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ABSTRACT

The superconducting gap symmetry of the Fe-based superconductors was studied by
measurements and analysis of London penetration depth and superfluid density. Tunnel
diode resonator technique for these measurements was implemented in a dilution refrig-
erator allowing for the temperatures down to 50 mK. For the analysis of the superfluid
density, we used both experimental studies of Al-coated samples and original thermo-
dynamic approach based on Rutgers relation. In three systems studied, we found that
the superconducting gap at the optimal doping is best described in multi-gap full gap
scenario. By performing experiments on samples with artificially introduced disorder
with heavy ion irradiation, we show that evolution of the superconducting transition
temperature and of the superfluid density are consistent with full-gap sign changing s
superconducting state. The superconducting gap develops strong modulation both in
the under-doped and the over-doped regimes. In the terminal hole-doped KFeyAss, both
temperature dependence of the superfluid density and its evolution with increase of the
scattering rate are consistent with symmetry imposed vertical line nodes in the super-
conducting gap. By comparative studies of hole-doped (Ba,K)FeyAsy and electron-doped
Cal0-3-8, we show that the superconducting gap modulation in the under-doped regime

is intrinsic and is not induced by the coexisting static magnetic order.



CHAPTER 1. INTRODUCTION

1.1 Preface

Superconductivity is one of rare macroscopic quantum phenomena [1]. The phe-
nomenon refers to abrupt disappearance of electrical resistivity and complete expulsion
of magnetic field from the bulk of the sample, so-called Meissner effect. Attempts to
understand this mysterious phenomenon led to the developments of both experimental
methods and theoretical understandings which currently serve as main tools in condensed
matter physics.

For a quarter-century after the discovery in 1911, the origin of superconductivity
was not understood. Discovery of the Meissner effect stimulated London brothers to
develop a theory of magnetic field penetration into a superconductor [2]. The broth-
ers developed the concept of London penetration depth, a characteristic length scale of
superconductors. Thermodynamics of superconductors was first successfully described
by Ginzburg-Landau theory of late 1940s [3]. But microscopic understanding of the
phenomenon was lacking until key experiments found isotope substitution effect on su-
perconducting phase transition temperature 7, [4] and evidence for a superconducting
energy gap [5]. These two experimental findings and a theoretical idea about pairing of
electrons by even a weak attraction [6] led to the first successful microscopic theory for
superconductivity suggested by J. Bardeen, L. N. Cooper, and J. R. Schrieffer (BCS)
in 1957 [7]. The BCS theory considers the Bose-Einstein condensation of pairs formed

by conduction electrons, so-called Cooper pairs. The electrons in the pair have opposite



spins and momenta. The pairing is caused by electron-phonon interactions, the strength
of which determines T,. Pairing is isotropic and leads to a superconducting gap which
is constant over the Fermi surface, so-called s-wave pairing. In the BCS scenario, T,
would be dependent on the strength of electron-phonon coupling and on the detailed
electronic structure of materials [8, 9]. This isotropic interaction is robust against scat-
tering by non-magnetic impurities [10], but magnetic scattering is strongly antagonistic
to the spin-singlet pairing weakening superconductivity [11].

Studying superconductivity is important not only for scientific research but also for
applications. Practical implementation of superconductors requires materials with high
operational parameters such as superconducting critical temperature (1), upper critical
magnetic field (H.), and critical current density (j.), the highest values of temperature,
magnetic field and critical current density that superconductor can withstand. This
permanent desire for improving these parameters led to search and discovery of numerous
superconducting materials.

Elemental metals were the first superconductors, and their T, at ambient pressure is
limited by ~10 K. In 1930s, higher T, values were observed in some intermetallic alloys.
This new direction eventually led to the discovery of NbsSn and Nb3Ge with T, = 18 K
and 23 K, respectively, in early 1970s. In materials with presumably phonon-mediated
superconductivity, this T, remained the highest until discovery of superconductivity with
T. ~ 23 K in various compositions of Y-Pd-B-C [12, 13], and eventually the record value
for this class of materials was set at T, = 40 K in MgBs [14, 15]. The superconductivity
in MgBs is fully understood within the phonon-mediated mechanism as suggested by the
magnitude of the isotope effect [16]. Superconductivity in MgB, also has pronounced
multigap character with magnitude of the gap differing two times on different Fermi
surface sheets [17, 18].

In the mid 1980s, surprisingly, materials with 7. well above 100 K were discovered

among charge-doped copper oxides. This unexpected observation ignited a new hope for



discovery of materials which could be superconducting at ambient temperatures, but the
highest T, from this class of materials remains 155 K at 30 GPa to date.

It is interesting that the undoped parent compounds of the high 7. superconductors,
so-called cuprates, revealed antiferromagnetism in the insulating state with enormously
high Néel temperatures Tl. Superconductivity in cuprates is different from conventional
s-wave in that superconducting gap has zeros, and phase sensitive experiments unambigu-
ously showed that the symmetry of the order parameter is d-wave [19]. This proximity of
superconductivity to magnetism and highly anisotropic order parameter are antagonistic
with BCS theory. According to Abrikosov-Gor’kov theory [11], electron scattering on
magnetic moments tends to break Cooper pairs, thus weakening superconductivity and
suppressing T.. Observation of high Ty led to the suggestion that magnetism rather
than phonons may be responsible for such high T, of cuprates. Cuprates are not the
only class of materials in which superconductivity seems to like magnetism. Before their
discovery, superconductivity was found in CeCusSiy with T, = 0.5 K which attracted a
good deal of attention [20]. The superconductivity in CeCusSi, required almost 100% of
Ce-magnetic moments, a few atomic percent of nonmagnetic substitution was sufficient
to kill superconductivity completely, and superconductivity was not observed in the elec-
tronically equivalent LaCuySiy [21]. This discovery shone new light on interplay between
superconductivity and magnetism, which is now believed to be crucial for understanding
the unconventional superconductors.

In 1998, superconductivity was discovered in another heavy fermion material, Celng,
under pressure [22]. This discovery brought an interesting insight into magnetic mecha-
nism of superconductivity. Celns is an antiferromagnetic metal at ambient pressure with
Ty ~ 10 K. With application of pressure Ty is driven to zero, and superconductivity
appears at the edge of magnetic dome. The superconductivity was linked to magnetic
quantum critical point (QCP) where the material undergoes a zero temperature non-

thermal phase transition. Magnetic fluctuations near this transition are quantum in



nature. They affect normal state properties in a rather broad temperature domain and
lead to their significant deviations from standard theory of metals, Fermi liquid theory of
Landau. These magnetic fluctuations were suggested to mediate superconducting pairing
and bring exotic superconducting order parameter different from s-wave of BCS theory.
It was predicted that superconducting 7T, in this family of materials can be notably in-
creased in two dimensional materials [22], and indeed superconducting T, jumped from
0.1 K to 2.3 K in layered CeColns [23]. In addition, superconductivity with similar
T. was found in Celrlns; and CeRhIns under pressure. These three compounds are fre-
quently referred to as ”7115” compounds. It was suggested that superconductivity in 115
compounds is d-wave, similar to the cuprates [24].

In 2008 the second class of high-T, superconductors was discovered in a series of
LaFeAsO;_,F, [25]. These Fe-based superconductors (FeSC) have attracted enormous
attention with a hope for higher 7, than that of the copper-oxide superconductors and
a hope to understand the pairing mechanism behind. The highest 7. observed in these
materials up to date is 55 K [26]. Interestingly similar to cuprates and 115 compounds,
highest T, is found in the proximity of antiferromagnetic QCP [27]. However, initial
studies of superconducting gap of FeSC found no zeros being inconsistent with d-wave [28,
29]. Is this compatible with magnetically mediated pairing? An exotic superconducting
order parameter was suggested for FeSC in which superconducting gap changes sign on
different Fermi surfaces, so-called s pairing. Verification of this suggestion in connection
with different interactions between magnetism and superconductivity is main subject of
this thesis.

Knowing the structure of the superconducting gap is the most crucial prerequisite for
understanding the mechanism of superconductivity. The gap structure can be explored
directly or indirectly by various experimental methods. Unlike copper oxide supercon-
ductors in which d-wave symmetry was found in all related compounds, a variety of

experiments done in FeSC have revealed non-universal gap-symmetry. It is not clear



whether this non-universality is intrinsic or not. In order to elucidate this issue, mea-
surements on samples of higher quality with controlled degree of disorder are needed.

The London penetration depth, A, is among the most useful probes to study the
superconducting gap structure. However, analysis of A in FeSC is not trivial for many
reasons. Fe-based superconductors have complicated band structures with up to five
Fermi surface sheets. As aresult, superconductivity has pronounced multiband character,
which makes analysis of experimental A difficult. In most of the Fe-based compounds
superconductivity is induced by chemical substitution which adds significant disorder into
the system. The effect of uncontrolled disorder masks intrinsic response of unconventional
superconducting state. That is why it is important to study London penetration depth
in materials with independent of doping control of disorder. In this thesis, we use heavy
ion irradiation to probe superconducting pairing mechanism.

For understanding the relation between magnetism and superconductivity, it is im-
portant to study materials in which the two phases interact in a different way in the
phase diagram. For example, in BaFeyAss-based compounds with hole, electron, iso-
electron doping superconductivity and magnetism coexist in the bulk [30, 31, 32]. The
magnetic ground state of parent BaFeyAss has stripe type antiferromagetic order. In
the phase diagram of 1111 compounds, magnetism has similar stripe structure, but is
separated from superconductivity in the doping phase diagram. In the phase diagram
of Cajo(Pt3Asg)((Fe;_,Pt;)2Asse)s, magnetism and superconductivity are separated as
well [33, 34]. In Fe(Se,Te) magnetic ground state has double stripe structure. How do
these differences affect superconducting state? Do they affect the superconducting gap
structure? These are questions addressed experimentally in this thesis.

Superconductivity in most of the FeSC is induced by chemical substitution which
inevitably introduces disorder into the lattice. The degree of the disorder and its effect
on superconducting gap structure in unconventional superconductors is very difficult to

separate from the effect of doping. To get an insight into effect of disorder, we took



two approaches. First, we studied stoichiometric compounds representative of optimal
doping regime, LiFeAs, and heavily overdoped KFesAss. Second, we used heavy ion
radiation to have an independent of doping control of disorder.

In this thesis, I present a comprehensive study of the temperature variation of Lon-
don penetration depth AX(T) in various FeSC which are chemically tuned as well as
disorder-controlled. This thesis begins with introduction to superconducting properties
of the Fe-based superconductors. In the first half of this chapter, the structure of the
superconducting order parameter in FeSC will be extensively discussed with some key
experimental results. Most of the examples will be based on thermodynamic properties
compared with the London penetration depth measurements, which will be presented in
the second half of this chapter.

The experimental technique used to measure AX(T") for this thesis is a tunnel diode
resonator technique, and its principles associated with measurements of AX(T") will be
explained in-depth in the following chapter.

Temperature variation of the London penetration depth provides somewhat limited
information about the gap-structure. The structure of the superconducting gap can
be further investigated over full superconducting temperatures by studying superfluid
density which can be calculated from known AM(T") and A(0). However, measurement
of A(0) remains most challenging to date. In chapter 3, I will introduce a new way of
determining the absolute value of A(0) by using a modified Rutgers formula. The original
form of the formula, which is purely thermodynamic, can be re-written so that superfluid
density is related to directly measurable thermodynamic quantities.

Chapter 4 covers results on the London penetration depth measurements in several
chemically tuned systems in which superconductivity and magnetism interplay in a dif-
ferent way. The first two sections deal with the simplest and almost isotropic binary
phase of Fe(Te,Se) through one of the most complicated and highly two-dimensional
phase Cajo(Pt3Asg)((Fe;_,Pt;)2Ass)s, the so-called 10-3-8 phase. Second half of the



chapter describes study of the materials in which superconductivity and magnetism co-
exist; under-doped (Ba,K)FeyAsy. These FeSC are contrasted with low T isostructural
compounds, CaPdyAs,, SrPdyAs,, and SrPdyGes as end members of the so-called 122
systems in which Fe is completely replaced by Pd for the first two materials and As is
replaced by Ge in the last compound.

The experimental results on the London penetration depth measurements in two
stoichiometric superconductors LiFeAs and KFey,Asy are discussed in chapter 5. The
absence of substitutional disorder makes interpretation of experimental AX(T') in these
materials rather straightforward. Next, we use irradiation technique to deliberately
introduce disorder into optimally electron-and hole-doped BaFeyAss superconductors
and study its effect on AXN(T).

In chapter 6, I will summarize and conclude this thesis.

Analysis of superfluid density with the Rutgers relation in chapter 3 has been pub-
lished in Physical Review B 87, 214518 (2013). The experimental results of the chapter
4 were published in Physical Review B 81, 180503 (2010), Physical Review B 84, 174502
(2011), Physical Review B 85, 020504 (2012), Physical Review B 87, 224510 (2013)
Physical Review B 87, 094515 (2013). The results of the chapter 5 were published in
Physical Review B 83, 100502 (2011), Physical Review B 82, 060518 (2010), Physical
Review B 87, 180502 (2013).

1.2 Properties of Fe-based superconductors

1.2.1 Crystal structures

Superconductivity was observed in several families of Fe-based materials with different
crystal structures. Four families have been studied most widely; FeSe (11), AFeAs (111),
AEFeyAsy (122), and RFeAsO (1111) where A is alkali metal, AF stands for alkali earth

metals, and R represents rare earth elements. The crystal structures of these compounds



co

FeSe

.
SrFe,As, C

LaFeAsO/
SrFeAsF

Figure 1.1 Crystal structure of the iron-based superconductors. The four tetragonal
structures known to support superconductivity. The active planar iron layers
common to all superconducting compounds with iron ions shown in red and
pnictogen/chalcogen anions shown in gold. Ref. [35]

are shown in Fig. 1.1. !

The key structural element contributing the most to the levels close to the Fermi
energy is a layer consisting of a square lattice of Fe atoms. Each Fe atom is surrounded
by tetrahedrally coordinated pnicogens (Pn) or chalcogens (Ch). The Fe layers are

sequenced with buffer layers between, with the 11-type being an exception.

1.2.2 Generic doping phase diagram: comparison to cuprates

The layered structure of FeSC resembles layered structure of the other family of
high T, superconductors, the cuprates, in which dominant contribution to the electronic

structure is made by CuO plane. The similarity between these two families can be found

'Reprinted figure with permission from J. Paglione and R. L. Green, Nature Physics 6, 645 (2010).
Copyright (2010) by Nature Publishing Group.
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A

Paramagnetic
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Super-
conducting

Coexistence

Super- ]
conducting Antiferro-

magnetic

ntiferro-
magnetic

Electron

Electron Hole

Hole
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Figure 1.2 Schematic phase diagram of copper-oxide-based (left) and the 122 family of
iron-based superconductors (right). Ref. [36]

also in the doping phase diagrams in Fig. 1.2. 2 The parent undoped compounds in both
cases are magnetically ordered. However, in case of the cuprates this magnetic state is
the Mott insulator while in FeSC it is semimetal. In both cases, superconductivity is
induced by doping, and maximum 7 is observed close to the point where magnetism
vanishes. As we discussed in Preface, it was suggested that it coincides with a magnetic
QCP. With further doping increase, T, goes down, and superconductivity vanished in

most of FeSC before full substitution.

1.2.3 Magnetic structures

In-plane commensurate antiferromagnetic structure of FeSC are depicted in Fig. 1.3
for (a) the 111-, 1111-, and 122-type FeAs-based parent compounds and for (b) FeTe.
The Fe atoms are represented as filled circles in both panels.

Following the description in Ref. [31], for the 111-, 1111-, and 122-type FeAs-based
compounds, the Fe-square lattice at temperatures T > T, (a = b) becomes slightly

distorted (a > b) for T' < T,. Here T stands for structural phase transition from high-

2Reprinted figure with permission from I. I. Mazin, Nature 464, 183 (2010). Copyright (2010) by
Nature Publishing Group.
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(@) 122, 111,and 111 1-type (b) FeTe

e

Ji

Figure 1.3 Magnetic structure of Fe-based superconductors. Ref. [31]

temperature orthorhombic to low-temperature tetragonal structure. The basal plane
orthorhombic unit cell is shown as the dashed box in Fig. 1.3. The room temperature
tetragonal basal plane has edges that are smaller by a factor of v/2 and are rotated
by 45° with respect to the orthorhombic axes. The direction of collinearly ordered
moments is in the a-b plane of the orthorhombic structure and is along the longer a-
axis. The red and blue arrows represent spins on the red and blue sublattices of Fe
atoms, that respectively consist of next-nearest-neighbors. Each sublattice is individually
antiferromagnetically ordered in a commensurate collinear Ising-like configuration. When
both spin lattices are considered together, this intralattice ordering causes spin stripes to
form along the b-axis, which also causes magnetic frustration between the two sublattices
irrespective of whether the intersublattice coupling is ferromagnetic or antiferromagnetic.
The nearest-neighbor exchange coupling constants .J;, and Jy;, (between sublattices) and
the next-nearest-neighbor coupling constant J, (within each sublattice) in a local moment
description of the orthorhombic phase are shown. An anisotropy between .Ji, and Jy; is
needed for the system to choose whether the stripe orientation is vertical (as observed)
or horizontal.

