of these pathways, one thermal and one photochemical, are independent of the 

semiconductor surface and lead to the formation of freestanding metal particles. A third 

photochemical pathway is mediated by the semiconductor and leads to formation of surface-

bound metal particles which are preferred because many semiconductor-metal interactions 

such as charge- and energy-transfer are strongly distance dependent. Selection of 

experimental conditions allows synthesis of surface-bound particles with a high degree of 

selectivity over formation of freestanding (unattached) metal particles. We also demonstrate 

photo deposition of metal particles can be controllably directed toward specific segments or 

regions of a heterostructured semiconductor with compositional anisotropy by taking 

advantage of the inherent band gap and optical properties of its different segments or ‘nano-

domains’. 

Results and Discussion 

To date, most colloidal semiconductor-metal heterostructures have been fabricated by 

decomposing soluble organometallic precursors or salts in the presence of semiconductor 

nanorods. This is accomplished by simple heating in some cases, such as deposition of Au 

particles along the length of CdS nanorods.1,16 Better control over metal deposition, 

particularly Pt, has been reported using laser spot irradiation leading to growth of Pt particles 

along the length of CdS nanorods.23,29 Exploring the feasibility of synthesizing hybrid 

heterostructures without use of lasers, we observed deposition of Pt and Pd on colloidal CdS 
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and CdS1-xSex nanorods could be easily carried out with an inexpensive set of lamps. Lamps 

illuminate much larger areas at a time compared to lasers (whole samples in this study as 

well as other recent studies);17,25,44,47 their use could lead to a larger synthetic throughput and 

wider general availability of semiconductor-metal hybrid heterostructures for fundamental 

studies and application. While metal deposition should be possible with any lamp whose 

energy sat below the band gap of the semiconductor (i.e., <520 nm or >2.4 eV for CdS 

nanorods); we find the precise mechanism and locale of metal deposition varies greatly 

depending on the specific irradiance profile of the lamp used. 

Table 1. Metal deposition on colloidal semiconductor nanorods.1 

N
o. 

Nanorods M Precursor Conds. 

1 
T / 
°C 

rxn. 
time / h 

Np. dia- 
meter/n

m 

% 
Bound 

% 
Fre
e 

np. / rod 

1 CdS Pt CODPtMe2 dark 80 3 1.9±0.6 30 70 1.1±0.9 

2 CdS Pt CODPtMe2 350nm 24 3 2.6±0.8 80 20 1.6±1.3 

3 CdS Pt CODPtMe2 420nm 24 3 3.1±1.4 95 5 1.4±0.9 

4 None Pt CODPtMe2 420nm 24 3 2.9±1.2 - - - 

5 CdS Pd TMEDA-
PdMe2 

420nm 24 3 7.2±1.7 90 10 5.6±2.2 

6 CdS Pd TMEDA-
PdMe2 

dark 24 3 4.1±0.7 6 94 2.1±0.7 

7 CdS0.4Se0.6 Pd TMEDA-
PdMe2 

350nm 24 1 2.6±0.8 37 63 1.5±1.1 

8 CdS0.4Se0.6 Pd TMEDA-
PdMe2 

420nm 24 1 4.9±2.2 48 52 2.1±1.5 

  9 CdS0.4Se0.6 Pd TMEDA-
PdMe2 

575nm 24 1 5.0±1.5 90 10 1.3±0.8 

10 CdS0.4Se0.6 Pd TMEDA-
PdMe2 

575nm 24 3 5.1±1.4 92 8 8.0±2.0 

1All reactions were carried out using a 2 mL nanorod solution in toluene of OD470nm = 1.2 (CdS) or 
OD630nm = 1.3 (CdS0.4Se0.6), 28-30 mg metal precursor, 0.5 mL NEt3 as electron donor, and 1 mL 
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toluene. See Experimental. 

Platinum deposition on CdS nanorods. We first attempted to deposit Pt on CdS nanorods 

thermally at 80 °C in the complete absence of light. Thermal deposition in the dark results in 

the formation of small Pt particles with a diameter of 1.9 ± 0.6 nm as observed by 

transmission electron microscopy (TEM) (Figure 1). However, the great majority of the 

thermally deposited Pt particles (70%) are freestanding, unattached to CdS nanorods. Only a 

small fraction of Pt particles (30%) are bound to the surface of CdS nanorods (Table 1, entry 

1) (Figure 1d). Among surface-bound particles, there is an average of 1.1 ± 0.9 Pt particles 

per CdS nanorod, with a maximum of 3 Pt particles per CdS nanorod (Figure 1e). The fact 

that freestanding Pt particles form thermally from the direct reaction between CODPtMe2 and 

triethylamine indicates that Pt particles can form independently from CdS and that preformed 

Pt particles do not tend to associate with CdS nanorods after they have already formed. 

We then carried out metal deposition experiments under photochemical conditions, and 

observed different results depending on the specific lamp wavelength used. Photo deposition 

of Pt on CdS nanorods under illumination with a 350 nm lamp (35 nm fwhm) at room 

temperature (R.T.) results in the formation of Pt particles with a diameter of 2.6 ± 0.8 nm. A 

significant fraction of Pt particles (20%) formed under 350 nm illumination are still 

freestanding (remain unassociated with the CdS nanorods) (Table 1, entry 2). However, a 

larger fraction of Pt particles (80%) are bound to the surface of CdS nanorods (Figure 1d). 
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Figure 1. Sample TEM micrographs of CdS-Pt heterostructures prepared (a) 
photochemically (420 nm, R.T.), and (b) thermally (in the dark, 80 °C) (a few surface-bound 
and freestanding Pt particles are circled for comparison). Pt particle size (c), locale (d), and 
loading per rod (e) histograms for CdS-Pt heterostructures prepared thermally (80 °C in the 
dark, gray) and photochemically (350 nm, blue; 420 nm, red) (>50-100 CdS rods and >50-
300 Pt particles measured in each case). 

Among surface-bound particles, there is an average of 1.6 ± 1.3 Pt particles per CdS nanorod, 

although we observed a few cases with as many as 3, 4, and 6 Pt particles per CdS nanorod 
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(Figure 1e). Similarly, photo deposition of Pt on CdS nanorods under illumination with a 420 

nm lamp (30 nm fwhm) at room temperature results in the formation of Pt particles with a 

diameter of 3.1 ± 1.4 nm (Figures 1 and 2). In this case, only a marginal number of Pt 

particles (5%)48 are freestanding (Table 1, entry 3). The greater majority of Pt particles (95%) 

formed under 420 nm illumination are bound to the surface of CdS nanorods (Figures 1d and 

2). Among surface-bound particles, there is an average of 1.4 ± 0.9 Pt particles per CdS 

nanorod, with a maximum of 3 Pt particles per CdS nanorod (Figure 1e). In the absence of 

the CdS nanorods, the reaction between CODPtMe2 and triethylamine under 350 nm 

illumination at room temperature results in the formation of Pt particles with a diameter of 

2.9 ± 1.2 (Table 1, entry 4). The fact that Pt particles form by direct reaction between 

CODPtMe2 and triethylamine under 350 nm illumination confirms that photochemical 

formation of freestanding Pt particles can occur independently from the CdS nanorods. CdS 

nanorods need not act as ‘sensitizers’ for the decomposition of the organometallic precursor. 

Similar photochemical reactions have been reported for other metal particles and 

precursors.49 

 

Figure 2. (a) High-resolution (HR) TEM micrograph of a surface-bound Pt particle produced 
via photo-chemical deposition on CdS nanorods (420 nm, 3 h). (b) EDX-Line scan and (c) 
corresponding composition profile of two Pt nanoparticles attached to opposing sides of a 
CdS nanorod. The yellow arrow indicates scan direction (squared area was used for drift 
correction). 
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Site selective metal photo deposition: Free- vs. surface-bound metal particles. The 

observations above are independent of the post-synthesis handling of samples, all of which 

were consistently worked up in the same way (see Experimental). Size selection was not 

performed. Instead, these observations suggest the existence of multiple parallel pathways for 

the formation of Pt nanoparticles. In order to better understand this, we recorded the 

absorption spectra of CdS nanorods and the molecular Pt precursor, CODPtMe2, in toluene 

solution (Figure 3a). CdS nanorods have an absorption band-edge at 500 nm and continue to 

absorb more strongly at shorter wavelengths. The CODPtMe2 precursor is colorless and does 

not absorb in the visible region but has three distinct bands in the ultraviolet region: 285 nm, 

320 nm, and 360 nm. Comparing these spectral features to the irradiance profiles of the two 

lamps used (Figure 3b), both CdS nanorods and CODPtMe2 can absorb light emitted by the 

350 nm lamp. In contrast, only CdS nanorods, not CODPtMe2, can absorb light emitted by 

the 420 nm lamp. 

 
 

Figure 3. (a) Absorption spectra of TMEDAPdMe2 (black), CODPtMe2 (blue) and colloidal 
CdS rods (red) (recorded in toluene with quartz cuvettes). (b) Irradiance spectra of 350 nm 
(blue) and 420 nm (red) lamps, and absorption spectrum of the borosilicate glass (black) used 
as reaction vessel (all spectra were arbitrarily normalized to a maximum optical density OD = 
1). 
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Our experimental observations can be explained as follows: When the organometallic 

precursor CODPtMe2 is heated in the dark, it decomposes thermally and nucleates into 

freestanding (unbound) Pt particles anywhere in solution (Scheme 1a). Under photochemical 

conditions, direct absorption by (and excitation of) the CODPtMe2 in the presence of 

triethylamine results in photoinduced reduction and nucleation of freestanding (unbound) Pt 

particles anywhere in solution, as observed experimentally to some extent (15%)48 with the 

350 nm lamp (Scheme 1b).48,50 Together, these thermal and photochemical homogeneous 

nucleation pathways are responsible for the formation of freestanding Pt nanoparticles 

independently of the semiconductor surface. Alternatively, under photochemical conditions, 

when absorption (and excitation) occurs through the CdS nanorods, a third pathway occurs 

where electron-hole pairs (excitons) are formed on the semiconductor followed by migration 

of electrons to surface trap states (dangling bonds)8 on the semiconductor surface. Holes can 

be quenched by triethyl amine, sulfide ions, or other electron donor. The surface localized 

electrons can act as seeding points for the binding and reduction of CODPtMe2 into Pt nuclei. 

This heterogeneous nucleation mechanism is responsible for the formation of bound Pt 

nanoparticles on the surface of CdS nanorods, as observed experimentally with both 350 nm 

and 420 nm lamps (Scheme 1c). 
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The observed site-selectivities (Table 1, entries 1-3) can be used to gather additional 

information about the metal photo deposition process. At 350 nm, the absorption coefficient 

of colloidal CdS nanoparticles is known to be of the order of 350nm ≈ 1.5 ± 5 × 106 L·mol-

1·cm-1, 10 whereas we measured the absorption coefficient of CODPtMe2 to be only 350nm = 

260 ± 30 L·mol-1·cm-1. Using these values to normalize the respective relative populations of 

surface-bound (80%) and freestanding (15%)48 particles obtained photochemically with the 

350 nm lamp, we calculate a 1000× (thousand-fold) apparent preference for photochemical 

Pt particle formation via homogeneous nucleation (in solution) over heterogeneous 

nucleation (on the CdS surface). This simple calculation assumes growth of Pt nanoparticles 

from Pt nuclei is fast and irreversible. It does not take into account energy barriers required 

for either homogeneous or heterogeneous nucleation. Also, it does not take into account the 

efficiency of charge collection by dangling bonds on the semiconductor surface (exciton 

quenching by trap states), or of platinum photoreduction by either mechanism (Scheme 1b or 

1c). Additionally, this preference may vary depending on the chemical composition of the 

semiconductor surface (Cd- vs. S-rich, ligand type and surface coverage, etc.).2,8,49 We 

emphasize the above preference is just an apparent and yet-to-be-completed account of the 

relative ease of solution formation vs. surface deposition of Pt particles under photochemical 

conditions. 

Palladium deposition on CdS nanorods. Using the optimized experimental conditions 

described above for Pt (illumination with a 420 nm lamp for 3h at R.T.), we carried out the 

photo deposition of Pd on CdS nanorods using the molecular precursor cis-dimethyl(N, N, 

N', N'-tetramethylenediamine)-palladium(II), TMEDAPdMe2. In this case, Pd particles form 
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with an average diameter of 7.2 ± 1.7 nm, the majority of which (90%) are bound to the CdS 

surface, and only a few (10%) are freestanding (Table 1, entry 5) (Figure 4a, c, d). 

 

Figure 4. Sample TEM micrographs of CdS-Pd heterostructures prepared (a) 
photochemically (420 nm, 24 °C), and (b) thermally (in the dark, 24 °C). Pd particle size (c), 
locale (d), and loading per rod (e) histograms for CdS-Pd heterostructures prepared thermally 
(24 °C in the dark, gray) and photochemically (420 nm, red) (>50-100 CdS rods and >50-300 
Pd particles measured in each case). 
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Among surface-bound particles, there is an average of 5.6 ± 2.2 Pd particles per CdS 

nanorod, and a maximum of 11 Pd particles per CdS nanorod (Figure 4e). Under these 

conditions, the Pd precursor appears to be more reactive and Pd deposition more facile, as 

judged by the larger Pd particle diameter and the higher number of Pd particles per rod 

compared to Pt. We attribute this difference to the inherent thermal and photochemical 

instability of TMEDAPdMe2 compared to CODPtMe2. Conversely, thermal deposition of Pd 

on CdS nanorods at room temperature in the complete absence of light results in the 

formation of Pd particles with a diameter of 4.1 ± 0.7 nm (Figure 4b, c). In agreement with 

our previous observations, the majority of the thermally deposited Pd particles (94%) are 

freestanding, and only a very few (6%) are bound to the surface of CdS nanorods (Table 1, 

entry 6) (Figure 4d). Among surface-bound particles, there is an average of 2.1 ± 0.7 Pd 

particles per CdS nanorod, with a maximum of 4 Pd particles per CdS nanorod (Figure 4e). 

Palladium deposition on axially anisotropic CdSSe nanorods. We then attempted the photo 

deposition of Pd on axially anisotropic CdS0.4Se0.6 nanorods using (TMEDA)PdMe2 as 

precursor. These CdS0.4Se0.6 nanorods have a graded-alloy composition between a thick 

CdSe-rich ‘head’ on one end and a thin CdS-rich ‘tail’ on the other end (Figures 5a and 6d).46 

Initial photo deposition experiments on these axially anisotropic nanostructures were directed 

at testing the degree of opto-electronic communication between small and large band gap 

segments; Pd particles can be deposited on both ends of the CdS0.4Se0.6 nanorods. However, 

we find illumination energy (lamp wavelength) and time both have a strong effect on the 

diameter, loading, and specific locale of the Pd particles obtained. Additionally, the 

distribution of Pd particles along the length of the axially anisotropic CdS0.4Se0.6 nanorods 

varies significantly depending on the specific lamp used. 
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Photo deposition of Pd on CdS0.4Se0.6 rods for 1 h at R.T. results in: 2.6 ± 0.8 nm 

diameter Pd particles with an average of 1.5 ± 1.1 (5 max.) Pd particles per rod when using a 

350 nm lamp (35 nm fwhm); 4.9 ± 2.2 nm diameter Pd particles with an average of 2.1 ± 1.5 

(6 max.) Pd particles per rod when using a 420 nm lamp (30 nm fwhm); 5.0 ± 1.5 nm 

diameter Pd particles with an average of 1.3 ± 0.8 (3 max.) Pd particles per rod when using a 

575 nm lamp ( 75 nm fwhm) (Table 1, entries 7-9) (Figure 5). Further, photo deposition for 

3 h at R.T. results in 5.1 ± 1.4 nm diameter Pd particles with an average of 8.0 ± 2.0 (15 

max) Pd particles per rod when using a 575 nm lamp (Table 1, entry 10) (Figure 5). These 

results highlight interesting trends in metal particle size, loading, and locale during the metal 

photo deposition process. First, it appears that the Pd particle diameter may increase with 

increasing lamp wavelength for a given photo deposition time, however the standard 

deviations are too large to make the differences in Pd particle diameter statistically 

significant: 2.6 ± 0.8 nm (350 nm for 1 h), 4.9 ± 2.2 nm (420 nm for 1h), and 5.0 ± 1.5 nm 

(575 nm for 1h) (Table 1, entries 7-9) (Figure 5d). In contrast, the Pd particle diameter 

remains constant for different photo deposition times while keeping the wavelength constant: 

5.0 ± 1.5 nm (575 nm for 1 h) ~ 5.1 ± 1.4 nm (575 nm for 3 h) (Table 1, entries 9-10) (Figure 

5d). 