The magnetic structure in FeTe is different from the other Fe-based compounds as

shown in Fig. 1.3(b). It is of commensurate collinear in-plane antiferromagnetic diagonal



11

double stripe structure. The tetragonal /monoclinic basal plane a- and b-axes and basal
plane crystallographic unit cell outline (dashed lines) are indicated. .J;, Jo, and Js are

the nearest, next nearest, and next next nearest neighbor exchange interactions.

1.2.4 Fermi surfaces

(2) T2Ba2CuOs+s (b) Ba(FeosCoo.1)2As2

Figure 1.4 (a) The ab-plane projected Fermi surface of TloBayCuQOgys. The shaded re-
gion represent small warping along c-axis [37]. (b) Calculated Fermi surfaces
of BaFeyAsy with 10% substitution of Co using the folded BZ representation
with two Fe per unit cell. The hole-like Fermi surfaces (purple and blue) are
centered around the I' point (k, = 0, k, = 0) and the electron-like surfaces
are around the M point (7, ) [38].

The Fermi surface of the over-doped copper oxides is a single cylinder open along the
c-axis, as shown in Fig. 1.4(a) for TlyBasCuOg,s. The Fermi surface seems to change
in the underdoped compounds [37, 39]. The bandstructure calculations for FeSC predict
complicated Fermi surfaces with up to five sheets. These sheets have cylindrical shape
open along the c-axis, however, much more warped compared to the cuprates. This
difference in warping leads to much smaller electrical anisotropy of the FeSC compared
to the cuprates. Anisotropy sensitively depends on the pnictogen height with respect to
the Fe-layer. The Fermi surfaces of FeSC shown, in Fig. 1.4(b), consist of the hole-like
Fermi surfaces centered at the I' point (k, = 0, k, = 0) and the electron-like surfaces

centered at the M point (7, 7).
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1.2.5 Temperature-concentration Phase diagrams

1‘ SC

ol— .
0.00 0.02 0.04 0.06 008 0.10 0.12
X

(b) 190 |Ba|l-><KL<Feles|2 | T |
s
_ 100 T, -
< Te
F 50 -
o | | 1

00 02 04 06 08 10
K content (x)

Figure 1.5 Temperature-concentration phase diagrams of (a) Ba(Fe;_,Co,)2Ass [40] (b)
Ba; K, FesAsy [41] (¢) BaFeg(Asy P, )o [42].

The generic phase diagram of FeSC shown in Section 1.2.2 catches the main features
of most materials. However, the details are different in different families. These differ-
ences are illustrated in Fig. 1.5 and Fig. 1.6. Top panel of Fig. 1.5 shows the T-z phase
diagram for electron doped Ba(Fe;_,Co,)2Asy.> Substitution of Co for Fe suppresses

both the high-temperature tetragonal-to-orthorhombic as well as paramagnetic to anti-

3Reprinted figure with permission from S. Nandi et al., Physical Review Letter 104, 057006 (2010).
Copyright (2010) by the American Physical Society.
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ferromagnetic phase transitions. But the two transitions have different temperatures [30].
Both transitions are completely suppressed for x > 0.06. Superconductivity is observed
starting from = > 0.038 and for some range coexists with bulk magnetic phase. Super-
conductivity disappears for z ~ 0.15, maximum 7T, ~ 23 K is observed for z ~ 0.07. The
orthorhombicity (or orthorhombic distortion) defined as (a—b)/(a+b), where a and b are
in-plane lattice parameters, decreases with increasing doping. The relative decrease in
the orthorhombicity below T, is pronounced and increases with increased doping [40]. In
sample with x = 0.063 the orthorhombicity decreases below T, and the low-temperature
structure returns to tetragonal symmetry below 7. [40]. For z = 0.066, no transition
to the orthorhombic structure was observed, defining an upper Co concentration limit
for the tetragonal-to-orthorhombic phase transition. The extension of the tetragonal-to-
orthorhombic phase line into the superconducting dome is represented by the dashed line
in the figure. Similarly, high-resolution thermal expansion measurements on detwinned
single crystals of YBayCuzO7_s also found a change in the orthorhombic distortion at
T., but smaller than the present case by approximately 2 orders of magnitude [43].

Similar phase diagrams with coexisting magnetism and superconductivity in the un-
derdoped range is observed in hole-doped Ba;_,K,FesAs, [44, 41] as well as in isoelectron
doped 122 systems. The phase diagram of Ba;_,K,FesAs, established based on resistiv-
ity, magnetization, and neutron powder diffraction experiments is shown in Fig. 1.5(b)
taken from Ref. [41].* With K-doping, the tetragonal to orthorhombic structural tran-
sition temperature T decreases until it is fully suppressed for x > 0.25. The SDW order
and orthorhombic order are coincident and first order unlike electron-doped compounds.
Superconductivity was observed for all samples with z > 0.15. Superconducting transi-
tion temperatures peak at ~ 38 K for z = 0.4. Interestingly, the end member (z = 1),
heavily hole-doped KFe;As,, exhibits superconductivity with low 7T, = 3.4 K.

Figure 1.5(c) displays the T-z phase diagram of isoelectric doped BaFes(As;_, P, )2

4Reprinted figure with permission from S. Aveci et al., Physical Review B 85, 184507 (2012). Copyright
(2012) by the American Physical Society.



14

system taken from Ref. [42].> Both structural and magnetic transition temperatures
decrease rapidly with increasing x, and there is clear separation between them (0.14 <
x < 0.30). Near z ~ 0.30, the magnetic transition disappears. The superconducting
transition shows a maximum 7, = 31 K at x = 0.26, and superconductivity is not
observable for x > 0.7. The phase diagram in this system resembles that of the pressure
dependence of BaFe;As,, indicating that the isoelectron substitution of P for As causes
similar effects on the system as mechanical pressure. Normal state transport properties
exhibit the non-Fermi liquid behavior over wide temperature domain near optimally
doped regime.

Isoelectron doping effect on Fe-site was also studied in Ba(Fe;_,Ru,)2Ass [45]. The
structural and magnetic phase transition is also suppressed upon Ru-doping, but un-
like P-doping and electron-doping on Fe-site there is no detectable separation between.
Superconductivity is stabilized at low temperatures for x > 0.2 and appears more grad-
ual as compared to electron-doping on Fe-site, which resembles the effect of mechanical
pressure. The superconducting region is dome-like with maximum 7, = 16.5 K.

Similar phase diagrams were also observed in Co-doped NaFeAs. The isostructural
LiFeAs which does not show apparent magnetism corresponds to slightly overdoped case
according to the pressure study [46].

The structural and magnetic phase diagram in CeFeAsO;_,F, shown in Fig. 1.6(a)
is taken from [47]. ®The red circles indicate the onset temperature of the tetragonal-
to-orthorhombic phase transition. The black squares and green triangles designate the
Néel temperatures of Fe and Ce, respectively, as determined from neutron measurements.
The superconducting transition temperatures are from onset 7, of the resistivity mea-
surements taken from [49]. The open triangles are 7, determined from susceptibility

measurements. The inset in (d) shows the F-doping dependence of the Fe moment as

SReprinted figure with permission from S. Kasahara et al., Physical Review B 81, 184519 (2010).
Copyright (2010) by the American Physical Society.

6Reprinted figure with permission from J. Zhao, Nature Materials 7, 953 (2008). Copyright (2010)
by Nature Publishing Group.
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Figure 1.6 Temperature-concentration phase diagrams of (a) CeFeAsO;_,F, [47] (b)
F61+ySG$T€1_z [48] (C) CalO(PtgAs8)((Fel_thz)2A52)5 [33]

determined from the intensity of the (1,0,2) magnetic peak at 40 K, where the influence
of the Ce moment on the Fe magnetic Bragg peak intensity can be safely ignored.

The T-x phase diagram for Fe,,,Se,Te;_, based on the bulk susceptibility data ob-
tained from the single crystal samples is shown in Fig. 1.6(b) taken from [48]." The
values of x and y are nominal values. The phase digram clearly shows the trends and
the existence of three distinct phases; the antiferromagnetic phase for x < 0.1, the bulk
superconducting phase for x < 0.4, and the intermediate spin-glass phase. The phase

diagram in this work clearly shows that the long-range ordered SDW phase is non-

"Reprinted figure with permission from N. Katayama et al., Journal of the Physical Society of Japan
79, 113702 (2010). Copyright (2010) by the Physical Society of Japan.
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superconducting while an earlier paper by Fang et al. [50] reported superconductivity in
the same phase based on powder samples, problems with contamination by oxide phases
in that work have already been pointed out by McQueen et al. [51]. In the intermediate
phase, some samples showed partial superconductivity below 7. ~ 11 K as presented in
the figure, while others were non-superconducting down to 1.4 K.

The T-x phase diagram of Cao(PtsAss)((Fe;_,Pt;)2As2)5 is shown in Fig. 1.6(c). In
this system, the magnetic (M) and superconducting (SC) phases are clearly separated as
a function of Pt doping (z). T is determined by electronic transport measurements [34],
below which an NMR study found evidence for a stripe type magnetism similar to the

122 systems. However, detailed magnetic structure has not been determined to date.

1.2.6 Superconducting mechanism and order parameter
c d

Figure 1.7 A schematic representation of the superconducting order parameter in (a)
a conventional s-wave superconductor, (b) d wave in copper oxides, (c) a
two-band s wave with the same sign, so-called s, in MgBs, and (d) s+
wave, which is thought to be the case in Fe-based superconductors. Figures

are reprinted with permission from I. I. Mazin, Nature 464, 183 (2010).
Copyright (2010) by Nature Publishing Group.

As we mentioned in Preface, the original BCS theory predicts superconducting gap

which is constant on the Fermi surface. This s-wave state is schematically illustrated
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in Fig. 1.7(a). This simplest BCS gap function does not describe all phonon mediated
superconductors. It was recognized that superconducting gap can strongly vary between
different Fermi surface sheets as observed, for example, in MgBs as shown in (¢). In
addition to this, in some materials, gap strongly varies over the Fermi surface as seen,
for example, in LuNiyB,C [52, 53]. It was suggested that this gap anisotropy is arising
from nesting on the Fermi surface [53]. But, importantly, in all phonon mediated super-
conductors, the gap function does not change sign. In the cuprates, the superconducting
gap function changes sign over the Fermi surface [36]. This sign change is experimen-
tally proven by corner junction phase sensitive experiments [19]. Figure 1.7(b) shows
schematically the superconducting gap function of the cuprates. Figure 1.7(c) shows
the superconducting gap structure of MgB,. This material has strong variation of gap
magnitude between different sheets of the Fermi surfaces [54, 55]. This represents so-
called multiband superconductivity. Note, however, the superconducting gap function is
of same sign on different Fermi surfaces [36, 56]. In Figure 1.7(d), we show the supercon-
ducting gap function suggested for FeSC in the s -wave state [57]. The superconducting
gap has different magnitude on different Fermi surfaces, but most importantly the gap
function changes sign between Fermi surfaces. Experimental verification of this sugges-
tion and its contrast with conventional s-wave were at the forefront of the studies of the
superconducting gap in FeSC.

One of key experiments establishing electron-phonon mechanism of coupling was iso-
tope effect on T,.. The conventional isotope effect has been reported in SmFeAsO;_,F,
and Ba;_,K,FeyAsy [58]. This observation may indicate some contribution of electron-
phonon interaction into pairing. However, the magnitude of the effect has been highly
controversial [58, 59], which is not unusual for complex materials contrary to a sim-
ple case of MgBy [16]. The observed isotope effect may be spurious, it may result
from subtle changes in the structural properties adding more weight on possibility of

electronic-originated superconductivity.
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In the proposed s state for FeSC, the pairing is induced by the repulsive Coulomb
interactions which lead to effective attraction between two electrons provided gap func-
tion changes sign. This sign change leads to neutron resonance peak at the wavevector
connecting Fermi surfaces with opposite signs of order parameter, i.e., Ay = —Ajiq.
Here @) is a wavevector of spin resonance peak which can be explicitly detected in in-
elastic neutron scattering experiment. Such resonance peak has been indeed observed in
the cuprates and 115 compounds [60]. For FeSC, this resonance peak was first detected
in BagKosFesAsy with 14 meV energy transfer with Q = 1.15 A~ [61].

Although a firm conclusion about the pairing symmetry in FeSC would require a di-
rect measurement of the sign-changing order parameters by phase sensitive experiments
[62], measurements of basic thermodynamic and transport properties have provided con-
vincing results for the nodal structure of the superconducting gap. The magnitude of
the jump in heat capacity experiments AC,/v,T. is expected to be AC, /v, T, = 1.43 in
a weak-coupling BCS superconductor. AC,/v,T. ~ 2.5 was observed in (Ba,K)FesAs,
indicating strong-coupling full-gap superconductivity, and AC,/v,T. ~ 0.5 in KFeyAs,
which is much smaller than the weak-coupling limit. Such a low value could be attributed
to multigap nature of superconductivity [63, 64].

Bud’ko, Ni, and Canfield (BNC) proposed a correlation AC,/T. = aT? (a ~ 0.56
mJ/mole-K*) for various doped BaFeyAs, [65]. This clear deviation from conventional
BCS-like behavior was interpreted as consequence of strong pair-breaking [66, 67], co-
existence of superconductivity and magnetism [68], and superconductivity arising from
non-Fermi-liquid quantum critical metal [69].

The most relevant experiments to study the superconducting gap structure include
heat capacity, thermal conductivity, and London penetration depth. Knowledge of
their low temperature behavior, provided precisely measured, gives insight into the
nodal structure of the superconducting gap. Conventional superconductors exhibit 7-

exponential behavior in these quantities at the lowest temperature limit due to thermally
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activated quasiparticles over isotropic superconducting gap. Magnetic field-dependence
is also consistent with the existence of isotropic energy gap. For example, H-linear field-
dependence of C,/T is caused by quasiparticle state in the vortex core but not in the
bulk. On the other hand, unconventional superconductors often show a power-law be-
havior, T, in both temperature-and field-dependence over a wide range of temperatures.
Temperature and field dependence of these quantities can be associated with a certain
structure of the superconducting gap.

Measurements of heat capacity as a function of temperature and magnetic field pro-
vide valuable clues about pairing symmetry. While conventional superconductors show
T-exponential, unconventional paring exhibit a power-law behavior of C,(T") at low tem-
peratures. For instance, AC,(T) ~ T? would imply line-nodal superconducting gap in
clean materials [70], but it is often difficult to verify experimentally due to other con-
tributions, such as phonons and the Schottky anomaly. Nevertheless, T2-behavior was
observed in Ba(Fe,Co)2As, [71, 72]. On the other hand, field-dependence of C,/T = ~
could be more useful. H-linear variation of v(H) is consistent with a fully gapped su-
perconductor. For d-wave, on the other hand, v(H) varies as H'/? in clean limit [73] or
H log H in dirty limit [74] due to the so-called Volovik effect arising from the Doppler shift
of the low-energy nodal quasiparticles in the superflow field of the vortex line. Similar
field dependence is expected in the sy state with scattering, and v ~ H'/? was observed
in the 1111 system. In a hole doped BaFesAs,, an observation of v ~ H was attributed
to fully gapped superconductivity. However, field dependence of ~ in electron-doped
BaFeyAsy compounds remains controversial to date [75, 76].

Temperature-and field-dependence of electronic thermal conductivity x is also a char-
acteristic of the nodal structure of the superconducting gap. Residual linear term in the
electronic thermal conductivity, x/T|r—o is negligible in a fully gapped superconductor,
and a finite residual value would imply nodes in the gap. Field dependence of k is

H-exponential for a full gap, and x/T ~ H'? for a nodal gap. Most comprehensive
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and convincing results on temperature-and field-dependent s can be found in BaFeyAss
systems mostly because of the availability of high quality single crystals although ther-
mal conductivity is less sensitive to impurities compared to other measurable quantities
in the superconducting state. At the optimal doping, in both electron-and hole-doped
BaFeyAss, there is no measurable residual electronic thermal conductivity in both in- and
out-of-plane directions [77, 78, 79]. However, a significant residual linear term was mea-
sured in electron doped BaFey;As, with concentrations at both edges of superconducting-
dome of T-z phase space [78]. Measurements in KFeyAs, which is effectively the end
member of hole-doped BaFeyAssy revealed d-wave gap structure, but it is still an open
question whether it is a symmetry imposed d-wave or a state with accidental nodes in
multi s-wave gap structure. On the other hand, isovalent substitution of As by P in

BaFe;As, shows a nodal gap structure over all superconducting concentrations.