In agreement with our previous observations, the fraction of surface-bound Pd particles 

increases with increasing lamp wavelength: 350 nm for 1 h (37% surface-bound) < 420 nm 

for 1 h (48% surface-bound) < 575 nm for 1 h (80% surface-bound) (Table 1, entries 7-9) 

(Figure 5e). Similary, the fraction of surface-bound Pd particles remains mostly unchanged 

with increasing photo deposition time for a given wavelength: 575 nm for 1 h (90% surface-

bound) ~ 575 nm for 3 h (92% surface-bound) (Table 1, entries 9-10) (Figure 5e). This is 



86 
 

 

 

Figure 5. Sample TEM micrographs of CdS0.4Se0.6 nanorods (a), and CdS0.4Se0.6-Pd 
heterostructures prepared photochemically at 575 nm, 24 °C for 1h (b) and 3 h (c). Pd 
particle size (d), locale (e), and loading per rod (f) histograms for CdS0.4Se0.6-Pd 
heterostructures prepared photochemically at 350 nm for 1h (violet), 420 nm for 1h (blue), 
575 nm for 1h (green), and 575 nm for 3h (red) (>50-100 CdS0.4Se0.6 nanorods and >50-300 
Pd particles measured in each case). 

 
consistent with our previous view that Pd and Pt particles form via semiconductor-mediated 

photochemical deposition and, unlike Au particles, freestanding Pd particles do not 

significantly stick to the surface of the CdS0.4Se0.6 nanorods after they formed. In turn, Pd 

loading (number of Pd particles per CdS0.4Se0.6 rod) remains approximately the same for 

different wavelengths while keeping the photo deposition time constant: 1.5 ± 1.1 Pd 

particles/rod (350 nm for 1 h) ~ 2.1 ± 1.5 Pd particles/rod (420 nm for 1 h) ~ 1.3 ± 0.8 Pd 

particles/rod (575 nm for 1 h) (Table 1, entries 7-9) (Figure 5f). Nonetheless, Pd loading 
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greatly increases with increasing photo deposition times while keeping the wavelength 

constant: 1.3 ± 0.8 Pd particles/rod (575 nm for 1 h) < 8.0 ± 2.0 Pd particles/rod (575 nm for 

3 h) (Table 1, entries 9-10) (Figure 5f). This constitutes a six-fold increase in Pd loading with 

tripling of the photo deposition time. 

Site selective metal photo deposition: Head- vs. tail-bound metal particles on axially 

anisotropic nanorods. To better understand the locale and distribution of Pd particles on the 

axially anisotropic CdS0.4Se0.6 nanorods, we measured the distance between the axial position 

of each surface-bound Pd particle and one of the nanorod tips (arbitrarily chosen as the 

‘head’ tip), and then parameterized this distance by dividing it over the corresponding 

nanorod length (Figure 6a-d). In this way, the location of each surface-bound Pd particle is 

defined by a given ‘length fraction’ that has a value between 0 (head tip) and 1 (tail tip) 

(Figure 6d). The advantage of using length fractions rather than absolute position values 

minimizes inhomogeneities associated with the distribution in nanorod lengths (59.3  8.0 

nm).46 This way, the locale or position of many Pd particles can be better compared among 

several nanorods and across different photo deposition experiments. Using length fraction 

measurements, we discerned that photo-deposited Pd particles preferentially accumulate 

toward one end or the other end of the axially anisotropic CdS0.4Se0.6 nanorods depending on 

the specific lamp wavelength used (Figure 6c). When we carry out the photo deposition using 

350 nm and 420 nm lamps, a large fraction of the surface-bound Pd particles (≥ 50%) are 

located at, or very near, the tip of the thin CdS-rich tail of the CdS0.4Se0.6 nanorods with 

length fractions between 0.9-1 (Figure 6c). In contrast, when we carry out photo deposition 

with the 575 nm lamp, most of the surface-bound Pd particles (83%) are located on the thick 

CdSe-rich segment of the CdS0.4Se0.6 nanorods, with length fractions between 0-0.5 (Figure 
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6c). If, instead of using length fractions, we divide each nanorod longitudinally in two half 

segments (at ca. 30 nm half length), and measure the fraction of Pd particles located on the 

thicker half segment versus those located on the thinner half segment, we observe similar 

trends in particle distribution. When we carry out the photo deposition using 350 nm and 420 

nm lamps, respectively 57% and 55% of the surface-bound Pd particles are located on the 

thinner CdS-rich segment (Figure 6e). In contrast, when we carry out the photo deposition 

with the 575 nm lamp, 83% of the surface-bound Pd particles are located on the thicker 

CdSe-rich segment (Figure 6e). 
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Figure 6. Photodeposition of Pd nanoparticles on axially anisotropic CdS0.4Se0.6 nanorods: 
(a) Sample TEM micrographs with Pd length fractions. (b) Location of Pd nanoparticles 
along the length of the CdS0.4Se0.6 nanorods, plotted as a fraction of the total length of the 
nanorods (length fraction). (c) Schematic of CdS0.4Se0.6-Pd heterostructures and length 
fraction measurements. (b) Head-side vs. tail-side population of Pd nanoparticles on 
CdS0.4Se0.6 nanorods. 

 
 

 
Figure 7. (a) Absorption spectra of colloidal CdS, CdS0.4Se0.6, and CdSe nanorods (recorded 
in toluene with quartz cuvettes), and (b) irradiance spectrum of 575 nm lamp (all spectra 
were arbitrarily normalized to a maximum optical density OD = 1). 

 
These observations are relevant and somewhat resemble prior reports on metal (Au, Pd) 

photo deposition on CdSe/CdS seeded nanorods where metal particles grow either close to 

the CdSe seed16,29 or at the CdS-tips.44 However, to the best of our knowledge, this 

manuscript is the first to document that metal photo deposition behavior can be controlled 

and utilized to achieve the site selective or ‘site-specific’ photo deposition of metal particles 

on any specific segment of a heterostructure having an axial composition gradient. By 

switching the illumination energy to shorter or longer wavelengths while keeping all other 

experimental conditions constant (precursors, concentrations, temperature), the Pd particles 
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can be controllably and site selectively photo-deposited on either side of axially anisotropic 

CdS0.4Se0.6 nanorods (Figure 6c,e). 

Based on the band edge position of pure CdSe (730 nm) and pure CdS (520 nm) phases 

(closer to 680 nm and 500 nm, respectively, as modeled by pure CdSe and pure CdS 

nanorods), 46 we can relate the differences in metal photo deposition locale to the optical 

properties of the individual CdS0.4Se0.6 nanorod segments (Figure 7). The CdSe-rich head 

directly absorbs light emitted by all three 350 nm, 420 nm, and 575 nm lamps, allowing Pd 

particles to deposit on the head surface when the nanorods are irradiated with any of these 

wavelengths (Figure 7). In contrast, the CdS-rich tail only absorbs light emitted by the 350 

nm and 420 nm lamps, but not light emitted by the 575 nm lamp, allowing Pd particles to 

deposit on the tail surface with the 350 nm and 420 nm lamps, but not with the 575 nm lamp 

(Figure 7). The lower energy excitons produced with the 575 nm lamp appear to be localized 

on the head of the nanorods, and exciton trapping by surface defects must be rapid, given the 

strong effect the 575 nm lamp has in skewing the distribution of surface bound Pd particles 

toward the head of the nanorods. However, excitons appear able to travel relatively freely 

and uninterrupted across the whole length of the nanorods; we have observed Pd particles 

everywhere from the head tip to the tail tip of the nanorods with all the lamps, including the 

CdS-rich tail of the nanorods when using the 575 nm lamp (Figures 5c and 6a,b). 

Among other factors that could affect metal deposition are the relative lamp intensities 

and relative nanorod absorption coefficients at each lamp wavelength. Lamp intensities 

determine the ‘power’ or availability of photons and are independent of lamp wavelengths. 

Relative absorption coefficients determine how many photons are absorbed at each 

wavelength. Using sixteen twelve-inch fluorescent lamps in each case, we measured the 
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power (P) inside the Rayonette® reactor as 136 W/m2 (P350nm), 16.6 W/m2 (P420nm), and 47.2 

W/m2 (P575nm). Using the absorption spectrum of CdS0.4Se0.6 nanorods (Figure 7), we extract 

the following order of absorption coefficients: 5.4 ( 350nm) > 3.5 ( 420nm) > 1 ( 575nm). Taking 

the products of lamp intensities and relative absorption coefficients, we obtain the following 

order: 16 (P· 575nm) > 1.2 (P· 420nm) ≈ 1 (P· 350nm). Thus, light absorption and the efficiency 

of exciton generation with the 350 nm lamp may be higher than with the 420 nm or 575 nm 

lamps. However, we have conducted several photo deposition experiments and have not yet 

found a significant correlation between power and metal particle diameter or photo 

deposition locale/site selectivity. Further studies are under way to sort out the precise effect 

of irradiation power on metal photo deposition behavior. 

Additionally, at individual particle level, relative absorption coefficients between 

different nanorod segments could play an important role. For example, both CdS-rich tail and 

CdSe-rich head segments absorb light emitted by 350 nm and 420 nm lamps with similar 

absorption coefficients.10 This may be why the distribution of length fractions for Pd particles 

using the 350 nm and 420 nm lamps is relatively wide (Figure 6c). Finally, surface defects 

are likely to be important in determining the exact locale of metal deposition. The diameter 

of CdS-rich tail segments (5.6 ± 0.8 nm) is significantly thinner than the diameter of CdSe-

rich segments (17.8 ± 2.4 nm). Thinner nanorods have larger surface-to-volume ratios as well 

as a sharper curvature and an increased surface energy.8 Assuming that both segments are 

equally passivated, we can expect thin CdS-rich tail to contain a larger concentration of 

surface defects. This could explain why a larger fraction of Pd particles form on the CdS-rich 

segment when using 350 nm and 420 nm lamps, and why many Pd particles form at the tip of 

the CdS-rich tail where curvature is the sharpest. 
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Conclusions 

In summary, we have studied site selective and site-specific synthesis of colloidal 

semiconductor-metal hybrid heterostructures using whole-flask illumination/lamp photo 

deposition methods. We have shown precise lamp wavelength and its irradiance profile are 

critical in controlling whether metal photo deposition occurs in solution via homogeneous 

nucleation or on the surface of a colloidal semiconductor via heterogeneous nucleation, 

leading to freestanding or surface-bound metal nanoparticles, respectively. Using a number 

of control and metal deposition experiments, we identified three fundamental pathways 

leading to metal nanoparticle formation. Two of these pathways, thermal- and direct 

photochemical-precursor decomposition, lead to homogeneous nucleation of metal nuclei 

anywhere in solution and result in formation of unbound freestanding metal nanoparticles. A 

third pathway, semiconductor-mediated photochemical seeding and reduction of the metal 

precursor, leads to heterogeneous nucleation of metal nuclei at the semiconductor surface and 

results in formation of surface-bound metal nanoparticles. We have used these observations 

to selectively deposit Pt and Pd particles on the surface of CdS nanorods and axially 

anisotropic CdS0.4Se0.6 nanorods as model systems. Furthermore, we have shown specific 

lamp irradiance profile is critical in controlling specific locale (site-specificity) and overall 

distribution of Pd nanoparticles deposited on axially anisotropic CdS0.4Se0.6 nanorods. We 

expect the ability to reliably and controllably prepare semiconductor-metal hybrid 

heterostructures by judicious selection of reaction conditions, in this case by careful selection 

of lamp wavelength and irradiation times, will have major impact on engineering and 

tailoring these materials to target specific optical, electronic, magnetic, and catalytic 

properties. Reliable syntheses will increase availability of these hybrid nanomaterials for 
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their fundamental study and application. We are presently studying the mechanism of metal 

deposition in more detail, and specifically the effect irradiation power/intensity may have on 

diameter and locale of resulting metal nanoparticles. We are also exploring the activity of the 

resulting hybrid materials in solar-to-chemical conversion of renewable feedstock as well as 

the deposition of other catalytically relevant and magnetically active metals on the surface of 

a variety of heterostructured nanoscale semiconductors. 

Experimental Section 

Materials. Cadmium oxide (99.998%) and sulfur (99.999%) were purchased from Alfa 

Aesar. Octadecylphosphonic acid (ODPA) was purchased from PCI Synthesis. Selenium 

(99.999%), trioctylphosphine oxide (TOPO) (99%) and triethylamine (≥99.5%) were 

purchased from Sigma-Aldrich. Trioctylphosphine (TOP) (97%), dimethyl(1,5-

cyclooctadiene)platinum(II) (CODPtMe2, 99%) and cis-dimethyl(N,N,N',N'-

tetramethylenediamine)palladium(II) (TMEDAPdMe2, 99%) were purchased from Strem. All 

chemicals were used as received unless specified otherwise. Caution: Appropriate personal 

protective equipment and engineering controls must be in place before the use of cadmium, a 

toxic heavy metal. 

Photochemical experiments. Photochemical experiments were conducted in a fan-cooled 

Rayonette® photoreactor (Southern New England Ultraviolet Company, Branford, 

Connecticut) equipped with an air-cooling fan and a carousel unit. Between 2 and 16 (max) 

12-inch side-on "fluorescent" lamps (Luzchem, Ottawa, Ontario) were used for each 

experiment. 

Synthesis of colloidal CdS and CdSSe nanorods. CdS nanorods. CdS nanorods (154.1 ± 

30.4 nm length, 5.6 ± 0.8 nm diameter) were prepared according to a reported literature 
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procedure.45 The CdS nanorods were found to have a wurtzite crystal structure.46 CdSSe 

nanorods. Axially anisotropic CdS0.4Se0.6 nanorods having a ‘drumstick’-like morphology 

(59.3 ± 8.0 length, 17.8 ± 2.4 nm ‘head’ diameter, 5.6 ± 0.8 nm ‘tail’ diameter) were 

synthesized by a modified procedure recently reported by our group.46 Briefly, CdO (105 mg, 

0.81 mmol), TOPO (1.375 g, 3.56 mmol) and ODPA (535 mg, 0.94 mmol) were weighed 

onto a three-neck round bottom flask. The flask was fitted with a glass-coated magnetic stir 

bar, a condenser and a stainless steel thermocouple. The apparatus was sealed and brought 

onto an Schlenk line. Using a heating mantle, the mixture was heated to 100 °C and 

evacuated under vacuum for 15 min, then it was refilled with argon and heated to 320 °C to 

form a completely colorless solution. The solution was then allowed to cool to 120 °C and 

evacuated under vacuum for 15 min, then refilled with argon and heated back to 320 °C. 

When the temperature reached 300 °C, TOP (1.20 mL, 2.7 mmol) was injected into the flask. 

When the temperature reached 320 °C, a solution containing an air-free mixture of 2.25 M 

TOPS (0.90 mL, 2 mmol) and 2.25 M TOPSe (0.10 mL, 0.2 mmol) was rapidly injected, 

causing a gradual color change. Upon injection, the temperature was allowed to equilibrate at 

315 °C and kept constant for a total reaction time of 85 minutes. The reaction mixture was 

then removed from the heating mantle and allowed to cool to room temperature. After 

dilution with toluene (5 mL), the nanorods were isolated by the addition of a 1:1 v/v iso-

propanol/nonanoic acid (24 mL) mixture, followed by centrifugation (5,000 rpm for 10 min). 