1.3 London penetration depth

1.3.1 Theory of the London penetration depth

Concept of the penetration depth of weak magnetic field into a superconductor was
first introduced by F. and H. London brothers to account for the Meissner-Ochcenfeld
effect. A superconductor in weak magnetic field generates the so-called supercurrent to
expel the magnetic field out of the bulk. The supercurrent is distributed near surfaces of
the superconductor within a characteristic length scale which is now called the London
penetration depth. For superconductor with a spherical Fermi surface (electron gas), the
penetration depth at 7' < T, is given by

mc?

A (1.1)

B 4mnge?
where ng is a density of superconducting electrons which are responsible for the occur-
rence of supercurrent, and the value of n, is of the order of normal state electronic density.

Although there is no explicit temperature dependence in this equation, this quantity has
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a minimum value at 7" = 0 and diverges at the superconducting phase transition as
temperature is raised.

In a semiclassical picture [80], the temperature-dependent London penetration depth
provides basic information about the microscopic pairing state of a superconductor. In
a superconductor with an arbitrary electronic structure, the anisotropic London pene-

tration depth is given by

A2 = ¢

1.2
L= (12)

where T;; = Tp + Tp is proportional to superfluid density. Here Tp and Tp are para-
magnetic and diamagnetic responses, respectively, of thermally activated quasi particles

and are given by

62 VpVFE e 8f Ek
Tpr ~ ds dE | — 1.3
" 27r3hc7{ " ur /A "”( 8Ek> VEI—AZ 1-3)

2
Tp=— 7{ dSp Y (1.4)

~ 4rihe Up

where A, F}, and vp are superconducting gap function, energy measured from Ep, and
Fermi velocity, respectively. As T goes to zero, Tp decreases to zero as well, and as
T is raised to T, Tp approached Tp. If Ay is isotropic, then the anisotropy of Tp is
temperature-independent and its anisotropy is the same as the anisotropy of Tp. On the
other hand, if Ay is anisotropic, then the anisotropy of Tp is affected by the anisotropies
of both F) and Ay, and is temperature-dependent. Therefore, according to this pic-
ture, the spatial components of the London penetration depth can be computed for a
general Fermi surface geometry and an arbitrary momentum dependent superconducting
gap function. In other words, temperature dependence of the London penetration depth
probes the angular variation of the superconducting order parameter when its temper-
ature dependence is measured precisely down to low enough temperatures. Practically,
at low temperatures, below 0.37,., where the superconducting gap can be considered as
constant, the measured penetration depth can be well described by a power-law func-

tion, AXN(T) = AT™. The pre-factor A is closely related to A(0), and the exponent n
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has characteristic values depending on the symmetry of the superconducting gap. The
temperature dependence of the penetration depth has been well accounted for two well-
known gap symmetries.

First, in s-wave superconductors with isotropic order parameter the dependence is

exponential and is given as

ANT)  |xA(0) p< A(0>) (1.5)

M0) 2k TP\ ET

where A(0) is one half of the superconducting energy gap at 7' = 0. Second, for a

nodal superconductor, in particular with line nodes in a cylindrical Fermi surface, the

penetration depth in clean limit varies as T-linear and is given by

ANT)  2In2
NOBE aA(O)T (1.6)

where o depends on the functional form of A near nodes [81]. Unlike isotropic super-
conductors, temperature variation of A in anisotropic superconductors is rather easily
affected by impurity scattering. In a dirty line-nodal superconductor, penetration depth
may vary as T-quadratic at T' < T, due to residual in-gap states introduced by impuri-
ties. The penetration depth in this situation can be characterized by [82]

T2

AXNT) = O

(1.7)

where T™ is a characteristic temperature which is proportional to impurity scattering in
the system, and a is a constant of order A(0).

Fig. 1.8 shows examples of AX(T') in typical superconductors (see chapter 2 for de-
tails). The penetration depth was measured by using a tunnel diode resonator technique
in Ames Laboratory. Penetration depth was normalized as AX(T)/AN(0.5T,) so that
AX(T) in different superconductors can be easily compared. Nb, a conventional super-
conductor, shows almost temperature independent lambda up to 7./3. MgBs multi-gap

s-wave superconductor shows clear saturation in 7" — 0 limit, but clearly distinguishable
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Figure 1.8 Experimental London penetration depth in Nb, MgB,, and BSCCO.

from single gap s-wave in Nb. A d-wave superconductor, BisSroCuOg, ., shows linear
temperature dependence.

Knowledge of the superconducting gap structure obtained from measured AX(T) at
the lowest temperatures can be extended to full superconducting T-domain by studying
superfluid density. Superfluid density can be calculated from the London penetration

depth by using a relation;
AZ(0)
B T — 20
D= N)

(1.8)

For a conventional superconductor, the superfluid density at low temperatures can be

found by

ps=1— %7(9) exp (—%) (1.9)

For d,2_,» pairing superconductors, the superfluid density at low temperatures is given

by
2In2
A(0)

pe=1-— T. (1.10)

As shown above, temperature dependence of the superfluid density at low temperatures
are the same as that of the London penetration depth. The theoretical superfluid density

for these two special cases are plotted for full superconducting temperature range in Fig.

1.9.
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Figure 1.9 Theoretical superfluid density of s-wave and d-wave.

1.3.2 London penetration depth in Fe-based superconductors

When this project was starting, very little was known about London penetration
depth in FeSC, and the reports were very controversial. Whereas exponential tempera-
ture dependence was reported in SmFeAsO,_,F, [83] and (Ba,K)FeyAsy [84], studies of
AX(T) in Ba(Fe,Co)aAsy [85, 86], SmFeAsO,_,F, [83], and LaFeAsO,_,F, [87] found a
power-law A\ ~ T™ where 2 < n < 2.5, which is not consistent with presence of line
nodes in the superconducting gap. In R1111, measured AX(T") could be modified due to
localized magnetic moment of R, which makes analysis rather difficult [88, 83, 87]. For s4
state, it was pointed out that the effect of disorder may change exponential 7T-variation
of AXNT) to a power-law behavior with exponent even below 2, down to 1.6 [89, 90].
But stoichiometric LaFePO exhibits A\ ~ T%% which can not be reconciled with fully
gapped superconductivity [91, 92].

On the other hand, systematic studies of doping evolution of thermal conductivity
found strong doping induced gap anisotropy change in BaCol122. This doping evolu-
tion was not expected in any model. It was natural to ask if this is a general trend
for FeSC. Considering significant effect of disorder scattering, it was very important to

study stoichiometric materials. Our measurements on stoichiometric LiFeAs revealed
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true exponential AXN(T") [93, 94]. In a similar stoichiometric compound LiFeP, AX(T')
was consistent with the presence of nodes in the superconducting gap [95]. This difference
may be suggestive that evolution of gap anisotropy with doping does not depend on dis-
order scattering and may be intrinsic effect. Studies of AX(T") in another stoichiometric

superconductor, KFe,As,, finding gap nodes, support this view.
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CHAPTER 2. EXPERIMENTAL

2.1 Tunnel diode resonator technique for London penetration

depth measurements

2.1.1 Principles of tunnel diode resonator
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Figure 2.1 (left axis) IV characteristic curve of a tunnel diode. (right axis) Differential
resistance dV/dI.

A tunnel diode resonator (TDR) is an electronic circuit that generates a highly stable
oscillation with a radio frequency of order typically 1-100 MHz. The key element is a
self-oscillating LC' tank circuit powered by a tunnel diode or Esaki diode. The resonance
frequency is determined by fy = 1/v/LC.

The tunnel diode is composed of two different types of heavily doped semiconductors:
p-and n-type. When these two semiconductors are spatially very closely positioned with

the depletion layer being approximately 100 A, valence band of p-type and conduction
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band of n-type overlap, and such thin layer allows electric current flow even at zero bias
voltage by quantum tunneling effect. When an applied forward bias voltage reduces the
overlap enough, it exhibits a characteristic of negative differential resistance as shown in
Fig. 2.1, which is the most crucial property of the diode for the resonator technique.
Either the inductor and capacitor circuit elements of the LC' tank circuit can be used
as the experimental probe incorporating the sample as part of the element. Relevant
magnetic and electric properties can be studied by utilizing the inductor and the capac-
itor, respectively. Various usages of TDR with a capacitor as a probe can be found in
Ref. [96, 97]. In this section, we will focus on measurements based on the inductive
coupling between a probe coil and a specimen. In such a case, the frequency shift ¢ f due

to change of the inductance 0L can be related by;

1 1 SL\ V?
Jotof = 2\/(L+6L)C - omV/LC (1+f) . (2.1)

Inductance of a typical coil, for example ~10 mm long and ~2 mm wide with ~ 50 turns,
is of order 1 pH. By using a capacitor with 100 pF, fy =~ 16 MHz. Practical upper limit
of change in inductance §L with an 1x1x0.1 mm3 big sample is 6L ~ 10 nH. In such

cases, i.e., 0L < L, the equation can be simplified;

5f 16L
f—‘fz g (2.2)

0L can be associated to change in dynamic magnetic susceptibility of the specimen. By

definition,
_
o dt

where ® is magnetic flux penetrating through the inductor. For a long solenoid-coil

L (2.3)

without a sample, ® = H,. Aln = H,.V,n. Here H,. is the ac magnetic field produced
by the coil, A is a cross sectional area of the coil, [ is the longitudinal length of the coil, n
is the number of turns per unit length, and V, is the volume of the coil. For infinitesimal

change in L caused by presence of a sample in the coil, we can write;

_dse 5L _ o0

oL dt’ L &

(2.4)
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Since the change in L is purely due to change in magnetization of the specimen M,
0b=MV;n (2.5)

where V is volume of the specimen. It can be shown;

0P Vs
ac 2'
P VCX (2.6)

where x,. = M/H,. is real part of magnetic susceptibility of the specimen. Finally the
frequency shift can be written;

of 1V,
— o~ ———4 ac- 2.7
i 577 X (2.7)

The sensitivity of 0.001 ppm can be achieved when the circuit is constructed with care
as well as all relevant electronics are properly used [97]. Application to measurements of
superconducting penetration depth will be throughly discussed in the following section,

and the sensitivity for this quantity can be as good as A.

TD R3
| |
| I I R2 C L
(of] C2

Figure 2.2 Circuit diagram for a prototypical TDR circuit.

A prototype circuit consists of eight components; a tunnel diode, an inductor coil,
three capacitors, and three resistors. A schematic of this prototype is shown in Fig. 2.2.
The combination of R; and Ry should provide optimal bias voltage to the tunnel diode.
Total impedance of R3, C, and L should be low enough so that it can be well compensated
by the negative resistance of the diode. C; (~10 pF) allows small portion of signal to
travel to the room temperature electronics. C5 should be acting as a short circuit for
the primary resonance oscillation. In-depth description of the circuit construction can

be found in Ref. [97, 98, 99].
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Figure 2.3 Schematic of TDR measurements.

Figure 2.3 is a schematic of typical measurements using a TDR technique at low
temperatures. At proper forward bias voltage, the TDR produces a radio frequency
fror. The signal is usually amplified and mixed with a stable frequency f;, which is
set to be ~ 1 kHz higher than fipr, and finally the variation of the frequency shift
Af = (fuo — fror) is measured against time, temperature, or magnetic field.

For applications of a TDR circuit at low temperatures, it is important to achieve
thermal stability of the circuit since the resonance frequency is highly dependent on
the temperature of the circuit. It is recommended to stabilize the temperature of the
circuit in order to minimize noise and background caused by thermal instability. The
first published description of a TDR technique used in low temperatures was given in
Ref. [96] where the technique was utilized to measure density of *He under pressure.

For London penetration depth measurements below 500 mK down to ~50 mK, we
developed a TDR setup in a dilution refrigerator (KelvinoxM X400, Oxford Instruments).
Real images of the key parts of the setup are shown in Fig. 2.4. To minimize thermal
conductance between the TDR stage and the sample stage, thin stainless steel separators

were used between these two stages. The TDR stage is thermally connected to the
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M/C (T = 20 mK)

Coil
1.5K

I

Figure 2.4 'TDR setup on a dilution refrigerator.

Still stage with thick copper wires, and the temperature of the TDR stage was actively
controlled. With the TDR operating at 7' = 1.5 K, the temperature of the mixing
chamber does not rise above 20 mK, and the base temperature of the sample stage can
be as low as 40 mK. The circuit components used in the dil-fridge TDR setup are listed
in Table 2.1. Two types of circuit configurations are used. For the first type, all eight
components of the TDR circuit are located on the circuit temperature stage. For the
second type, the circuit is split between two different stages. In this type, R;, Rs, and
C are located at the Still stage, dissipating Joule-heat directly to the Still. This lowers
the heat-load on the circuit stage, and the sample stage base temperature is lowered by

~10 mK, which can be significant for very low T, superconductors. The noise level of
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Table 2.1 TDR circuit components for setup in a dilution refrigerator. The circuit
diagram is shown in Fig. 2.2. I, is the current at the peak of IV curve of
a tunnel diode. L is estimated with the number of turns (25 4 2 turns) and
the geometry of a cylindrical coil (2 mm long and 2.8 mm wide).

Iy (pA) R () Ry () Ry () Ci(pF) G (pF) C (pF) L (pH)
100-150 300 200 50 39 10000 100 1-2

the two circuits is practically the same.

Af (Hz)

0.0 0.1 0.2 0.3

Figure 2.5 Af(T) vs. T/T, in Cd (T. = 0.52 K) and KFesAs, (T. = 3.4 K) measured
by a TDR technique. 7, is determined at the maximum of dAf/dT.

Figure 2.5 shows examples of Af in superconducting materials: KFesAs, and Cd.
The frequency shift Af(T) = f(T) — f(Tnin) shows a clear difference between different

types of superconductors, which will be discussed in-depth in the next section.

2.1.2 Calibration: conversion of measured Af to A\

A superconducting sample is inserted into the center of an inductor coil of TDR. As-
suming the sample is small enough so that the magnetic field produced by the inductor
is homogeneous, changes in magnetic properties of the sample change the effective induc-

tance due to a change in distribution of magnetic flux inside the coil. Precise analysis of
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this change is crucial for application of the TDR technique to study London penetration
depth.

Exact analytical solutions are known only for special geometries: an infinite bar
or cylinder in longitudinal field, a cylinder in perpendicular field, a sphere, or a thin
film. These solutions are not practical since most of samples are thin platelets. A
general numerical method was developed to calculate magnetic susceptibility for plates
and disks, but this method is somewhat difficult to apply in practice. In this section, we
describe a numerical solution of the London equation in two dimensions for long slabs in
a perpendicular field, and the results are then extended analytically to three dimensions.
Using numerical results and analytical approximations, we derive a formula that can be
used to interpret frequency-shift data obtained from TDR experiments [100].

The numerical results for a particular geometry is shown in Fig. 2.6.

Figure 2.6 Right half: calculated distribution of the magnetic field in and around the
sample of d/w = 1/5 and A\/d = 0.5. Black color represents B = 0. Left
half: contour lines of the vector potential. Origin (x = 0, y = 0) is at the
sample center. Ref. [100]

Consider a semi-infinite superconducting slab of width 2w in the x direction, thickness
2d in the y direction, and infinite in the z direction. A uniform magnetic field Hy
is applied along the y direction. In this two-dimensional geometry, A = (0,0, A) and
H = (0A/dy, —0A/0x,0), and the London equation takes the form VZA = A\72A. Figure

2.6 presents the distribution of the magnetic field in and around the sample with w/d = 5
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and \/d = 0.5.

Using the London equation for an isotropic superconductor
47A%j = —cA (2.8)

and the definition of the magnetic moment

1

M:2—C/r><jd3r (2.9)

we calculate numerically the magnetic susceptibility per unit volume (unit of surface

cross section in a 2D case):

1 d w
AT = ——— d A d 2.1

In finite geometry, there will be a contribution to the total susceptibility from the
currents flowing on top and bottom surfaces. These currents are due to shielding of the in-
plane component of the magnetic field, H, = 0A/Jy, appearing due to demagnetization.

It can be mapped onto the flat surface, so that the distribution of H, is given by

HOT

where r = z/w and a? = a + (2d/w)?.

Next, we find a simple analytical approximation to the exact numerical results by
calculating the ratio of the volume penetrated by the magnetic field to the total sample
volume. This procedure automatically takes into account demagnetization and nonuni-
form distribution of the magnetic field along sample top and bottom surfaces. The exact
calculation requires knowledge of A(z,y) inside the sample or H(z,y) in a screened

volume outside, proportional to w?. The penetrated volume is

z A Hy|
V, = d 2.12
p . H, 5, ( )

where integration is conducted over the sample surface in a 3D case or sample cross-

section perimeter in a 2D case. Using Eq. (2.11) for magnetic field on the top and
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bottom surfaces and assuming Hs; = Hy/(1 — N) on the sides we obtain

1 A R

Here N is an effective demagnetization factor, and R is the effective dimension. Both
depend on the dimensionality of the problem.