The CdS0.4Se0.6 nanorods were found to have a wurtzite crystal structure.46 

Synthesis of CdS-Pt and CdS-Pd heterostructures. CdS nanorods were dissolved in 

toluene to give an optical density (OD) of 1.2 at 470 nm. A 2-mL volume of this solution was 

degassed, refilled with dry argon, and stored in the dark for 12h in a re-sealable Schlenk tube. 
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Under a dry atmosphere, CODPtMe2 (28 mg, 0.08 mmol) for CdS-Pt, or cis-

dimethyl(N,N,N',N'-tetramethylene-diamine)palladium(II) (TMEDAPdMe2) (28 mg, 0.1 

mmol) for CdS-Pd, was dissolved in anhydrous toluene (1 mL), mixed with triethylamine 

(0.5 mL, used as a terminal electron donor),29 and added to the CdS nanorod solution via 

syringe. The deposition reaction was then carried out for 3h by one of two routes: (1) 

Thermally in the dark, in an oil bath pre-equilibrated at 80 °C for CdS-Pt, or in a room 

temperature (R.T.) water bath for CdS-Pd; or (2) photochemically, under illumination at 

room temperature (R.T.) (21 °C-24 °C) in a fan-cooled Rayonet® photoreactor containing a 

set of 16 side-on fluorescent lamps (350 nm or 420 nm, see below) (total intensities: 136 

W/m2 and 16.6 W/m2, respectively). The non-volatile products were purified by precipitation 

with a 1:1 mixture of acetone and methanol (30 mL) and centrifugation (4200 rpm for 10 

min). All products readily redisperse in toluene. 

Synthesis of CdS0.4Se0.6-Pd heterostructures. Axially anisotropic CdS0.4Se0.6 nanorods46 

were dissolved in toluene to give an optical density (OD) of 1.3 at 630 nm. A 2.0 mL volume 

of this solution was degassed, refilled with dry argon, and stored in the dark for 12 h in a re-

sealable Schlenk tube. Under a dry atmosphere, (TMEDA)PdMe2 (30 mg, 0.1 mmol) was 

dissolved in anhydrous toluene (1 mL), mixed with triethylamine (0.5 mL, used as terminal 

electron donor),45 and added to the CdS1-xSex nanorod solution via syringe. The deposition 

reaction was then carried out for 1 h or 3 h photochemically under illumination at room 

temperature (R.T.) (21 °C-24 °C) in a fan-cooled Rayonet® photoreactor containing a set of 

16 side-on fluorescent lamps (350 nm, 420 nm or 575 nm, see below) (total intensities: 136 

W/m2, 16.6 W/m2, and 47.2 W/m2, respectively). The non-volatile products were purified 
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twice by precipitation with methanol (30 mL) and centrifugation (5,000 rpm for 10 min). All 

products could be readily redispersed in toluene. 

Structural characterization. X-Ray diffraction. Powder X-ray diffraction (XRD) data were 

measured using Cu Kα radiation on a Scintag XDS-2000 diffractometer equipped with a 

theta-theta goniometer, a sealed-tube solid-state generator, and an air-cooled Kevex Psi 

Peltier silicon detector. The XRD samples were prepared by spreading solid nanocrystal 

samples onto a background-less quartz sample holder. Transmission electron microscopy. 

Transmission electron microscopy (TEM) was conducted using a FEI Technai G2 F20 Field 

Emission TEM, a scanning transmission electron microscope (STEM) operating at 200 kV. 

This instrument has a point-to-point resolution of less than 0.25 nm and a line-to-line 

resolution of less than 0.10 nm. TEM samples were prepared by placing 2-3 drops of dilute 

toluene solutions of the nanocrystals onto carbon coated copper grids. The elemental axial 

distribution and composition of the nanorods were characterized by energy dispersive 

spectroscopy (EDS) line scans in STEM mode, as well as by energy-filtered (EF) imaging 

spectroscopy (EF-TEM) using a Gatan Tritium GIF system. Size and morphology analysis. 

Particle dimensions were measured manually and/or with ImageJ. In all cases, measurements 

and statistics were obtained for at least 50-100 nanorods (CdS or CdS0.4Se0.6) and 50-300 

metal particles (Pt, Pd). Uncertainties in all measurements are reported as the standard 

deviations. 

Optical characterization. Absorption spectra were measured in 0.1 cm or 1 cm quartz 

cuvettes with a photodiode array Agilent 8453 UV-Vis spectrophotometer. The absorption of 

the solvent was recorded and subtracted from all spectra. The absorption coefficients (  / 
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L·mol-1·cm-1) of organometallic precursors were measured according to Lambert-Beer's Law 

by carefully preparing and recording the absorbance of different solutions in toluene. 
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CHAPTER 5 

SELECTIVE ALCOHOL DEHYDROGENATION AND HYDROGENOLYSIS WITH 

SEMICONDUCTOR-METAL PHOTOCATALYST: TOWARD SOLAR-TO- 

CHEMICAL CONVERSION OF BIOMASS-RELEVENT SUBSTRATES 

Reprinted with permission from J. Phys. Chem. Lett. 2012, 3, 2798. 

Copyright © 2012 

American Chemical Society 

T. Purnima A. Ruberu, Nicholas C. Nelson, Igor I. Slowing, Javier Vela 

 

Abstract 

Photocatalytic conversion of biomass is a potentially transformative concept in renewable 

energy. Dehydrogenation and hydrogenolysis of biomass-derived alcohols can produce 

renewable fuels such as H2 and hydrocarbons, respectively. We have successfully used 

semiconductor-metal heterostructures for sunlight-driven dehydrogenation and 

hydrogenolysis of benzyl alcohol. The heterostructure composition dictates activity, product 

distribution and turnovers. A few metal (M = Pt, Pd) islands on the semiconductor (SC) 

surface significantly enhance activity and selectivity, and also greatly stabilize the SC against 

photo-induced etching and degradation. Under selected conditions, CdS-Pt favors 

dehydrogenation (H2) over hydrogenolysis (toluene) 8:1, whereas CdS0.4Se0.6-Pd favors 

hydrogenolysis over dehydrogenation 3:1. Photochemically generated, surface-adsorbed 

hydrogen is useful in tandem catalysis, for example via transfer hydrogenation. We expect 

this work will lead to new paradigms for sunlight-driven conversions of biomass-relevant 

substrates. 
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Introduction 

Solar-to-chemical energy conversion of biomass is a potentially transformative concept in 

renewable energy. Photocatalytic water splitting has been studied for many years. Without 

stoichiometric or “sacrificial” agents, known photocatalysts split water to molecular 

hydrogen, H2, and oxygen, O2, under visible light with up to 6-7% quantum yield (QY) (1/2H2 

per photon).1-5 Biomass, an overlooked photocatalysis target, is an abundant source of 

alcohols in the form of carbohydrates and polyols such as cellulose, starch and glycerol.6,7 

Photocatalytic dehydrogenation8-13 and hydrogenolysis of biomass-derived alcohols can 

produce renewable fuels such as H2 or hydrocarbons, respectively.14,15 Like water splitting, 

these reactions are endergonic (ΔGRT>0); but unlike water splitting, they require much less 

energy (Scheme 1). Using sunlight to achieve these transformations can revolutionize the 

field of H2 
16, 17 and hydrocarbon18,19 fuel production and biomass conversion.20,21 

Semiconductor-metal (SC-M) heterostructures are ideal photocatalytic materials; 22-26 

they become redox-active upon illumination and remain redox-active after dark storage for 

several hours.27 The semiconductor strongly absorbs light and the metal collects 

photogenerated charges. Tuning heterostructure spatial composition can impact the ability to 

engineer and direct energy flows at the nanoscale.28 We recently demonstrated certain 

synthetic conditions allow deposition of M (Pt, Pd) nanoparticles on CdS1-xSex (0<1<x) 

nanorods with high selectivity.29 M photodeposition occurs on specific segments of 

compositionally graded CdS0.4Se0.6 nanorods due to the band gap differential between CdSe-

rich and CdS-rich segments.30 Here, we demonstrate photocatalytic alcohol dehydrogenation 

and hydrogenolysis driven by visible sunlight using such heterostructures. 
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Results and Discussions 

Under a dry nitrogen atmosphere, semiconductor-metal photocatalysts were dissolved in 

anhydrous deuterated benzene (C6D6) to give optical densities (OD) of 0.4 at 470 nm for 

CdS-M or 0.2 for 690 nm for CdS0.4Se0.6-M (M = Pt, Pd). Stock solutions were kept in the 

dark for at least >12 h prior to catalytic experiments. In the dark, photocatalyst stock solution 

(0.1 mL), benzyl alcohol (PhCH2OH) (40 mg, 370 mol), and C6D6 (0.4 mL) were added to 

an oven-dried NMR tube. The tube was capped with a septum and sealed with Parafilm®. 

The mixture was exposed directly to sunlight or lamp illumination in a Rayonette 

photoreactor and analyzed by NMR and GC. 

Under direct sunlight illumination, PhCH2OH was converted to benzaldehyde, PhCHO, 

as observed by 1H NMR and GC-MS. Headspace analysis by GC using a thermal 

conductivity detector (TCD) showed formation of H2. H2 was also detected at high 

conversion from its resonance at  4.47 ppm in 1H NMR.31 Interestingly, 1H NMR and GC-

H2O H2 1/2O2++238 kJ/mol
photocatalyst

OH

OH

OH

O

H2 +
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Scheme 1. Hydrogen photoproduction from water vs. biomass
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Scheme 2. Alcohol dehydrogenation vs. hydrogenolysis
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MS also showed formation of toluene, PhCH3, as a byproduct.32,33 Relative PhCHO, H2 and 

PhCH3 amounts produced are strongly affected by the structure and composition of the SC-M 

photocatalyst (Table 1, Figure 1). After 2 days under sunlight, the main product was H2 when 

CdS-Pt was used, and toluene when CdS-Pd was used (entries 1-2, Table 1, Figure 2). In 

contrast, little selectivity was observed with unmodified CdS nanorods (entry 4, Table 1). 

Reactions run under sunlight with CdS0.4Se0.6-Pt and CdS0.4Se0.6-Pd favored toluene, 

although they were less selective than CdS-Pd (entries 7-8, Table 1, Figure 2). No H2 and 

negligible amounts of PhCHO and PhCH3 were detected for over a week when reactions 

were carried out in the presence of SC-free, unbound Pt or Pd nanoparticles (Figure 1b).29 

Table 1. Photocatalytic Dehydrogenation and Hydrogenolysis of PhCH2OH with SC and 

SC-M Photocatalysts.a 

 Photocatalyst    (M 
np/SC rod)b 

Conds. Time PhCHO 
TONc 

PhCH3 
TONc 

H2 TONc
 

1 CdS-Pt (2.0 1.1)b Sun 2 days 596 

12·h-1 

130 

3·h-1 

522 

11·h-1 

2 CdS-Pd (1.6 0.8)b Sun 2 days 102 

2·h-1 

328 

7·h-1 

0 

0 

3 CdS-Pd (2.9 0.9)b Sun 2 days 24 

0.5·h-1 

0.5 

0.01·h-1 

0 

0 

4 CdS Sun 2 days 155 

3·h-1 

164 

3·h-1 

111 

2·h-1 

5 CdS-Pt (2.0 1.1)b 350 nm 3 h 696 

232·h-1 

114 

38·h-1 

909 

303·h-1 

6 CdS-Pd (1.6 0.8)b 350 nm 3 h 135 

45·h-1 

255 

85·h-1 

255 

85·h-1 
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Table 1 continued 

 

7 CdS0.4Se0.6-Pt 
(2.5 0.8)b 

Sun 2 days 96 

2·h-1 

3840 

80·h-1 

2832 

59·h-1 

8 CdS0.4Se0.6-Pd 
(1.4 0.8)b 

Sun 2 days 48 

1·h-1 

5232 

109·h-1 

2832 

59·h-1 

9 CdS0.4Se0.6-Pt 
(2.5 0.8)b 

575 nm 6 h 54 

9·h-1 

4338 

723·h-1 

3228 

538·h-1 

10 CdS0.4Se0.6-Pd 
(1.4 0.8)b 

575 nm 6 h 36 

6·h-1 

10212 

1702·h-1 

3228 

538·h-1 
aPhCH2OH (40 mg, 370 μmol), C6D6 (0.5 mL), 24°C, anaerobic (air-free) conditions 

(3.3×10-9 mol CdS-M 2.9×10-9 mol CdS0.4Se0.6-M). bMetal particles per rod. cTurnover 
numbers (TON) (±8%) and TON/h are two run averages; Products were quantified using 
NMR (organics) and GC (organics and H2). 

Photocatalytic experiments were also carried out inside a fan-cooled Rayonette® 

photoreactor. Unlike the intermittent and cyclical nature of direct sunlight illumination, lamp 

irradiation provides a constant stream of photons for a more controlled photocatalytic 

environment. Photoreactor also better mimic the higher intensity conditions more likely to be 

used in some industrial photocatalysis technologies, for example those using solar 

concentrators. Measured intensities in a 16 12-in lamp reactor were 136 W/m2 for 350 nm 

lamps and 43.6 W/m2 for 575 nm lamps. This is 5-to-2 times stronger than the daily zenith 

(max.) intensity of 26 W/m2 recorded under direct sunlight in Ames, IA (Jan.-Jul., 42°2'5"N 

Lat., 294 m altitude). 

Photocatalytic experiments run under 350 nm lamp illuminations for CdS-M or under 575 

nm lamp illumination for CdS0.4Se0.6-M (M = Pt, Pd) greatly increased the rates of product 

formation by a factor of 10-to-15 (entries 7-8, 9-10, Table 1). In the case of CdS-Pd, 
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switching from sunlight to 350 nm lamp illumination also altered relative distribution of 

PhCHO, PhCH3 and H2 products from 1:3:0 to 1:2:2, respectively (entries 2 vs. 6, Table 1, 

Figure 2). We believe this is a consequence of the interplay between the rates of charge 

transfer (redox) involved in the two photocatalytic reactions and the rate of exciton 

generation and trapping by different M “islands” on the SC surface. In the case of 

CdS0.4Se0.6-M (M = Pt, Pd) heterostructures, the main product remained PhCH3 regardless of 

M or light source used (entries 6-10, Table 1). 

 

Figure 1. Photo-production of (a) PhCHO, PhCH3, and (b) H2 from PhCH2OH with CdS-M 
catalysts under sunlight illumination (air-free, 3.3 10-9 mol SC-M, 0.5 mL C6D6, 24°C). 
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Figure 2. Product selectivity (normalized to 100% products) of SC and SC-M photocatalysts 
for PhCHO, PhCH3, and H2 under different photochemical conditions (air-free, 3.3 10-9 mol 
SC-M, 0.5 mL C6D6, 24°C). 

Critically, SC-M heterostructures are much more stable photocatalysts compared to 

unmodified SC nanorods. Figure 3 shows UV/Vis absorption and TEM data obtained before 

and after photocatalytic runs with CdS-Pt and CdS. Under continuous illumination, CdS-Pt 

heterostructure solutions retained their activity and color for several days; in contrast, CdS 

nanorod solutions became inactive, their color bleached, and completely faded away within a 

few days (Figure 3a-b). This is evident in the sharp drop in H2 photo-production for pure CdS 

after 3 days in Figure 1b. Transmission electron microscopy (TEM) revealed CdS-Pt 

heterostructures roughly retained their overall morphology and composition (Figure 3c, e), 

while CdS nanorods quickly dissolved and etched away during the same period (Figure 3d,f). 

Thus, the presence of surface-bound M (Pt, Pd) “cocatalyst” particles not only enhances 

photocatalytic activity and determines product selectivity, but it also greatly stabilizes SC 

(CdS) nanorods against photo-induced etching and degradation. We believe this behavior is 

due to major electronic structure differences between SC-M and SC photocatalysts. UV-Vis 

absorption shows the fine structure of CdS disappears upon Pt loading (Figure 3a vs. 3b, red 

traces). This behavior is similar to chemically and electrochemically-induced 1S peak 

“bleaching”,34,35 and is consistent with a significant degree of electron transfer between Pt 

and CdS.36,37,38 II-VI SC photoetching under photocatalytic conditions is thought to stem 

from anion (S2-) oxidation. Therefore the observation that CdS-Pt is less susceptible to 

photoetching compared to CdS could in principle be explained by electron injection from the 

Pt islands into the conduction band of CdS, effectively creating an n-doped SC. However, 

more research is needed to confirm or refute this hypothesis. Other known SC photocatalyst 

stabilizers include sacrificial hole scavengers such as Na2S/Na2SO3. These additives enhance 
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the population and lifetime of trapped electrons, resulting in faster H2 evolution rates (from 

water).39 

 

Figure 3. Monitoring stability of SC-M and SC photocatalysts by UV-Vis absorption (a,b) 
and TEM (c-f): CdS-Pt heterostructures (left) retain their color (a) and overall morphology 
(c,e); in contrast, CdS nanorods (right) get bleached (b) and photoetched (d,f). 