It was found numerically that in a 2D case, for not too large an aspect ratio w/d,
1/(1 = N) =~ 14 w/d [100]. Calculating the expelled volume as described above, the

effective dimension R is given by

B w
14 arcsin(1/a)’

Rap (2.14)

The natural extension of this approach for the 3D disk of radius w and thickness 2d
leads to 1/(1 — N) ~ 1+ w/2d and R is given by

2d\? wy 2d
1+ (E) ] arctan (Zl) 0 (2.15)

=g
2R

with w = ab/(a + b).
With typical size of samples for this technique, 0.8 x 0.8 x 0.1 mm?, the calculated ef-

fective dimension is R ~ 53 pm which is much greater than a typical value of penetration

depth (~ 0.1-1 um). Using Eq. (2.13) and (2.15), we obtain for A < R:

Af v, A
fo 2W(A-N) (1 - E) (210

where Vj is the sample volume, Vj) is the effective coil volume. The apparatus and sample-
dependent constant A fy = V; fo/[2Vo(1—N)] is measured directly by removing the sample

from the coil. Thus, the change in A with respect to its value at low temperature is

ANT) = —6f(T)Ai}() (2.17)

where ANT) = NT) — M(Tin) and 6 f(T) = Af — Af(Tonin)-
For the excitation field H,.||c, screening currents flow only in the ab-plane, so Af

is only related to the in-plane penetration depth AM\,,. However, when the magnetic
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field is applied along the ab-plane, screening currents flow both in the plane and between
the planes, along the c-axis. In this case, Af™* contains contributions from both A
and A.. For a rectangular sample of thickness 2¢, width 2w and length [, mixed Af is

approximately given by
A Adg n AN, AN
Afpx— t w R

(2.18)

where R is the effective dimension that takes into account finite size effects. Knowing
Ay from the measurement with H,. along c-axis and sample dimensions, one can obtain
A, from this equation.

This calibration procedure was applied to convert measured frequency shift by TDR
technique to obtain temperature variation of London penetration depth throughout this

thesis.
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CHAPTER 3. USE OF RUTGERS RELATION FOR THE
ANALYSIS OF THE SUPERFLUID DENSITY

The London penetration depth A is one of the most important length scales of super-
conductors. The temperature dependent A(T) is a subject of many studies for various
materials since, among other things, it provides information about the symmetry of the
order parameter [101, 102]. Commonly, the superfluid density, p(T) = A*(0)/\*(T),
is used for comparison with theory. Experimentally, some of the most sensitive tech-
niques can reliably determine the temperature variation of the London penetration depth,
AXNT) = A(T) — A(0), while the determination of the absolute value, A(0), requires a
separate effort. The techniques which are most widely used to estimate A(0) include
muon spin rotation (uSR) [103], infrared spectroscopy [104], and tunnel diode resonator
(TDR) technique on Al-coated samples [105]. uSR measures averaged \(T', H) in the
mixed state and from field-dependence of A, the zero field-limiting value is extracted
and should be extrapolated to T = 0. In infrared spectroscopy, A(0) is deduced from
the measured plasma frequency [104]. In the Al-coating technique for TDR, A(0) is esti-
mated from penetration of rf field through known thickness of uniformly coated Al over
the sample surface [105]. While aforementioned techniques deal with bulk properties of
a specimen, some local probes with spatial resolution of ~ um have been accomplished,
which include scanning SQUID [106] and MFM [107] magnetometry. In these local tech-
niques, A(7) is inferred from the analysis of magnetic interactions between a relevant
probe and a magnetic moment induced in a superconductor [108].

Of all the techniques mentioned, TDR offers perhaps the most precise data on the
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change of A with temperature, AX = A\(T')—A(0). TDR per se, however, does not provide
the absolute value of A and of A(0), in particular, so that the sample has to be modified by
coating with a low-T, superconductor [105]. Determination of A(0) is critical because the
shape of p(T) extracted from the data on AXN(T") depends sensitively on the value of A(0)
adopted, and a wrong A(0) could lead to incorrect conclusions on the superconducting
order parameter.

In this chapter we show that the thermodynamic Rutgers relation [109] between
the specific heat jump AC' and the slope of upper critical field dH./dT at the critical
temperature 7, can be used to check consistency of the chosen value of A\(0) provided that
reliable data on AX(T') are available over a broad temperature domain. Moreover, we
offer a method of estimating A\(0) provided that AC and dH.»/dT" at T, are known. This
idea is checked on Nb and MgB, and applied to several unconventional superconductors.
In all cases we use AXN(T") measured by using the TDR technique and literature data for
other two quantities except for YBayCu3O;_s where its superfluid density is taken from
elsewhere [110]. In all studied cases, the method works well and determined values of

A(0) are in agreement with established literature values.

3.1 Thermodynamic Rutgers relation

The specific heat jump at T, in materials where the critical fluctuations are weak is

expressed through the free energy difference F,, — Fy = H?/8m: [109, 111]

0* H| T, (0H.\" (3.1)
. 4m \ 0T T, '

AC =T,—
Here, C' is measured in erg/cm?K and 7 in K. Within the mean-field Ginzburg-Landau

0T? 8«

(GL) theory, near T,, the thermodynamic critical field H, = ¢o/2v/2méN with

SoL )= 2L oL (3.2)

Here ¢ and A are the coherence length and the penetration depth, and the constants

¢ar, Agr are of the same order but not the same as the zero—T" values £(0) and A(0).
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Hence we have:

b
AC = , (3.3)
3232 N2, T,
where gy, is related to the slope of Ho(T') at T.:
0H.5 OH ®o
c _= == Hl ]_ = — . 34
oT . ot li=1 (1) 2mEl (34)

It is preferable to determine the slope of H. line from specific heat measurements since
resistive determination of this line is significantly affected by vortex lattice instability
(irreversibility line). It is common to introduce the dimensionless superfluid density

p = A?(0)/A\? with the slope at T, given by

dp dp , A%(0)
| == =9(1) = — . 3.5
ol = dthe =W =", (3:5)
We then obtain:
AC—— P () (3.6)
16m202(0)T, * 2"/t

where the primes denote derivatives with respect to t.

It should be stressed that being a thermodynamic relation that holds at a 2nd order
phase transition, applicability of Rutgers formula is restricted only by possible presence
of critical fluctuations. In particular, it can be applied for zero-field phase transition in
materials with anisotropic order parameters and Fermi surfaces, multi-band etc, which
makes it a valuable tool in studying great majority of new materials.

For anisotropic materials, Eq. (3.1) is, of course, valid since the condensation energy
and H. do not depend on direction. However, already in Eq. (3.3) the field direction
should be specified. In the following we discuss situations with H parallel to the c
axis of uniaxial crystals. Hence, H.o, p, and A(0) in Eq. (3.6) should have subscripts ab;
we omit them for brevity. A general case of anisotropic material with arbitrary field

orientation requires separate analysis.
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3.2 Theoretical results relevant for the analysis of the

superfluid density

3.2.1 Penetration depth in anisotropic materials

It is known [112] that in isotropic materials,
§(1) = —(0)/ 0%, = —2. (37)

It is easy to reproduce this result for the free electron model of the normal state; it is
shown below, however, that this value holds for any Fermi surface provided the order
parameter is isotropic.

Here, we are interested in relating A(0) and A\gp, the 7" independent part of A near

T,, for anisotropic Fermi surfaces and order parameters. We start with a known relation,

()7 = —167T262V(0)T > <A2§§U'“> , (3.8)

which holds at any temperature for clean materials with arbitrary Fermi surface and

w

order parameter anisotropies [113, 102]. Here, N(0) is the density of states at the Fermi
level per spin, 32 = A? + h?w? with iw = 7T(2n + 1), A(kp,T) = U(T)Q(kp) is the
zero-field order parameter which in general depends on the position kr on the Fermi
surface, and (...) stand for averaging over the whole Fermi surface. The function Q(kr)
which describes the variation of A along the Fermi surface, is normalized: (Q?) = 1.

Eq. (3.8) is obtained within the model of factorizable effective coupling V(k, k') =
Vo Qk) Q(K') [114]. The self-consistency equation of the weak coupling theory takes the
form:

wp

(r,T) = 20TN OV > (k) flk, 7)) (3.9
w>0
where f is the Eilenberger Green’s function which, for the uniform current-free state,

reads: f = A/ =WQ/B. The order parameter near T, is now readily obtained:

o, SWT2(1—t)

= T (3.10)
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which reduces to the isotropic BCS form for 2 = 1. Substitute this in Eq. (3.8) to obtain

near T.:
o1 16me? N(0)(Qv;vy)
(A = 2000 -1, (3.11)

The constants A\gy, for any direction readily follow.

As T — 0, the sum over w in Eq. (3.8), the so-called Matsubara frequencies, can be
replaced with an integral according to 2aT' Y — [ d(hw):

(0 = TN ), (5.12)

c
For free electrons, this reduces to the London value A\* = mc?/4re?*n where n = 2mN (0)v?/3
is the electron density.

Hence, we get for the slope of the in-plane superfluid density:

(1) = —iG(O) — -2k (3.13)

Similarly, one can define p/,(1) for which v, should be replaced with v, in Eq. (3.13). In

particular, we have:
pe(l) _ (d) (%) _ 1Z(0)
P(1)  (v2) (Q22)  R(T)
E.g., for MgBy with 7,(0) = 1, y\(T.) = 2.6, we estimate p.(1) ~ 0.15 p,(1).

(3.14)

It is instructive to note that p’(1) reduces to the isotropic value of —2 for any Fermi

surface provided the order parameter is constant, {2 = 1.
3.2.2 MgB;,
Consider a simple two-band model with the gap anisotropy given by
Q(k) = 9172, k € Fl,g, (315)

where 7, F, are two sheets of the Fermi surface. €2; 5 are assumed constants, in other
words, we model MgB, as having two different s-wave gaps. The normalization (%) = 1
then gives:

QLo +QBre=1, v+wm=1, (3.16)
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where vy 5 = Ny 2/N(0) are the relative densities of states.

Based on the band structure calculations [115, 116], v; and v, of our model are
~0.56 and 0.44. The ratio As/A; = Qy/Qy &~ 3. Then, the normalization (3.16) yields
Q =0.47 and €y = 1.41.

Further, we use the averages over separate Fermi sheets calculated in Ref.[115]:

(v2); = 33.2, (v2)y = 23cm?/s2. With this input, we estimate
(1) = —0.92. (3.17)

It should be noted that this number is sensitive to a number of input parameters. The
procedure described above, see Fig.5.10 gives p/, (1) ~ —0.91.

Since only even powers of {2 enter Eq. (3.13), the same analysis of the slope p/(1) can,
in fact, be exercised for materials modeled by two bands with the +s symmetry of the
order parameter, for which 2’s have opposite signs. If the bands relative densities of
state v; o and the averages <v§)1,2 are comparable to each other and similar to those of

MgB,, we expect a similar |p'(1)| &~ 1 for clean crystals.

3.2.3 d-wave

It can be shown that Q = v/2cos 2¢ for closed Fermi surfaces as rotational ellipsoids
(in particular, spheres) or open ones as rotational hyperboloids (in particular, cylinders)

[117]. Using the relation for anisotropic materials with a spherical Fermi surface:

A0 (@)
Npw | lmiey - P (3.18)

P;b(l) =

3.2.4 Scattering

In the limit of a strong non-magnetic scattering for an arbitrary Fermi surface but a

constant s-wave order parameter we have, see, e.g, Ref. [102]:

812e N (0) (vyvg)T A
-1 i
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Here 7 is the average scattering time. It is worth noting that the dirty limit does not
make much sense for anisotropic gaps because T, is suppressed even by non-magnetic

scattering in the limit 7 — 0. At T' = 0, we have

()3 (0) = TN ORT ) (3.20)

whereas near T,
. 8T N(0){vvp)T A?
(At = S 7 (3.21)

Since for non-magnetic scattering, 7, and A(T') are the same as in the clean case, in
particular A = 872T2(1 — t)/7¢(3), we obtain

AT, e

PO="30) = e

= —2.66. (3.22)

We thus conclude that scattering causes the slope p'(1) to increase.

Evaluation of scattering effects on the slope p’ near T, for anisotropic gaps and Fermi
surfaces are more involved because both T, and A are affected even by non-magnetic
scattering. The case of a strong pair-breaking is an exception: A2 = A\;?(1 — ¢?) that

immediately gives p'(1) = —2.

3.3 Determination of A\(0)

The full superfluid density needed for the analysis of the experimental data and

comparison with theoretical calculations depends on the choice of A(0):

A%(0)
[AMO) + AA@)2

p(t) = (3.23)

Figure 3.1 shows an example of this dependence of p(t) on A(0) for Nb. In the
upper panel, experimental AX(T") is shown. In the lower panel, symbols represent p(t)
calculated from measured AA(t) with A(0) chosen as 15, 25 and 35 nm. Clearly, the
calculated p(t) is sensitive to the choice of A(0). The straight solid lines have the slope
p'(1) calculated by using Eq. (3.6) for each A(0). We used AC = 137.2 mJ/mol-K
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Figure 3.1  (a) London penetration depth in Nb measured by using a TDR technique.
(b) Superfluid density p(t) calculated from Eq. (3.23) using AX(T") shown in
(a) and assuming A(0) = 15, 25, and 35 nm. Straight lines have the slope p’
estimated from Eq. (3.6) for each A(0).

= 126450 erg/cm®K (Ref. [118]) since in the formulas used here the specific heat is per
unit volume. To convert AC' which is commonly reported in mJ/mol-K into erg/cm?K,
one needs to calculate the mass density which requires crystallographic information. For
niobium we use parameters found in Ref. [119]. Crystal structure of elemental niobium
belongs to the space group Im-3m (no. 229) with lattice parameters a = b = ¢ = 0.3303
nm, and corresponding volume is V' = 0.036 nm3.! There are two molecular units

per the volume (Z = 2). Using these values the converted AC' = 137.2 mJ/mol-K

IThe lattice parameters used for this analysis are values determined at room temperature. Using
representative values for thermal contraction at T, by 2.5% and 5%, the unit-conversion for AC' results
in smaller values by 2.5% and 5%, respectively. This discrepancy will be taken into account for estimate
of A(0) by using experimental uncertainties of +5% in determining AC.
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(Ref. [118]) = 126450 erg/cm3K. Using H.y|r. = 440 Oe/K (Ref. [120]), we obtain
—p/'(1) = 0.49, 1.4, and 2.7 for 15, 25, and 35 nm, respectively. While the choice of
A(0) = 25 nm shows reasonable agreement, for the choices of 15 nm and 35 nm the
slopes calculated using the data and Eq. (3.23) determined by Eq. (3.6) under- and over-
estimates, respectively. Note that with A(0) = 15 nm, the temperature dependence of p
is pronouncedly concave near t = 1, and also —p/(1) is smaller than one. The idea of our
method is to utilize the Rutgers relation (3.6) and choose such a A(0) that would not
contradict the thermodynamics near 7.

To this end we rewrite Eq. (3.6) in the form:
p(1)  167°T.AC
A(0)  doHK(1)

The right-hand side here is determined from independent measurements of AC' and H.s.

(3.24)

Thus, by taking a few test values of A(0), calculating p(t) and its slope at t = 1, we can
decide which A(0) and p(t, A(0)) obey the Rutgers relation.

We first apply this method to two well-studied superconductors - conventional Nb
and two-band MgB,. For Nb, we obtain |p|/A?(0) ~ 2240 pm~2 using the same thermo-
dynamic quantities as for Fig. 3.1 [118, 120]. We now take a set of values for A\(0) shown
in top left panel of Fig.3.2 and plot |p/|/A*(0) vs A(0). The value of A\(0) = 28 + 2nm
satisfying the Rutgers relation is obtained from the intersection of the calculated curve
with the value expected from Eq. (3.24) (shown by a gray band that takes into account
experimental uncertainties in determining AC and H/,). It is consistent with the liter-
ature values varying between 26 and 39 nm [118, 121]. The final calculated superfluid
density with the choice of A(0) = 30 nm is shown in Fig. 3.2(b). The solid line is deter-
mined with calculated slope |p'(1)| = 2 which is what is predicted for isotropic s-wave
superconductors.