The precise amount of M loading has a major effect on photocatalytic activity. Under 

direct sunlight illumination for 2 days, decreasing M loading from 2.9 1.5 to 1.6 0.8 Pd 

particles per CdS nanorod29 increased the amounts of PhCHO and PhCH3 produced by 4 and 

660 times, respectively (a 1-3 order of magnitude enhancement!) (entries 2-3, Table 1 and 
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Figure 4). This agrees with prior literature observations for water photosplitting,40-42 where 

excess metal cocatalyst loading is actually detrimental to photocatalytic activity. 

As shown in Scheme 2c, our combined results strongly indicate the existence of two 

photocatalytic pathways starting from benzyl alcohol. One pathway favors alcohol 

dehydrogenation and produces benzaldehyde, PhCHO and molecular hydrogen, H2; the other 

pathway favors alcohol hydrogenolysis and produces toluene, PhCH3 and molecular oxygen, 

O2. Both pathways are thermodynamically uphill but also much less energetically demanding 

compared to water photosplitting (Scheme 2c). Production of PhCH3 (hydrogenolysis) is 

easier (requires less energy) starting from PhCHO (69 kcal/mol) than from PhCH2OH (135 

kcal/mol) (Scheme 2c). Evidence to support a two-step dehydrogenation-hydrogenolysis 

pathway for toluene formation stems from mechanistic experiments. Using isotopically-

labeled benzyl alcohol- , -D2, PhCD2OH as a photocatalysis substrate leads to formation of 

deuterated benzaldehyde-D, PhCDO, as observed by 2H (D) NMR. Also, heating PhCH3 in 

presence of SC-M heterostructures and air (O2) to 50°C in the dark for 8 h gave both 

PhCH2OH and PhCHO, which corresponds to the thermal reverse of hydrogenolysis and 

dehydrogenation reactions (Scheme 2c).43 Additional reactions occur during certain 

conditions: For example, pinacol coupling products (PhCOCOPh) were observed by GC-MS 

and may account for the excess H2 relative to PhCHO produced with CdS0.4Se0.6-M (entries 

7-10, Table 1). 

We explain the different selectivity between SC-Pt (favors H2) and SC-Pd (favors 

PhCH3) based on the known reactivity of Pt and Pd surfaces. Pd is known to strongly adsorb 

hydrogen atoms (“protons”) and promote reduction reactions.44 Thus, H2 gas produced 

during dehydrogenation quickly adsorbs onto the Pd surface, forming Pd-H reduction sites 
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for the conversion of benzaldehyde (PhCHO) to toluene (PhCH3). Our initial photocatalytic 

studies were conducted under anaerobic (air-free) conditions to avoid potential oxidation 

(combustion) of H2 in the presence of O2 from air (thermal oxidation to water is downhill: 

ΔGRT = -210 kJ/mol, Scheme 1a).15, 45-47 Photocatalytic runs under aerobic conditions, i.e. in 

presence of O2, did not significantly change the relative amounts of PhCHO and PhCH3 

produced; however no H2 was detected in those cases. This is consistent with SC-M 

heterostructures being active in reversible H2 oxidation and water splitting. Additionally, we 

qualitatively observed much higher O2 levels in hydrogenolysis (toluene-forming) 

photoreactions with CdS-Pd. 

 

 

Figure 4. Effect of Pd loading on photocatalytic activity of CdS-Pd heterostructures under 
direct sunlight. Conditions: Anaerobic, 3.3 10-9 mol SC-M, 0.5 mL C6D6, 24°C. 

An additional opportunity arising from the chemistry demonstrated here is to use H2 

formed upon alcohol dehydrogenation to perform other chemical transformations. We have 

successfully tested this idea by adding glyceraldehyde, HOCH2CH2OHCHO (Scheme 3) to 

PhCH2OH during photocatalytic runs. The amount of PhCHO produced in this case was 

extremely high, with up to 18% PhCH2OH consumed when CdS-Pd was used. Interestingly, 

this transfer hydrogenation reaction does not proceed in the absence of light, strongly 
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suggesting that glyceraldehyde is reduced by photogenerated H2 or Pd-hydride equivalents 

on the SC-Pd surface. This opens new avenues for the discovery and development of light-

induced, tandem catalytic transfer dehydrogenation reactions. 

 

 
 

Conclusions 

In summary, we have shown semiconductor-metal (SC-M) heterostructures are active 

catalysts for room temperature, photochemical dehydrogenation and hydrogenolysis of an 

alcohol. These reactions produce hydrogen and alkane, are only driven by light, and proceed 

with TONs upwards of 10,000. The precise photocatalyst structure and composition 

determine activity and selectivity. Under selected conditions, CdS-Pt favors dehydrogenation 

(H2) over hydrogenolysis (toluene) 8:1, whereas CdS0.4Se0.6-Pd favors hydrogenolysis over 

dehydrogenation 3:1. Critically, a few metal (M = Pt, Pd) islands on the SC surface 

significantly enhance activity and selectivity, and greatly stabilize the SC against photo-

degradation. This all-inorganic, additive free approach may make industrial-scale 

photocatalytic conversions possible. Photochemically generated, surface-adsorbed SC-Pd-H 

equivalents are useful synthetic intermediates in tandem catalysis via transfer hydrogenation. 

We are now investigating photocatalytic biomass conversions in flow. We expect this work 



112 
 

 

will lead to new paradigms for sunlight-driven conversions of biomass into useful renewable 

fuels and chemicals. 

Experimental Section 

Synthesis of CdS-Pt and CdS-Pd Hybrid Heterostructures. CdS Nanorods. CdS nanorods 

(154.1±30.4 nm length, 5.6±0.8 nm diameter) were prepared according to the method 

reported in chapter 2.The CdS nanorods were found to have a wurtzite (hexagonal) crystal 

structure.  CdS nanorods were dissolved in toluene to give an optical density (OD) of 1.2 at 

470 nm. A 2 mL volume of this solution was degassed, refilled with dry argon, and stored in 

the dark for 12 h in a resealable Schlenk tube. Under a dry atmosphere, dimethyl(1,5-

cyclooctadiene)platinum(II) (CODPtMe2) (28 mg, 0.08 mmol) for CdS-Pt or cis-dimethyl-

(N,N,N΄,N΄-tetramethylene-diamine)palladium(II) (TMEDAPdMe2) (28 mg, 0.1 mmol) for 

CdS-Pd was dissolved in anhydrous toluene (1 mL), mixed with triethylamine (0.5 mL, used 

as a terminal electron donor),  and added to the CdS nanorod solution via syringe. The 

deposition reaction was then carried out for 1-3 h in the case of Pt deposition and 1-3 h in the 

case of Pd deposition by photochemically, under illumination at room temperature (21-24 

°C) in a fan-cooled Rayonet photoreactor containing a set of 16 side-on 420 nm fluorescent 

lamps total intensities: 136 and 16.6 W/m2, respectively). Longer irradiation times lead to the 

deposition of more metal particles per nanorod. The nonvolatile products were purified by 

precipitation with a 1:1 mixture of acetone and methanol (30 mL) and centrifugation (4200 

rpm for 10 min). 

Synthesis of CdS0.4Se0.6-Pt and CdS0.4Se0.6-Pd Hybrid Heterostructures. Axially 

anisotropic CdS0.4Se0.6 nanorods having a “drumstick”-like morphology (59.3±8.0 length, 

17.8±2.4 nm “head” diameter, 5.6±0.8 nm “tail” diameter) were synthesized by a modified 
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procedure recently reported in chapter 2. Briefly, CdO (105 mg, 0.81 mmol), TOPO (1.375 g, 

3.56 mmol), and ODPA (535 mg, 0.94 mmol) were weighed onto a three-neck round-

bottomed flask. The flask was fitted with a glass-coated magnetic stir bar, condenser, and 

stainless steel thermocouple. The apparatus was sealed and brought onto an Schlenk line. 