In addition to aforementioned uncertainties, determination of the experimental |p'(1)]
is not trivial even if the quality of measurement is excellent since p(¢) near t = 1 is often

significantly curved due to several experimental artifacts, most importantly due to the
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Figure 3.2 Top row - Nb, Bottom row - MgB,. Left column: variation of |p’|/A?(0)
as a function of A(0) for Nb and MgB,. Shaded horizontal bands are the
estimated values of the right-hand side of Eq. (3.24) with literature values
of AC and H/,(1) including experimental uncertainties. Right column: su-
perfluid density for the best value of A\(0) that satisfies the Rutgers relation,
Eq. (3.24).

influence of the normal skin effect near T, which is more pronounced for higher frequency
measurements on highly conducting materials. TDR technique uses typically ~ 10 MHz,
so this effect is weak in most of the materials concerned. By surveying many different
superconductors, we have found that the data in the regime between ¢ = 0.8 and 0.95
works well for determination of p/(1). The experimental |p'(1)| in this work is determined
from the best linear fit of p(t) data in this range.

The same procedure can be employed for a well known multi gap superconductor
MgB; (shown in the bottom row of Fig. 3.2), where |p/|/A?(0) is estimated to be 130 £ 12
pm~2 by using AC = 133 mJ/mol-K (Ref. [17]), |H5(1)| = 0.45 T/K (Ref. [16])
within £5% error. The determined A(0) = 84 4+ 10nm is in good agreement with 100

nm estimated by pSR technique [122; 123]. For A(0) = 84 nm, the calculated slope
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|p'(1)] = 0.91 agrees with the expected theoretical value of 0.92.
The method described also has been used for SrPdyGe, for which A\(0) was not clear.
By using the determined A(0) we have shown that SrPd,Ge;y is a single-gap s-wave

superconductor [124].

3.4 Application of Rutgers formula to unconventional

superconductors

Here we examine a few superconductors for which the necessary experimental quanti-
ties have been reported in the literature. Where possible, we use H.(T') determined from
the specific heat jump, because resistive and magnetic measurements may determine the
irreversibility field, which may differ substantially from the thermodynamic H. [138].

We have selected LiFeAs, FeTegssSeg40, YBasCusOi_s and MgCNis representing
stoichiometric pnictide, charchogenide, d-wave high-T,. cuprate and close to magnetic in-
stability s-wave superconductors, respectively. The selected compounds have been exten-
sively studied, and AC, dH./dT, and A(0) have been measured by various techniques by
different groups. Superfluid density was calculated from the penetration depth measured
by using a TDR technique at Ames Laboratory, except for YBCO for which anisotropic
superfluid density was determined by microwave cavity perturbation technique [110].
Thermodynamic parameters are discussed in the number of papers [31, 30, 32]. In-depth
discussion of the specific heat is given in Refs. [32, 63]. Table 3.1 summarizes parameters
used in the calculations.

Figure 3.3 shows experimental superfluid density in LiFeAs, FeTeg 535€0 42, YBasCuzO1_s
and MgCNiz with A(0) = 500, 200, 120, and 232 nm, respectively. The agreement be-
tween pp,, calculated with the Rutgers relation and p,, extracted from the data on
AM(t), given possible uncertainties in the input experimental parameters, is rather re-

markable.
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Figure 3.3 Experimental superfluid density p = A%(0)/\*(T) in LiFeAs, FeTeg s3Seq.42,
YBayCuzO;_s, and MgCNiz with A(0) = 500, 200, 120, and 232 nm, re-
spectively. The straight lines in each panel were estimated with the Rutgers
formula. Parameters used for the calculation are summarized in Table 3.1.

In conclusion, we have shown that the thermodynamic relation Rutgers formula can
be used for the analysis of superfluid density. Using this relation we have developed a
method to estimate A(0). This method successfully estimates A(0) of Nb and MgBs.
This relation was applied to several superconductors of different band structure, gap

anisotropy, and pairing symmetry, showing a good agreement with the theory.
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CHAPTER 4. DOPING DEPENDENCE OF LONDON
PENETRATION DEPTH AND SUPERFLUID DENSITY IN
IRON-BASED SUPERCONDUCTORS

Since the discovery of superconductivity in LaFeAsO;_,F, [25], the symmetry of the
superconducting gap in the Fe-based superconductors has been heavily studied. Up to
date, however, it is not in consensus. Early results seemed consistent with the s,-wave
symmetry [57, 61, 139], but following penetration depth measurements are consistent
with nodal superconducting gap in LaFeAsP [91] and over-doped BaNil122 [140]. Ther-
mal conductivity measurements on a full series of superconducting Ba(Fe,Co)sAs, re-
vealed doping dependent gap structure consistent with full-gap at optimal doping and
strong anisotropic or nodal gap at the both edges of the superconducting dome [78]. A
key question would be whether this doping dependence is universal for Fe-based super-
conductors.

In this chapter, we discuss temperature variation of the London penetration depth
in various families of FeSC of different chemical substitution levels. First, we will
look into doping-dependent London penetration depth in Fe;y,Te;_,Se, in which su-
perconductivity arises when the double stripe AFM and spin-glass magnetism is sup-
pressed (see Fig.1.6(b)). Second, we discuss the London penetration depth measured
in Cajo(Pt3Ass)((Fe;_,Pt;)2Ass)5 (10-3-8). In this compound, the relatively large elec-
tronic anisotropy is caused due to the relatively large separation between conducting

FeAs-layers. The separation in the 10-3-8 compound is ~11 A which is larger than, for
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example, ~9 A and ~7 A in Lal111 and Bal22 compounds, respectively. Superconduct-
ing state is also separated from magnetism in T-x phase diagram. Magnetic structure
in this compound is not fully known up to date. A NMR study suggests a stripe type,
but it is different than the magnetic structure in other FeSC [141]. Next, we move on to
underdoped Ba;_,K,FesAsy systems in which superconductivity coexists with a stripe-
type AFM. Finally, we present experimental results on two extreme cases, first of which
is the case of full substitution of Fe with Pd in AFe;Asy (A=Ca, Sr), and the second

case is SrPdsGes.

4.1 Fei,Te;_,Se,

The majority of iron-based superconductors are pnictides. The only exceptions, to
date, are K, Fes_,Ses and Feyy,Te;_,Se,. The former exhibits up to 7. = 33 K, making
it interesting to study. However, presence of localized magnetic moments exhibiting the
Curie-like behavior (y ~ T~!) [142] makes analysis of London penetration depth difficult
unless the magnetic contribution is fully known [88]. The latter Fe, ,Te;_,Se, becomes
superconducting with the excess Fe occupying interstitial sites of the (Te,Se) (or chalco-
genide layer) layers [143]. In these materials, generally referred to as 711”7 compounds,
Fe forms square planar sheets whereas Se ions form distorted tetrahedra surrounding the
Fe ions, which is similar to the structure of the Fe-pnictides. The electronic structure
is also similar to pnictides. For 711”7 system it has been suggested both theoretically
[144] and experimentally [145] that superconductivity could be magnetically mediated.
Furthermore, the series of iron-chalcogenides from FeS through FeTe was theoretically
explored within the spin-fluctuation picture, concluding that doped FeTe could exhibit
the strongest superconductivity [144]. The systems over which the doping is most con-
trolled are FeTe;_,Se, [146] and FeTe;_,S, [147]. So far the highest 7. ~ 15 K is

reported for the Fe(Te,Se) system [146, 50]. The connection between superconductivity
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and magnetism in the ”11” system has been demonstrated by the observation of the
antiferromagnetic order in Fe; 1, Te [143] and a spin resonance in Fey,,(TegSeq4) [148].

The ”11” system exhibits many interesting phenomena. The transition temperature
can be enhanced up to 37 K by applying modest pressures [149], which is comparable
to the T, of iron-arsenide superconductors [44]. The connection between T, and the
pressure has been suggested to come from the enhancement of spin fluctuations [150]
and from the modulation of electronic properties due to evolution of the inter-layer Se-
Fe-Se separations [149]. Several experimental works explore pairing mechanism of 7117
compounds. The absence of a coherence peak in NMR measurements on polycrystalline
FeSe suggests unconventional superconductivity [151], while the power-law temperature
dependence of the spin-relaxation rate, 1/7y ~ T3, could be reconciled with both a
nodal gap or a fully-gapped sy state. Muon spin rotation study of the penetration
depth in FeSe, was consistent with either anisotropic s-wave or a two-gap extended s-
wave pairing [152]. Thermal conductivity measurements concluded multigap nodeless
superconductivity in polycrystalline FeSe, [153].

In this section, we present an experimental study of the London penetration depth,
A(T'), in single crystals of Fe; g3(Teq g35€0.37) and Fe(Teq 5s5€¢.42) with T, = 12.8 and 14.8
K, respectively. The former is slightly underdoped compounds, and spin glass behavior
was observed. The latter compound is nominally optimally doped. In both samples,
no evidence for paramagnetic impurity down to ~ 0.047¢ as seen in K Fey_,Se;. We
found that at low temperatures AXN(T) o< T™ with n ~ 2.1 and 2.3 for Fe; g3(Teq 635€0.37)
and Fe(Teg s585€e0.42), respectively. The absolute value of A(0) &~ 560 nm was determined
in Fej g3(Teg35€0.37) by measuring the total A(7") of the sample coated with a thin Al
film [105]. The in-plane superfluid density ps(T) = A*(0)/A*(T) was analyzed in the
framework of a self-consistent two-gap y—model [154].

Single crystals of Fe;,,Te;_,Se, were prepared using a solid-state reaction method

[50]. Mixed powders of the Fe(TeqgSeq ) compositions were sealed in evacuated quartz
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tubes. The sealed ampoule was slowly heated up to 930 °C and slowly cooled down
to 400 °C at a rate of 3 °C/hr before the furnace was shut down. Single crystals with
centimeter dimensions can easily be obtained with this method and are shown to be
the pure a-phase with the P4/nmm space group by x-ray diffraction [50]. The actual
concentrations were analyzed using an energy dispersive x-ray spectrometer (EDXS).
The measured composition for the samples discussed in this section is Fej g3(Teq g35€0.37)-

More detail about sample growth and characterization can be found in Ref. [50].

4.1.1 Fey g3(Teye3Seq.s7)

Al (nm)

Figure 4.1 Main panel: Variation of the London penetration depth, AX(T') for three
Fey 03(Tep g35€0.37) samples in the low temperature range shown along with
the fitting curves assuming power-low or s-wave BCS behavior. The curves
for #2 and #3 are shifted vertically for clarity. Inset: AX(T') in full tem-

perature range.

The inset in Fig.4.1 shows the full-temperature range penetration depth for three
Fey 03(Teg.g35€0.37) superconductors. All three samples show a relatively sharp super-
conducting transition reflecting the good quality of single crystals. The "maximum
slope”, T5°Pe determined by taking the maximum of the derivative dAX(T)/dT gives
Tslore ~ 12.0 K. As for the onset values, T°" ~ 13 K. The low-temperature vari-

ation of A(T") with temperatures down to 0.047, is examined in the main panel of
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Figure 4.2 AN plotted vs. (T/T.)? for three Fe; o3(Tegg3Se.37) crystals in the temper-
ature range up to 7../3. The curves for #2 and #3 are shifted vertically for
clarity.

Fig. 4.1. Such a low base-temperature provide wide temperature range to test vari-
ous gap structures. The dashed line represents the best fit to a standard s-wave BCS
function, AN(T) = A(0)y/7A¢/2T exp(—Ay/T), with A(0) and A, being free fitting pa-
rameters. The experimental data do not show any indication of saturation down to the
lowest temperature (500 mK) and the fit is not adequate. Also obtained from the fit
is Ag = 0.5T,, which is impossible in a single-gap scenario, hence ruling out conven-
tional s-wave BCS superconductivity. We will come back to a multi-gap s-wave fitting
later in this section. On the other hand, fitting with the power-law, AN(T) o AT™,
n = 2.10 £ 0.01, produces excellent agreement with the data.

In order to examine how close the overall power-law variation is to quadratic, we
plot A\ versus (T'/T.)? in Fig.4.2. All samples follow the AX(T') o T? behavior rather
well. To probe how robust the power n is, we performed a data fit over a floating
temperature range, from 7" = T}, to T, using a functional form of AXN(T) = ag+ AT™.
The difference between the ay term determined from an extrapolation from the 72 plot
in Fig. 4.2 and the power-law fit turned out to be negligible, 1.5+0.5 nm, and had no

significant effect on the fit. The dependence of the other fitting parameters, n and A, on
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Figure 4.3 Exponent n and pre-factor A obtained by fitting to AAN(T") oc AT™ for various
upper temperature limits shown on the z-axis. The exponents in the upper
panel were obtained with n and A both being free parameters. In the lower
panel, A was acquired with a fixed n = 2.1.

Typ (selected in the range from 7../6 to 7../3) is summarized in Fig. 4.3. The upper panel
of Fig.4.3 shows the exponent n, which does not depend much on the selection of the
upper limit of the fitting range. The pre-factor A obtained from the fit does not depend
much on the fitting range either.

TDR technique offers precision measurement of AX(T) in a superconductor, but the
absolute value of A\(0) cannot be determined directly. One of ways to determine with
measuring a superconductor coated with Al.

To calculate the superfluid density, we need to know the absolute value of the pen-
etration depth, A(0). We used the technique described in Ref.[105]. A thin aluminum
layer was deposited using magnetron sputtering conducted in an argon atmosphere. The
Al layer thickness, ¢ = 100 £+ 10 nm, was determined by using an Inficon XTC 2 with a
6 MHz gold quartz crystal and later directly measured by using scanning electron mi-

croscopy on the edge of a broken sample. By measuring the frequency shift from T" < TA!
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to T' > T™! and converting it into the effective penetration depth of the coated sample,

Aeff, One can extract the full penetration depth of the material under study from

A + )\Al tanh (t/)\Al)

Aot = A
T 2ANALF Atanh (£/Aq)

(4.1)

where A is the unknown penetration depth to be determined. Figure 4.4 shows the
measured (7)) that is compared to the data without Al coating. In the inset, AX(T")
in Al at lowest temperatures is shown. Ideally, measurements with lower temperature
are needed to determine penetration depth of Al. However, temperature variation of
penetration depth in Al which is a typical weak-coupling superconductor is already well-
known, so the measured penetration depth is extended to 7' = 0 by using a weak-coupling
BCS function with A(0) = 1.7647,.. The negative offset of 0.05 pm accounts for the
thickness of the Al layer and A (T < TA). According to Eq. (4.1), data plotted this way
give the actual A\(7T") and its extrapolation to 7" = 0 gives an estimate of A\(0) ~ 560 £ 20
nm for the penetration depth of Fe(Te,Se), which is consistent with a value determined
by the Rutgers relation (see Chap. 3) and a uSR measurement [131]. More details on
the Al-coating method can be found in Ref. [105, 155].

—@— #2 Original
0.8f —— power-law fit for #2
X —A— Al coated #2
T offilmAl . s-wave BCS fit for Al
145K
0.6k ( ) ‘ S
El
1000
: 0.4 s-wave BCS fit
S T, of = S00F  A=17T,
bulk Al =1
L S of
0.2 (1.20K \ . /
_500F------nammnt -
0.0k 00 02 04 06 08 10 ]
I B T(K)
0 1 2 3 4 5
T(K)

Figure 4.4 (Color online) Effective penetration depth in single crystal Fe(Te,Se) before
(blue circles) and after (red triangles) coating with an Al layer. The curve
is shifted up according to Eq. (4.1) and the data are extrapolated to 7' =0
using a T? fit resulting in A(0) &~ 560 £ 20 nm.
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The superfluid density, ps(T') = A*(0)/A*(T'), shown in Fig. 4.5, exhibits a noticeable
positive curvature at elevated temperatures, similar to MgB, [18]. This suggests a multi-
gap superconductivity, which we analyze in the framework of the self-consistent y—model
[154]. According to our AX(T") measurement, multi-gap s-wave model should not work
at the lowest temperatures, but it still provides a reasonable description at intermediated
temperature regime. We note that our T, criteria is effectively 10 % of transition and no
data above T, was used for our analysis in order to exclude any extrinsic effects. Fitting in
the temperature range from 0.457, to T, shown by a solid (red) line in Fig. 4.5, produces
a good agreement with the data. To limit the number of the fitting parameters, the
partial densities of states were chosen to be equal in the two bands, n; = 0.5, and the
first intra-band coupling parameter, \; = 0.5, was chosen to produce a correct T, ~ 12
K assuming a Debye temperature of 230 K found in a similar compound Fe(Te,S) [156].
The variation of A\; does not affect the fitting quality or relative ratios of the fitting
parameters. The parameters obtained in the fit are: Ay = 0.347, A2 = 0.096 and v = 0.
This result means that p,(7) at temperatures of the order of T, is fully described by only
one component, determined by the band with a smaller gap. The existence of the larger
gap and small interband coupling, A2, are needed, however, to maintain a high 7,.. The
fit over the entire temperature range reveals a clear deviation from this clean exponential
model at low temperatures. The new fitting parameters of Ay = 0.281, A;5 = 0.117 and
~ = 0.157 are close to the previous set, albeit with small, but finite v indicating 16 %
contribution of the larger gap to the total superfluid density. The temperature dependent
gaps obtained self-consistently in the fitting are shown in the inset to Fig.4.5. While
the fitted positive curvature and reasonable coupling parameters indicate a multi-gap
nature of superconductivity in 711”7 iron-chalcogenide superconductors, the failure at
low temperatures and apparently non-exponential behavior requires extension to the

anisotropic gap and inclusion effects of (possibly strong) pairbreaking [157].
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Figure 4.5 Superfluid density ps(7'/7.) for Fe(Te,Se)#2 calculated with experimental
AX(T) and A(0) = 560 nm. The solid (red) line is a fit the two-gap y—model
from 0.457, to T.. The dashed (blue) line is the fit over the full tempera-
ture range. Inset: temperature dependent superconducting gaps calculated
self-consistently during the fitting.