Using a heating mantle, the mixture was heated to 100 °C and evacuated under vacuum for 

15 min, and then it was refilled with argon and heated to 320 °C to form a completely 

colorless solution. The solution was then allowed to cool to 120 °C and evacuated under 

vacuum for 15 min, and then refilled with argon and heated back to 320 °C. When the 

temperature reached 300 °C, TOP (1.20 mL, 2.7 mmol) was injected into the flask. When the 

temperature reached 320 °C, a solution containing an air-free mixture of 2.25 M TOPS (0.90 

mL, 2 mmol) and 2.25M TOPSe (0.10 mL, 0.2 mmol) was rapidly injected, causing a gradual 

color change. Upon injection, the temperature was allowed to equilibrate at 315 °C and kept 

constant for a total reaction time of 85 min. The reaction mixture was then removed from the 

heating mantle and allowed to cool to room temperature. After dilution with toluene (5 mL), 

the nanorods were isolated by the addition of a 1:1 v/v iso-propanol/nonanoic acid (24 mL) 

mixture, followed by centrifugation (5000 rpm for 10 min). The CdS0.4Se0.6 nanorods were 

found to have a wurtzite crystal structure. 

Axially anisotropic CdS0.4Se0.6 nanorods were dissolved in toluene to give an optical 

density (OD) of 1.3 at 630 nm. A 2.0 mL volume of this solution was degassed, refilled with 

dry argon, and stored in the dark for 12 h in a resealable Schlenk tube. Under a dry 

atmosphere, (TMEDA)PdMe2 (30 mg, 0.1 mmol) was dissolved in anhydrous toluene (1 

mL), mixed with triethylamine (0.5 mL, used as terminal electron donor), and added to the 

CdS1-xSex nanorod solution via syringe. The deposition reaction was then carried out for 1 h 
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for Pd and 3 h for Pt photochemically under illumination at room temperature (21-24 °C) in a 

fan-cooled Rayonet photoreactor containing a set of 16 side-on 420 nm fluorescent lamps. 

Longer irradiation times lead to the deposition of more metal particles per nanorod.2 The 

nonvolatile products were purified twice by precipitation with methanol (30 mL) and 

centrifugation (5000 rpm for 10 min). 

Photocatalytic experiments. For each catalytic run, to a clean oven-dried NMR tube 

inside the glove box benzyl alcohol (40 mg), CdS (3.3×10-9 mol), CdS-M (3.3×10-9 mol) or 

CdS0.4Se0.6-M (2.9×10-9 mol) and C6D6 (0.5 ml) were added. The NMR tube was sealed 

using a septum and sealed with Parafilm® to prevent air leakage. The NMR tube was placed 

under direct sunlight or kept inside a photoreactor to carry out the photocatalysis. After a 

certain time, a definite amount of gas from the headspace was withdrawn using a microliter 

air-tight syringe. Gas samples were analyzed using a GC with a thermal conductivity 

detector. Liquid fractions were analyzed using GC, GC-MS and 1H NMR. 
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CHAPTER 6 

GENERAL CONCLUSION 

In summary, we prepared axially anisotropic nanorods with a composition gradient using 

a single injection of a mixture of TOPS and TOPSe to cadmium precursor solution. The 

morphology and the exact composition of the nanorods depend on the ratio of S and Se 

precursor on the injection solution. Axially anisotropic nanorods with a thick head segment 

and a thin tail segment are obtained when the Se loading is between 5% and 10% of total 

chalcogenides. The aspect ratio of the nanorods decreases as Se loading increases and optical 

properties of the nanostructures are tunable with composition. 

The absorption band edges of these nanostructures red shift with increasing Se loading. 

X-ray diffraction and elemental analyses show that the actual Se content in CdS1-xSex 

nanorods is consistently higher than synthetic Se loading. X-ray diffraction data, Vegard's 

plots, and high-resolution TEM studies confirm that axially anisotropic nanorods possess a 

graded-alloy structure. Elemental mapping by energy-dispersive spectroscopy and energy-

filtered TEM showed the head region of anisotropic nanorods is rich with Se and the tail 

region is rich with S. Time-dependent evolution studies show that the formation of these 

nanorods starts with homogeneous nucleation and quick growth of a thick CdSe-rich head, 

followed by heterogeneous nucleation and slow growth of a CdS-rich thin tail. This 

anisotropic growth can be attributed to the stability of chalcogenide precursors. TOPSe is less 

stable and more reactive compared to TOPS. 

Based on the observations of the aforementioned work, we studied the effect of 

phosphine-chalcogenide, R3PE (E = S or Se) precursor chemistry on the morphology and 

composition of the nanorods. Computational (DFT), NMR (31P and 77Se), and high-
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temperature crossover studies unambiguously confirmed a chemical bonding interaction 

between phosphorus and chalcogen atoms in all R3PE precursors. These studies showed 

phosphinechalcogenide reactivity decreases in the order TPPE ˃DPPE ˃ TBPE˃ TOPE ˃ 

HPTE (E = Se < S). Structural and optical characterization of CdS1-xSex nanodots, 

synthesized by a single high-temperature injection of a R3PS-R3PSe mixture to cadmium 

oleate, reveals their elemental composition and degree of radial alloying depends on relative 

R3PS and R3PSe reactivity. Similarly, structural characterization of CdS, CdSe, and CdS1-

xSex nanorods, synthesized by high-temperature injection of individual R3PE or R3PS-R3PSe 

precursor mixtures to cadmium phosphonate, reveals their length-to-diameter (aspect) ratio 

and a degree of axial alloying (composition gradient) depends on R3PE precursor reactivity. 

After establishing reliable methods for synthesizing semiconductor nanorods, we tried 

depositing metal nanoparticles on their surface using photochemical methods. We have 

shown precise lamp wavelength and its irradiance profile are critical in controlling whether 

metal photo deposition occurs in solution via homogeneous nucleation or on the surface of a 

colloidal semiconductor via heterogeneous nucleation, leading to freestanding or surface-

bound metal nanoparticles, respectively. Using a number of control and metal deposition 

experiments, we identified three fundamental pathways leading to metal nanoparticle 

formation. Two of these pathways, thermal and direct photochemical precursor 

decomposition, lead to homogeneous nucleation of metal nuclei anywhere in solution and 

result in formation of unbound freestanding metal nanoparticles. A third pathway, 

semiconductor-mediated photochemical seeding and reduction of the metal precursor, leads 

to heterogeneous nucleation of metal nuclei at the semiconductor surface and results in 

formation of surface-bound metal nanoparticles. We have used these observations to 
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selectively deposit Pt and Pd particles on the surface of CdS nanorods and axially anisotropic 

CdS0.4Se0.6 nanorods as model systems. Furthermore, we have shown specific lamp irradiance 

profile is critical in controlling specific locale (site-specificity) and overall distribution of Pd 

nanoparticles deposited on axially anisotropic CdS0.4Se0.6 nanorods.  

Finally, we have shown that semiconductor-metal nano-heterostructures are active 

catalysts for room temperature, photochemical dehydrogenation and hydrogenolysis of 

benzyl alcohol as a model substrate. These reactions produce hydrogen and alkane, are only 

driven by light, and proceed with high turnover numbers upwards of 10,000 within a sealed 

system. The precise photocatalyst structure and composition is critical in determining activity 

and selectivity. Under select conditions, CdS-Pt favors dehydrogenation (H2) over 

hydrogenolysis (toluene) 8:1, whereas CdS0.4Se0.6-Pd favors hydrogenolysis over 

dehydrogenation 3:1. Critically, the presence of a few metal (M = Pt, Pd) islands on the SC 

surface significantly enhances activity and selectivity, and also greatly stabilizes the SC 

against photo-induced etching and degradation. This all-inorganic, additive free approach 

may help in making industrial-scale photocatalytic conversions possible. Photochemically 

generated, surface-adsorbed SC-Pd-H equivalents are a useful synthetic intermediate in 

tandem catalysis, for example via transfer hydrogenation.  

 