4.1.2 Fe(Te0_5SSe0_42)

The T-quadratic behavior of London penetration depth in Fe; g3(Teg g35€0.37) is some-
what ambiguous for any conclusions about the superconducting gap symmetry in the 11
system. Here we compare with optimally doped Fe(Teqs35€9.42) to get further insight
about the gap symmetry in the 11 system.

The inset of Figure 4.6 presents y,.(7") in full superconducting temperature range
which shows a sharp phase transition at 14.8 K. One of Fej g3(Teg 35€0.37) samples with
lower T, discussed in the previous section is shown for comparison. In the main panel,
the low temperature behavior of A\ up to 0.37. is shown with a solid curve determined
by a power-law fitting. Data can be best fitted to a power-law function, AN(T) = AT",
with (n = 2.43 £0.01, A = 529 + 5 nm/K?**) and (n = 2.10 £ 0.01, A = 807 + 13
nm/K?1) for Fe(Tegs:Seq42) and Fey g3(Teg g3Seq.s7), respectively.

For quantitative analysis of the low temperature behavior, a power-law fit, AX(T)
= AT" was performed with four different upper temperature limits for the fit: 0.157,
0.207, 0.257, and 0.37.. The results of the fitting are summarized in Fig. 4.7(b). Clearly,



58

80 T T

0.0
g m Fe, .(Te,..Se, .,)
Fe.m(TeaeaSeaay)\§ 3 103080

Fe(Te,Se, ) I

8
40 | N4.o

0 2 4 6 8 10 12 14 16

T(K)

60

% (arb. units)

AX (nm)

20 .::"‘ T

2
F
&

" Fe(Te, .Se, )

0.58~ 7 0.42

0.0 0.1 0.2 0.3
t=T/T,

Figure 4.6 Inset: normalized x, vs T in Fejy,Te;_;Se,. Main panel: AM(t) in
Fe(Tegs585€0.42) and Feq g3(Tege35€0.37) in open squares and circles, respec-
tively, where t = T/T.. Red solid line represent best power-law fitting
functions obtained by fitting data up to 0.37,. Best fitting can be achieve
with n = 2.4 and 2.1 for Fe(Teq 555€¢.42) and Fey g3(Teq 635€0.37), respectively.

the fit coefficients remain fairly constant with small deviations at the lowest and the
highest limits. From the best fits with 7/T, upper limit, the average exponent n =
2.36 £ 0.07 is quite comparable to the previous reports of n =2.1 [132], 2.2 [158] and
2.0 [130]. The exponent n = 2.36 can be explained by the nodeless two-gap pairing
symmetry with strong pair breaking effect. The behavior of the pre-factor A, which is
determined to be A,y = 0.8 + 0.2 nm/K?% also show very weak compare to what was
found in Fey o3(Teg 35€0.37)-

The superfluid density ps = A%(0)/A?(T) in Fe(Teg 585eg.42) is shown in Fig. 4.8. Here
we use A\(0) = 560 nm determined in Fe; g3(Tegg3Seq.37) [132]. The fitting was done with
a self-consistent clean two-gap v-model, where two gaps are calculated self-consistently at
each temperature and at each iteration [154]. Since temperature diminishes the relative
contribution of impurity scattering, we expect to have better agreement at the higher
temperatures and deviations from exponential behavior at the low temperatures. Yet,
we believe that the extracted coupling parameters are meaningful. The total superfluid

density is given by ps = yp1 + (1 — v)p2. The partial densities of states are chosen to
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Figure 4.7 (a) AXvs t* = (T/T.)* in Fe; 1, Te;_,Se,. Red linear lines are guide for eyes.
(b) n vs t obtained from a power-law fitting up to various upper temperature
limits (¢).

be equal on the two bands, ny = ny = 0.5 and Debye temperature of 230 K [156] was
used to calculate the experimentally observed T, = 14.8 K, which fixes the coupling
constants (we used Aj1). Figure 4.8 demonstrates good agreement between experimental
ps (symbols) and fitting (black solid line). The parameters acquired from the fit are:
A1 = 0.66, Aoy = 0.44, A5 = 0.07, Ay = 0.34, v = 0.75 and T, = 14.95 K. This result
indicates that 75 % contribution of superfluid density comes from the band with p; which
has the larger gap A;. We have also attempted to fit the data only in the intermediate
temperature range where the effect of impurities is relatively smaller and we found fitting
parameters similar to the reported above. Since our model does not include details of the
Fermi surface shape, Fermi velocities and the densities of states, this is the best accuracy

that we can achieve using this approach.
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Figure 4.8 Main panel: calculate superfluid density p, = A*(0)/A?(T') in Fe(Teg 535€g.42)
is shown in symbols. A(0) = 560 nm was used. Red solid line represents
a fit to two gap model, p = vp; + (1 — ¥)ps. Inset: superconducting gap
functions, A; and As.

The inset in Fig. 4.8 shows the behaviors of two superconducting gaps A; and As
versus temperature. Clearly, the smaller gap has significantly non-BCS temperature
dependence. The zero temperature values of the energy gaps A;(0) and Ay(0) are 2.5
meV (A1(0)/kgT, = 1.93) and 1.1 meV (A9(0)/kgT, = 0.9), respectively. From the
previous measurements, such as pSR [131, 159] and penetration depth [94], two isotropic
gaps were reported with gap values similar to our results. pSR studies in FeSeysTeq 5
[131, 159] revealed two gaps of A,,. ~ 2.6 meV and A,,.; ~ 0.5-0.87 meV, and the
penetration depth study [132] also showed that A,,,. ~ 2.1 meV and A, ~ 1.2 meV.
According to scanning tunneling spectroscopy study, only one s-wave gap A ~ 2.3 meV
was observed in FeSeq4Teg ¢ [160], which is similar to the large gap A;(0) of our result.
However, rather large single or multi-gaps were reported from specific heat [161], optical
conductivity [162], point-contact Andreev reflectivity [163], and angle-resolved photoe-
mission spectroscopy [164] suggesting strong-coupling superconductivity. The electronic
specific heat in Fe(Teg575€9.43) [161] revealed two energy gaps with A, ~ 7.4 meV
and A,,.; ~ 5.0 meV. From the optical conductivity in FeTeq555€g 45, two large energy

gaps were also found with A, ~ 5.1 meV and A,,., ~ 2.5 meV. The point-contact
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Andreev reflectivity in FeTeq 555€q 45 is consistent with single gap s-wave symmetry with
A(1.70K) ~ 3.8 meV. Angle-resolved photoemission spectroscopy in FeTeq7Seq 3 [164],
an s-wave single gap of A ~ 4 meV was also observed. Overall, the pairing symmetry
in FeTe;_,Se, is still under debate, but our results strongly suggest a two-gap scenario

with significant pair-breaking scattering.

4.2 Calo(Pt3A88)((Fel_mPtx)zASQ)g) (0028 <z < 0097)

Recently, a new family of Fe-based superconductors (FeSCs) with PtAs intermediary
layers has been reported [165]. In particular, Cajo(Pt,Ass)[(Fe;_,Pt;)2Ass]s with n = 3
(the 10-3-8 phase) and n = 4 (the 10-4-8 phase) have been described [34, 166, 167, 168].
Whereas the 10-3-8 phase with rare triclinic symmetry shows superconducting 7. up to
13 K upon Pt-doping, the superconductivity of a tetragonal 10-4-8, stabilizes at a higher
T. of 38 K [167]. The availability of high purity single crystals with well - controlled level
of Pt doping makes the 10-3-8 system particularly attractive [34, 166, 167, 168]. Two
unique features distinguish the 10-3-8 system from other FeSCs. First, the anisotropy
of the 10-3-8 system, vy (7T.) = H(T.)e2.a/H(T:)e2 ~ 10 [34], is much larger than
2-4 in the 122 systems and even larger than 7-8 in the 1111 systems [169, 170, 171].
Second, a clear separation of structural (magnetic) instability and superconductivity in
the T'(z) phase diagram, suggested by transport measurements [34] and supported by
NMR measurements [141] and by direct imaging of structural domains [33]. This is
distinctly different from the 122 pnictides, where these two order parameters coexist up
to the optimal doping [172].

In the cuprates, the low dimensionality of the electronic structure is believed to be
responsible for their high 7, and highly anisotropic gap (d-wave) [173]. Despite obviously
layered structure, the electronic anisotropy of most - studied 122 pnictides is rather low,

with vy (T) ~ 2—4 at T = T, and decreasing upon cooling [169, 170, 171]. Moreover, the
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superconducting gap in the 122 pnictides is rather isotropic at the optimal doping, but
evolves towards nodal structure at the dome edges [102]. To check whether the electronic
anisotropy plays a role in the structure of the superconducting gap, highly anisotropic
pnictides without complications due to coexisting phases and well - controlled doping
level are needed and the 10-3-8 system fits these requirements.

In this section, we discuss A\(T") in the 10-3-8 crystals in the underdoped regime up
to optimal doping. The low-temperature penetration depth exhibits power-law varia-
tion, A\ = AT™, with the exponent n decreasing towards the edge of the dome. This
behavior is similar to the lower-anisotropy BaK122 (hole doped) and BaCo122 (electron
doped). We conclude that neither the anisotropy (at least, up to v ~ 10) nor the
coexistence of superconductivity and magnetism play a significant role in determining
the superconducting gap structure in FeSCs.

Single crystals of Cajo(Pt3Asg)((Fei_.Pt,)2Asy)s were synthesized as described else-
where [34]. The compositions of six samples were determined with wavelength dispersive
spectroscopy (WDS) electron probe microanalysis as z = 0.00440.002, 0.01840.002,
0.02840.003, 0.041£0.002, 0.0424+0.002, and 0.097+0.002.

s}

—

30 -

20 -

Al (um)

Figure 4.9  Variation of the London penetration depth, AX(T"), in the full temperature
range for four underdoped compositions of the 10-3-8 system. 7T, increases
with Pt-doping, x, as indicated in the legend.
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Figure 4.9 shows the variation of the London penetration depth, AX(T), during a
temperature sweep through the superconducting transition in 10-3-8 single crystals with
x = 0.028, 0.041, 0.042, and 0.097. T, monotonically increases with z, consistent with

the transport measurements of the crystals from the same batches [34].
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Figure 4.10  AXT') with temperatures between 500 mK and ~ T./3, plotted against
(a) T/T. and (b) (T/T.)* for the 10-3-8 samples with x = 0.028, 0.041,
0.042, and 0.097. The vertical dashed lines indicate the upper limits of the
fitting ranges, 7../5, T./4 and T,./3. The solid lines are representative fits
to AN = AT™ for each doping, conducted with the upper limit of 7./3.
The resulting exponents n for all three fitting ranges are shown in Fig. 4.11

(a).

Figure 4.10 shows AX(T') plotted against (a) linear, T/T,, and (b) quadratic, (T'/T,)?,
normalized temperature scales. For the quantitative analysis, AX(T') was fitted to a
power-law, AXN(T') = AT™. To examine the robustness of the fits, the fitting range was

varied from base temperature to 7,./3, T./4, and T,./5 (indicated by vertical dashed lines
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in Fig. 4.10). In Fig. 4.10, the symbols are experimental data and the solid lines show

representative fits with the upper limit of 7,./3. The resulting exponents n for all three

fitting ranges are shown in Fig. 4.11 (a). Figure 4.11 (b) shows the prefactor A obtained

at a fixed n = 2 for different fitting ranges. To compare samples with different doping

levels we used the average values (over three different fitting ranges), nq,y and Agy,.

As shown in Fig. 4.11 (a), ng,, decreases from 2.36 to 1.7 and the prefactor, A,

dramatically increases (fivefold)as = decreases from nearly optimal doping of z =0.097

towards heavily underdoped x =0.028. This behavior signifies a much larger density of

quasiparticles thermally excited over the gap minima in the underdoped compositions.
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Figure 4.11 Results of the power-law fits with three different upper limits, indicated by
dashed lines in Fig. 4.10 are shown along with the average values. Panel

(a):

the exponent n, obtained by keeping A and n as free parameters.

Panel (b): the pre-factor A, obtained at a fixed n = 2. Panel (c) shows the
doping phase diagram with the magnetic (M) and superconducting (SC)
phases clearly separated as a function of Pt-doping (z). Ts measured from

resistivity [34] and 7, from TDR (this work).
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A similar doping-dependent evolution of A(T") was found in BaCo122 [155]. For that
compound, it was suggested that the underdoped side is significantly affected by the co-
existing magnetic order and was explained by an increasing gap anisotropy when moving
towards the edge of the “superconducting dome”, consistent with thermal conductivity
[77, 78] and specific heat [65] studies. In the present case of the 10-3-8 system where
magnetism and superconductivity are separated, Fig. 4.11 (c), this doping-dependent
evolution of n and A suggests that the development of the anisotropy of the supercon-
ducting gap upon departure from the optimal doping is a universal intrinsic feature of
iron-pnictides, and is not directly related to the coexistence of magnetism and supercon-

ductivity.

x=0.097(2)
| o A(0)=200nm
o M0) =500 nm

00 L L L L L
0 1 2 3 4 5 6 7 8

T (K)

Figure 4.12  Superfluid densities, ps(T"), of the optimally doped 10-3-8 sample with
z = 0.097 for A(0) = 200 nm (squares) and 500 nm (circles), which cover
extremes of A\(0) in FeSCs. Solid lines are the fits from the two-gap (s-wave)
~ model [154]. For comparison, ps(T) for single-gap s-, and d-wave cases
are shown as dashed lines.

The low-temperature exponent n, is sensitive to the gap anisotropy, but does not
reflect possible multi-gap structure typical for the pnictides [102]. Therefore we need
to analyze the superfluid density in the full temperature range. To avoid complications
due to anisotropy we perform this analysis at the optimal doping. Figure 4.12 shows

the superfluid density, ps(T) = (A(0)/A(T))?, calculated with A(0) of 200 nm and 500
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nm, representing two extreme values reported for the pnictides [31]. Clearly, single -
gap d-wave and s-wave are very far from the data. A much better agreement was found
by using a self - consistent two-gap (s-wave) v model [154], which only deviates at the
low temperatures, presumably due to pairbreaking scattering [157]. The ratio of the
superconducting gaps is about 2, similar to other FeSCs.

To summarize our findings, we observe substantial increase of the gap anisotropy
in more underdoped compositions of the 10-3-8 system despite a clear separation of
superconducting and magnetic domains on the T'(z) phase diagram. Interestingly, simi-
lar separation is also reported in the 1111 compounds that have similarly high electronic
anisotropy [174, 175]. The evolution of the gap anisotropy with doping may signify a tran-
sition between different pairing mechanisms in the different parts of the superconducting
dome, for example, evolving from magnetic- to orbital-fluctuation mediated superconduc-
tivity [176, 177, 178]. Alternatively, the gap can become progressively more anisotropic
within the same universal pairing scenario based on competing inter-band coupling and

intra-band Coulomb repulsion and pair-breaking impurity scattering [179, 180, 181].

4.3 Ba; ,K,Fe;As; (0.13 <z <0.4)

The experimental determination of the symmetry of the superconducting gap is im-
portant for understanding the mechanism of superconductivity in iron-based supercon-
ductors [36, 182]. Measurements of London penetration depth [86, 85, 140], thermal
conductivity [77, 78] and specific heat [72, 65, 183] in electron doped Ba(Fe;_,Co,)2As,
(BaCo122) suggest that superconducting gap shows strong evolution with doping, de-
veloping nodes at the dome edges [78, 184, 181]. This doping-evolution is consistent
with observations of a fully gapped superconductivity in effectively close to optimally-
doped LiFeAs [185, 186, 94, 187] and nodal superconductivity in effectively overdoped

KFeyAs, [188, 189, 84]. It is also consistent with predicted doping-evolution for the si
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model [190, 181]. On the other hand, nodal behavior is observed at all doping levels in
isovalently substituted BaFes(As;_,P,)s (BaP122) [191]. This noteworthy difference in
two systems based on the same parent compound prompts a detailed study of the hole
doped Bay_,K,FesAsy (BaK122). The superconducting gap in BaK122 was studied in-
tensively using ARPES [139, 192], NMR [193], penetration depth [194, 195] and thermal
conductivity [79, 189], however, no systematic doping - dependent study reaching the
dome edges was undertaken so far.

In this section we study the evolution of the temperature dependence of in-plane
London penetration depth, AX(T'), in high quality single crystals of Ba;_,K,FesAsy. We
find that the optimally doped samples show exponentially weak temperature dependence
in " — 0 limit, suggesting a fully gapped superconductivity. This conclusion is consistent
with the temperature-dependent superfluid density in these samples, which can be well
fitted using self-consistent y-model with two full gaps in the clean limit [154]. The lowest-
T, samples show an exceptionally strong sub-quadratic temperature dependence. Fitting
the experimental AX(T") below T../3 to a power-law, AX(T') = AT™, we find a monotonic
decrease of the exponent n with concomitant sharp increase of the pre-factor A towards
the low x edge of the superconducting dome. Comparison with close to T-linear behavior
found in heavily overdoped KFesAs, [84], suggests a universal development of nodes at
the edges of the superconducting dome in both electron- and hole-doped BaFesAs, -
based superconductors.

Single crystals of Ba; K, FesAsy were grown using high temperature FeAs flux
method [196]. AX(T') was measured using tunnel-diode resonator technique [97, 101].
Placing a sample into the inductor causes the shift of the resonant frequency, Af(7T) =
—GA4nx(T). Here 4mx(T') is magnetic susceptibility and G is a calibration constant de-
termined by physically pulling the sample out of the coil. With the characteristic sample
size, R, 4mxy = (A/R)tanh(R/\) — 1, from which A\ can be obtained [100, 101]. The

excitation field in the inductor, H,. ~ 20 mQOe, is much smaller than H,.
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Figure 4.13 Temperature variation of London penetration depth AX(T") in under doped
Ba;_,K,FesAsy. (a) Normalized AXN(T). (b) and (¢) Low-temperature
parts of AXN(T"). Experimental data are displayed with solid circles. Solid
red line represent power-law fitting curves. Two dashed lines are data for
pure KFeyAsy from Ref. [191].

To compare sharpness of the superconducting transition, Fig. 4.13(a) shows normal-
ized RF susceptibility of Ba;_,K,FesAsy samples used in this study. The superconduct-
ing transition remains quite sharp even for the most underdoped samples where T,(x) is
very sensitive to small variations of x. The values of x were determined by the empirical
fit of the experimental T,.(x) data [196, 197]. The values of T, were determined from
the position of the maximum in the first derivative, dAX(T")/dT. In our samples we ob-
tained T, of 11.2, 14.5, 18.6, 30.0, and 38.7 K, corresponding to potassium concentrations

of x = 0.17, 0.18, 0.20, 0.27, and 0.40, respectively. The low-temperature variation of
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AXT) up to T./3 is shown in Figs. 4.13(b) and (c). Figure 4.13(b) compares the data
for limiting compositions =0.17 and 0.40, revealing a big difference in the magnitude
of AXN(T). Two curves for pure KFeyAsy are shown for reference [191]. Figure 4.13(c)
shows AX(T') on the same scale for all concentrations. The data are offset for clarity and
red lines represent the power-law fit. However, a closer look shows significant deviations
of the data in heavily underdoped (x = 0.17) and in optimally doped (x = 0.4) samples.
At lowest temperatures, it becomes significantly sub-quadratic for the former and closer
to exponential for the latter.

First we attempted to fit the data for two highest T, samples to the single gap s-
wave BCS function, AN(T)/A(0) = \/7A¢/2ksT exp(—Ag/kpT), where A is the size
of gap at T'= 0. The A( values from the best fittings are 0.73 kgT, and 0.87 kgT, for
x = 0.27, and 0.40, respectively. While the fit quality was good, both Ay values are much
smaller than in single full-gap superconductors where Ay = 1.76 kgT,. Such small gaps
are expected in superconductors with A, < Apnax, either due to gap angular variation
(anisotropy) or variation between different Fermi surface sheets.

A standard way to analyze AX(T) is to fit it from the lowest temperature up to Ty, ~
T./3. In a single -gap s-wave superconductor this limit is determined by reaching nearly
constant value of the superconducting gap Ag, below which the temperature dependence
is exponential. For various nodal gaps, the dependence is expected to be power-law,
T-linear for line nodes and 7 for point nodes in clean limits. For the anisotropic gap
or multi-gap superconductors with the variation of the gap magnitude over the Fermi
surface between A and Ap,, the Ty, is determined by A, while 7, by Apax, SO
that T, range of characteristic temperature dependence can be smaller than 7. /3.

We therefore check the alteration of the fitting parameters by choosing different
temperatures for the upper limit, T,, < 7./3. The dependence of n and A on Ty,
is shown in Fig. 4.14(b). The highest-and lowest-7, samples exhibit monotonic increase

and decrease of n on Ty, — 0, approaching very different values of 4 and 1.5, respectively.
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(a) AX vs. (T/T.)*® up to T./3. (b) Variation of exponent n obtained
from a power-law fitting, AN = A(T/T.)", as a function of the upper
end temperature of the fitting range. Inset: A vs. T.. The three curves
represented by triangle, circle, and square were obtained with fixed n =2.0,
2.3, and 2.5, respectively.

The exponents n for samples with = = 0.18, 0.20, and 0.27 do not show a significant

variation with Ty, < 7./3, indicating robust power-law behavior, but show systematic

increase of n with x. The decrease of n with decrease of x can be clearly seen by in the

top panel of Fig. 4.14, in which all data are plotted vs (T/T.)*™, where n = 2.78 is the

exponent for the optimally doped samples. The dependence of the power-law pre-factor

A on T, was analyzed by fixing n=2.0, 2.3, and 2.5 and is shown in the inset revealing a

significant increase with decreasing T.. The A value for sample =0.17 is 30 nm /K>,

out of scale for the plot and is not shown.

A smaller than weak-coupling value of A,,;, obtained from low-temperature BCS

formula implies two-gap superconductivity and the analysis must be extended to the

full-temperature range. The most convenient quantity is the superfluid density, which
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Figure 4.15 Symbols:  superfluid density p,(7) = M2(0)/A*(T) calculated with

A(0) = 200 nm in BageKg4FeasAsy [198]. Solid lines represent the fit to
a two-gap v model, ps = vp1 + (1 — v)pa. Inset: superconducting gaps
A1(T) and A(T) calculated self-consistently during the fitting.

can be calculated from the first principles. In the optimally doped samples, we fit the data
using clean-limit y-model [154]. Symbols in Fig. 4.15 show superfluid density, ps(T") =
A2(0)/A*(T), for the sample with = = 0.40 calculated with A(0) = 200 nm determined by
infrared spectroscopy experiments [198]. We note that the slope of superfluid density at
T, determined by using the Rutgers relation is -3.6 with AC' = 125 mJ/mol-K? [199] and
OH. /0T |7, = —6.7 [199], which is significantly different from experimental value -1.5
obtained by fitting the experimental p, in Fig. 4.15. One natural explanation for such a
large discrepancy between calculations and the experiment may be due to magnetic order
parameter coexisting with superconductivity, but this has to be verified. In addition,
the calculated value is somewhat big to account for multigap superconductivity. For
further superfluid analysis, we use the experimental value A\(0) = 200 nm [198]. Solid
lines show self-consistent y-model fit for two-full-gap superconducting state [154] with
ps = vp1 + (1 — v)pa, where p; and ps are partial superfluid densities. Insert shows two
superconducting gaps A; and Ay calculated during the fitting procedure. The estimated
gap values are 6.5 and 3.3 meV. Specific heat jump produced the value of ~ 6 meV for

the larger gap [200].



72

Upon departure from optimal doping, the exponent n shows notable evolution with
x decreasing from 4 to about 1.5. London penetration depth is very sensitive to pair-
breaking disorder, modifying AX(T") at low temperatures [89, 66]. In Bal22 - derived
compounds it was also suggested experimentally [195, 194, 201, 157]. Within the si
theory [57], A(T') should be exponential in the clean limit [94, 93]. However, pair-breaking
scattering (which in this case can be caused by non-magnetic impurities and dopant ions)
turn the behavior into a power-law with the exponent n approaching 2 in the dirty limit
[90, 89, 202]. Since the superconductivity in BaK122 is induced by doping, we cannot
ignore the effect of disorder on the variation of exponents. However, it would be natural
to expect increase of scattering with z, and thus decrease of the exponent, opposite to
the trend in our data. Similarly, disorder effect cannot explain nodal state in the end
member of BaK122, very pure KFeysAsy with n=1.2 [191, 189]. In addition, our most
underdoped sample shows the exponent n = 1.5 clearly well below the limiting value of
2 for pair-breaking scattering. Thus we conclude that the variation of the exponent n,
found in our study, is caused by the changes in the superconducting gap structure with
doping.

The evolution of the power-law behavior in Ba;_, K, FeyAsy superconductors is sum-
marized in Fig. 4.16(a). Solid circles show exponent n with the error bar estimated from
the fitting to the different temperature ranges (such as shown in Fig. 4.14(b)) and open
circles show the pre-factor A calculated for a fixed exponent n = 2.3. Also shown are
the exponents for two stoichiometric (clean) compounds, KFeyAs, [191] and LiFeAs [94].
The dashed line represents our picture of the exponent variation with doping that, in
our opinion, reflects developing anisotropy of the superconducting gap. To relate to the
phase diagram, Fig. 4.16(b) shows magnetic and superconducting transitions vs doping
from neutron scattering [197]. The pre-factors of the power-law fit show a sharp increase
in the AFM region, similar to FeCo122 [155], which indicates microscopic coexistence of

superconductivity and long-range magnetic order [203].
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Figure 4.16 (a) n vs. = diagram. The red solid circles represent n from various tempera-
ture range between 7,./6 and 7,./3. The exponent n ~ 1 and 3.1 in KFeyAs,
[191] and LiFeAs [94], respectively, are from elsewhere. (b) T-x phase dia-
gram. The superconducting dome and AFM region were constructed with
data from elsewhere [197].

In conclusion, the measurements of A(7") in Ba;_,K,FeyAsy suggest the evolution of
the superconducting gap upon departure from the optimal doping from full isotropic to

highly anisotropic and, perhaps, nodal at the dome edges.

4.4 Full substitution of Fe with Pd: APd,As, (A = Ca, Sr)

and SrPd,Ge,

These compounds are interesting particularly because of compositional similarity to
the newly discovered isostructral Fe-and Ni-pnictide superconductors with comparable
T, such as KFeyAs,, BaNiyAs,, and SrNisPsy. Although there is strong experimental ev-
idence for nodal superconductivity in KFeyAss (Ref. [191, 204]), the Ni-based ones have
been shown to be fully gapped by thermodynamic and thermal transport measurements
[205, 206]. This naturally prompts the question: what the structure of a superconducting
gap is in these compounds? So far, not much work has been done on these materials

in this direction. Tunneling spectroscopy between 0.177,. and 7. is consistent with a
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single, isotropic gap superconductor [207]. To verify this, however, the thermodynamic,
thermal transport, and penetration depth measurements down to much lower tempera-
tures are necessary to provide objective conclusions regarding the gap-symmetry in these
superconductors.

In this section, we discuss London penetration depth, A(7"), in single crystals of
APdyAss (A = Ca, Sr) and SrPdyGe, taken in a dilution refrigerator with temperatures
down to 50 mK. The low - temperature variation of the London penetration depth,
ANX(T), clearly indicates exponential saturation in all compounds. In APd2As2, the low
temperature A\ is consistent with a BCS prediction for weak-coupling superconductor.
In SrPdyGes, the thermodynamic Rutgers formula was used to estimate A\(0) = 426 nm
which was used to calculate the superfluid density, p,(T) = A*(0)/A*(T). Analysis of
ps(T) in the full temperature range shows that it is best described by a single - gap

behavior, perhaps with somewhat stronger coupling.

4.4.1 APd2A52 (A = Ca, SI‘)

Figure 4.17 shows the temperature variation of the ab-plane magnetic penetration
depth, AX(T), measured in CaPdyAs; and SrPdsAs, crystals, represented by open circles
and triangles, respectively. The absolute value of the penetration depth was obtained
using the TDR technique by matching the frequency shift, Af(7'), to the skin depth, §,
calculated from the resistivity [208]. The superconducting transition temperature was
determined as the temperature of the maximum of AN(T")/dT. The determined 7,’s are
1.34 K and 1.26 K for CaPd;As, and SrPds;As,, respectively. These values are higher
than the bulk 7,’s of 1.27(3) K and 0.92(5) K determined from respective AC,(7") data
[208]. Even so, the actual onset of the diamagnetic reponse is observed at even higher
temperature Tc onset = 1.50 K and 1.72 K for Ca and Sr respectively. The temperature
dependences of A\ for the two compounds up to T, are shown in the inset of Fig. 4.17

At low temperatures, the AN(T') in Fig. 4.17 of each sample shows a clear saturation
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Figure 4.17  AXT') measured in CaPdyAs, (filled circles) and SrPdsAs, (filled trian-
gles). The data for SrPdyAs, are shifted vertically upwards by 30 nm for
clarity. The solid curve for each compound is the best fit of the data by
s-wave BCS function for T' < 0.37,.. The vertical dashed line is the upper
temperature limit for the fits. Inset: AM(T) for both compounds up to
T = T.. The data for SrPd;As, are all shifted upwards by 2 um for clarity.

on cooling, which is an indication of a fully-gapped superconducting order parameter in
both compounds. The experimental data are fitted well up to "= T./3 by a single-gap
BCS equation. The fitting parameters are A(0) = 210+£60 nm and A(0)/kp = 2.02+0.14
K for Ca and A(0) = 170 £ 70 nm and A(0)/kp = 2.05+0.20 K for Sr. The listed errors
are systematic errors obtained from the spread of the fitting parameters depending on
different choices of the upper temperature limit near 7, /3.

Using the bulk T, values determined by heat capacity measurements [208] and the
above values of A(0)/kp, we obtain o = 1.59(14) for Ca and 2.22(0.32) for SrPdsAs,.
The value of a for CaPdyAss is identical within the error vars to the value of 1.58(2) in
Eq that was determined from the heat capacity jump, both of which are smaller than
the BCS value 1.764 expected for an isotropic weak-coupling BCS superconductor. This
reduction is most likely due to a moderate anisotropy of the order parameter rather
than multiple order parameters because well-known multi-gap superconductors such as

MgBs, NbSe,, and LiFeAs have shown much lower values of alpha for the smaller gap.
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The accuracy of alpha for Sr that we could write down is uncertain, and will therefore

not be further discussed.

4.4.2 SI'PdQGez

Superconductivity in the tetragonal ThCrySis-type SrPdyGes was discovered first in
polycrystalline [209] and later in single crystals [210] with the superconducting phase
transition temperature (7;.) at 3.0 K and 2.7 K, respectively. The upper critical field
(H.) was estimated to be 4920 Oe at T = 0 by using Helfand-Werthamer (HW) theory
[211] based on the experimental data obtained only down to 7" = 0.77, [210]. It has
been found that 7. and H. can be slightly increased by chemical doping [212]. The
London penetration depth and coherence length are reported to be A(0) = 566 nm and
£(0) = 21 nm [207] and A(0) = 345 + 30 nm &(0) = 25.6+ 0.5 nm [213]. These values
give the Ginzburg - Landau parameter of x = 27 [207] and x = 13.5 [213], which makes
SrPd,Ge; a strong type-11 superconductor. Furthermore, thermodynamic [210] and tun-
neling spectroscopy measurements are consistent with a slightly strong - coupling s-wave
Bardeen-Cooper-Schrieffer (BCS) superconductor with the zero-temperature value of the
superconducting gap of Ag ~ 2kgT, [207, 213], - not far from the weak coupling value of
1.76.

Figure 4.18 shows temperature variation of the in-plane London penetration depth,
AX(T), measured in a single crystal of SrPdyGey superconductor which exhibits a very
sharp superconducting phase transition at T, = 2.7 K as shown in the inset, indicating
a high quality, homogeneous sample. In the main panel, AX(T') is shown with temper-
atures up to about 0.677,.. The saturation in 7" — 0 limit and almost flat temperature
dependence, AX(T./3) < 10 nm, indicate fully gapped superconductivity. Experimen-
tal AXN(T') can best fit to a power-law function, AXN(T) = AT™, with the exponent of
n = 2.7 4+ 0.1 and pre-factor of A = 12.2 + 0.4 nm/K?>7. The fitting curve is shown

in red solid line. A power-law function with such a high exponent has very weak vari-
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Figure 4.18 In-plane London penetration depth in a single crystal of SrPdyGes. Main
panel: Open circles represent experimental data. Solid and dashed lines
represent power-law and BCS (single gap s-wave) low - temperature fitting.
Dotted shows the data for KFeyAss taken from Ref. [191] for comparison.
Inset: London penetration depth in the full temperature range demonstrat-
ing a sharp transition at 7, = 2.7 K

ation at low temperatures, indistinguishable from the exponential behavior which is
predicted for a fully open superconducting gap. In fact, the BCS low - temperature
form, ANT) = M0)\/7A¢/2kpT exp (—Ao/kgT), where Ay is the maximum gap value
at T'= 0, fits the data equally well for T' < T../3 where it is expected to be valid. How-
ever, the best fitting is achieved with A(0) = 50 nm and Ay = 0.74kgT,. The latter is
impossible in the single - gap clean limit where Ay ~ 1.76kgT., is expected. The value
of A(0) is also much smaller than the reported value of 566 nm [207]. Similar low -
temperatures features can be seen in two - band superconductors such as MgBs (Ref.
[18]), 2H-NbSe, (Ref. [214]), LuyFesSi5 (Ref. [215]), and more recently LiFeAs (Ref.
[94]). However, as we show below, analysis of the superfluid density in the full temper-
ature range is inconsistent with a two - gap clean behavior. Instead, it is more likely
that we are dealing with moderate pair - breaking scattering (maybe due to well-known
magnetic impurities in Pd) which results in a finite density of states inside the gap. We

also point out that these temperature variation is very small compared to a known nodal
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superconductor KFesAsy (Ref. [191, 204]) with similar T,, but exhibiting much stronger
temperature dependence of A\, indicating significant amount of quasiparticles generated
at the low temperatures, most likely due to nodes in the gap.

For a metallic sample, the measured penetration depth above T, is determined either
by the skin depth ¢ or sample size. In case of skin depth limiting, the value of A\(T" > T)
shown in the inset in Fig. 4.18 is one half of the actual skin depth [111]. Therefore, we
can estimate normal state resistivity from the measurements using p = (2mw/c?)6? [94].
For SrPdyGe, with w/27m = fy = 17 MHz and §/2 ~ 20 pm, the calculated resistivity is
approximately 12 uf2 cm which is much less than the experimental value of 68 uf) cm
(Ref. [210]). Therefore, we conclude that it is in a sample - size limited regime. Using
the same equation, the estimated skin depth is 180 nm which is close to half width of
the sample.

Finally, we note that the data exhibit a smooth transition from superconducting
penetration depth to the normal state between T' = T, and T* =~ 3.0 K, which has
also been seen in transport measurement. [210] Interestingly, 7% = 3 K is the onset of
superconductivity observed in a polycrystalline sample [209]. Similar feature has also
been observed in a related superconductor BaNiyAs, [216]. Perhaps this feature requires
further study.

While the low - temperature behavior is important, the superconducting gap can be
probed at all energy scales by the analysis the superfluid density, p,(7) = A*(0)/\*(T),
in the entire temperature range [102]. However, superfluid density requires knowledge
of the absolute value of A(0). For SrPdyGe; A(0) = 566 nm was estimated using a
dirty limit [207] and A(0) ~ 390 nm was extracted from field - dependent magnetization
[210] within the London approximation and A(0) &~ 345 4+ 5 nm was estimated from the
measurements of the field of first penetration [213]. So, the variation of the literature
values is quite significant and we have to resort to another, thermodynamic, approach

based on the Rutgers formula. In the Ginzburg-Landau regime, i.e. near T,, it can be
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shown that

where ¢g =

2.07 x 1077 G cm? is a flux quantum and |0H. /0T
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Main panel: Calculated superfluid density, ps, with various A(0)’s. The

slope of dashed lines was determined with AC, and |dH./dT

ing the Rutgers formula as described in the text.
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(4.2)

7. = 0.26 T/K is

determined experimentally [124]. Specific heat jump AC, = 7381 erg/cm’K is taken

from Ref. [212]. Applying these thermodynamic values suggests |0p/dt|r, /A\%(0) = 21.7

pum~2 where t = T'/T,. is the reduced temperature. This quantity can be compared with

the actual slope of calculated p,(t) with various A\(0) at T, as shown in Fig. 4.19. In the

main panel, the open symbols represent the calculated superfluid density with 300, 400,

and 700 nm in triangle, circle, and square, respectively. The dashed lines are determined

with the slope calculated by Eq. 4.2 for three values of A\(0) quoted above. The line

with 400 nm shows very good agreement with calculated ps; while the line with 300 nm

significantly underestimates, and the one with 700 nm overestimates. This procedure

can be repeated with various values of A(0)

The result is summarized in the inset

where the solid triangle represents experimental slopes obtained by fitting experimental
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data near T, to a linear line. The gray horizontal band represents the theoretical value
of |0p/0t|7,/A*(0) = 21.7 + 2.2 um~2 determined with a 10 % hypothetical error in
|0H 2 /0T |7, and AC,. In this way, A(0) can be determined at the intersection of the
theoretical line and experimental results, which provides that A(0) = 426 £+ 60 nm that

lies between the literature values. With this value, the slope of p, at T, is determined to

be —3.9.
T
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Figure 4.20  Calculated superfluid density, ps(T) = A?(0)/A*(T) using A(0) = 426 nm.
Open circles represent the experimental data. The dashed dots and dashed
lines represent single - gap weak - coupling s-wave BCS superconductor in
clean and dirty limit, respectively.

The calculated superfluid density with A(0) = 426 nm is shown in Fig. 4.20. The
dot - dashed and dashed lines show expectation for clean and dirty limit of a single-gap
BCS superconductor in the weak - coupling limit, respectively. An attempt to use a
two-gap (clean) v-model [154] in the full-temperature range converges to a single - gap
limit with A(0)/kgT. =2.2. Therefore, the gap symmetry of SrPdyGey is most likely
represented by a single gap s-wave, perhaps with somewhat enhanced coupling strength.
It was noted previously that the shape of ps(7T) is rather close to a nonlocal - limiting
case, expected in type I superconductors such as aluminum and cadmium [217]. Similar

argument was made in the work by T. K. Kim et al. in which SrPd;Ge,; appeared to be
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type I according to the intrinsic electronic structure despite the fact that experimental
€(0) and A(0) put it in a strong type-II regime [207]. In any case, our study confirms
that simple analysis with an isotropic Fermi surface is not sufficient and, perhaps, the
results could be explained by taking into account a realistic band structure. We can,

however, conclude that no nodes are present in the superconducting gap.

4.5 Summary

In Fey4,Te;_,Se,, a robust power-law behavior of the low-temperature London pen-
etration depth was found for AXN(T') o< T™ with n ~ 2.1 and 2.3 for Fe; g3(Teq 635¢0.37)
and Fe(Teg535€p.42), respectively. The absolute value, A\(0) ~ 560 + 20 nm, was deter-
mined in Fey o3(Tegg35€0.37) by the Al-coating technique. The analysis of the superfluid
density showed a clear signature of nodeless two-gap superconducting state with strong
pair breaking effect.

In Cajo(Pt3Ass)[(Fe;_.Pt,)2Ass]5, the power-law fit of the low temperature part of
AMX(T) showed that the exponent, n, monotonically changes from 2.36 at the optimal
doping to 1.7 in heavily underdoped regime, which can be explained by an increasing
anisotropy of the superconducting gap at the edges of the superconducting dome.

In Ba; ,K,FesAss (0.13 < 2 < 0.40) where superconductivity coexists with mag-
netism, the measurements of AX(T) suggest the evolution of the superconducting gap
upon departure from the optimal doping from full isotropic to highly anisotropic and at
the dome edges.

This doping evolution of gap anisotropy is universally found in all charge-doped Fe-
pictides, Ba;_, K, FesAsy and Cayg(PtzAsg)[(Fei_,Pt,)2Ass]5 similar to previous reports
for Ba(Fe,Co)oAsy, Na(Fe,Co)As, and Na;_sFeAs. Observation of this evolution in all
these materials irrespective of degree of anisotropy and coexistence vs. separation of

magnetism and superconductivity in a phase diagram suggests that this evolution is
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intrinsic property of Fe-based superconductors. Theoretically it was suggested that this
evolution comes from the competing inter-band pairing and intra-band repulsion in the
superconducting pairing [179].

Related low T, materials SrPdyGey; and APdyAsy (A=Ca,Sr) in which Fe is com-
pletely substituted by Pd show very different behavior. In these compounds, tempera-
ture variation of the London penetration depth is consistent with conventional full-gap

superconductivity.
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CHAPTER 5. EFFECT OF DISORDER ON LONDON
PENETRATION DEPTH IN TRON-BASED
SUPERCONDUCTORS

5.1 Superconducting gap structure in stoichiometric LiFeAs

and KF@Q ASQ

Studies of the superconducting gap structure play an important role in the deter-
mination of the mechanism responsible for superconducting pairing. In FeAs-based su-
perconductors, the situation regarding the gap structure remains controversial. Since
doping inevitably introduces scattering [218], which is pairbreaking in iron pnictides
219, 89, 90, 66, 157, 132], measurements of stoichiometric intrinsic superconductors be-
come of utmost importance. LiFeAs and KFeysAs, with T, =~ 18 K and 3.4 K are among
very few such compounds. They are the cleanest systems with a high residual resistivity
ratio (RRR) of about 50 [220] and 1000 [221], much higher than BaP122 (5 to 8 for
different doping) [42], BaC0122 (3 to 4) [222] and BaK122 (7 to 10) [196], pure Bal22 (7
to 10 under pressure) [223]. Since T, of LiFeAs decreases with pressure [224, 46], which
is observed only in optimally and overdoped compounds [225], we can assign its “equiv-
alent” doping level as slightly overdoped, as opposed to underdoped NaFeAs, whose T,
goes through a maximum with pressure [226] and heavily overdoped KFeysAs,. This dop-
ing assignment is consistent with the temperature-dependent resistivity, discussed later.

With the much reduced effect of pairbreaking scattering, comparison of these stoichio-
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metric compounds can bring an insight into the intrinsic evolution of the superconducting
gap.

In this chapter, we discuss experimental results on the in-plane London penetration
depth, A(T), in single crystals of LiFeAs and KFeyAs, both of which do not show any
apparent long-range magnetic ordering. While both penetration depth and the superfluid
density in LiFeAs are both consistent with fully gapped superconductivity, both of them
in KFeyAs, are consistent with a nodal superconductor. We use the self-consistent clean
two-gap y—model [154] to analyze the superfluid density in LiFeAs. Our results imply
that the ground state of FeAs-based superconductors in the clean limit is not universal.
Superconducting gap structure at almost optimal doping is given by s+ symmetry with
two distinct gaps, Ay /T, ~ 2 and Ay /T, ~ 1, but effectively heavy-hole doped one shows

nodal superconductivity.

5.1.1 Nodeless multi-gap superconductivity in LiFeAs

Single crystals of LiFeAs were grown in a sealed tungsten crucible using Bridgeman
method [220, 227]. After growth, samples were only exposed to Ar in glovebox and
transported under Ar in sealed ampoules. Immediately after opening, (0.5 —1) x (0.5 —
1) x (0.1 —0.3) mm? pieces of the same crystal (all surfaces cleaved in Apiezon N grease)
were used for TDR, transport and magnetization measurements. Samples from two
different batches were measured, and we found compatible results in all measurements,
with bulk superconducting transition consistent with previous reports [220, 227]. In what
follows we present all results for samples from batch #1. Low resistance contacts (~ 0.1
m(2) were tin-soldered [228] and in-plane resistivity was measured using a four probe
technique in Quantum Design PPMS. The transition temperature, 7., was determined
at the maximum of the derivative dAX(T")/dT, Table 5.1. The London penetration depth
was measured with the TDR technique [101]. The sample was inserted into a 2 mm inner

diameter copper coil that produced an rf excitation field (at f ~ 14 MHz) with amplitude
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H,. ~ 20 mOe, much smaller than H,.;. Measurements of the in-plane penetration depth,
AXp(T), were done with H,,. || c-axis, while with H,.Lc we measured A\ ,,(T") that

contains a linear combination of A, and A. [229].
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Figure 5.1 Left axis: resistivity (symbols) along with the 2" order polynomial fit from
T. to 50 K used to determine the residual resistivity, p(0) = 3.7 puQ-cm.
Right axis: skin depth, §, measured by TDR, drpr compared to that calcu-
lated from resistivity, d,. Upper inset: p(T") in the full temperature range.
Lower inset: TDR data for pristine and air-aged samples (see text).

The main panel in Fig. 5.1 shows the temperature-dependent resistivity, p(7") (left
axis), and skin depth, §(7") (right axis). The resistive superconducting transition starts
at 18 K and ends at 16 K as cooling. p(7") up to room temperature is shown in the top
inset. The residual resistivity ratio, RRR = p(300K)/p(20 K) = 35 and it reaches the
value of 65 when extrapolated to 7' = 0 using a 2"? order polynomial. This behavior is
consistent with the T-dependent resistivity of BaCo122 in the overdoped regime [230].
The calculated skin depth, 0,(T) = (c¢/27)\/p/f, (in CGS units) compares well with
the TDR data for T' > T,, where Af/fy = G[1 — R{tanh (aR)/(aR)}], a = (1 —4)/d
[231] when we use p(300K)=250 uf-cm, the lowest directly measured value among our
crystals. A very good quantitative match of two independent measurements gives us a

confidence in both resistivity data and the TDR calibration.
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To check for degradation effects, a sample was washed and intentionally exposed to
air for an hour and the measurements were repeated, as shown in the lower inset in
Fig. 5.1. After the exposure, the sample surface lost its shiny metallic gloss and the
total frequency shift through the transition (proportional to the sample surface area A)
decreased. This reduction without affecting the transition temperature and width sug-
gests that the degradation happens on the surface and superconductivity of our samples

is bulk in nature.
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Figure 5.2 Main panel: A\, (T) in three LiFeAs crystals (solid dots) and AX; (1)
for sample #2 (crosses). Analysis (shown for #1) was done assuming both
power-law (solid lines) and exponential (dashed line) T-dependences. The
data for samples #2 and #3 (shifted vertically for clarity by 10 and 20 nm,
respectively) were analyzed in a similar way, see Table 5.1. Inset: compar-
ison of the fit residuals for sample #1 for the power-law and exponential
functions.

AXgp(T) in three LiFeAs crystals is shown up to 7./3 in Fig. 5.2 by solid dots.
AXp(T) was analyzed using (1) power-law, AXNT) = AT™ (with A and n being free
parameters), as expected for nodal superconductors, and (2) exponential BCS form,
ANT) = Nor/TAg/2T exp (—Ao/T) (with Ny and A as free parameters). The best fit
results for sample #1 are shown with solid (power-law) and dashed (exponential) lines.
The fit residuals are shown in the inset. The exponential fit quality is as good as the

power-law, although Ag/7T, = 1.09 4+ 0.02 is smaller than the value of 1.76 expected for
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a conventional single fully-gapped s-wave pairing and Ao = 280 + 15 nm is somewhat
larger than the experimental 200 nm [128, 186]. This is naturally explained by two-gap
superconductivity in LiFeAs. The superconducting T, and best fit parameters (obtained
from fitting up to 7../3) for all samples are summarized in Table 5.1. 72" was defined at
90% of the rf susceptibility variation over the transition: the mean T, was defined at the
maximum of dAXN(T)/dT and AT, = T —T.. Ag/T. from the single-gap exponential
BCS behavior. The power-law coefficient A’ was obtained with the exponent n as a free
parameter, while A was obtained with a fixed n = 3.1 (average of 3 samples). Crosses
in Fig. 5.10 show A\, (7)) for sample #2. A clear saturation of AM.,,..(T) at low
temperatures suggests exponential behavior of A\.. Thermal contraction is ruled out as
it would only give a total change of about 1 nm from 0 to 7, [232] and it could only lead

to a non-exponential behavior.
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Figure 5.3 (a) A\ vs. T3! (average exponent n over 3 samples); (b) exponent n and
(c) prefactor A, obtained by fitting to ANT) o AT™ for various upper
temperature limits shown on the z-axis.
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Figure 5.3(a) shows AX(T) vs. T™ with n = 3.1 which is the average exponent for
three samples. The dependence of the parameters, n and A, on the fitting temperature
range is summarized in Fig. 5.3 (b) and (c), respectively. As expected, the exponent n
is more scattered for the shortest fit interval, otherwise n and A do not depend much
on the fitting range from base temperature to 6 K and give n > 3 for all samples, with
the average value 3.13 £+ 0.23. With n fixed at this average value, we determined the
prefactor A =107.8 + 2.1 pum /K31
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Figure 5.4 Symbols: superfluid density, ps(7') calculated with A(0) = 200 nm. Solid
lines represent the fit to a two-gap y—model, ps = vp; + (1 — ) p2. Dashed
line is a single-gap BCS solution. Upper inset: superconducting gaps,
A1(T) and Ay(T') calculated self-consistently during the fitting. Lower inset:
A1/A, as a function of temperature.

The superfluid density, p,(T) = [1 + AXN(T)/A(0)]72 is the quantity to compare with
the calculations for different gap structures. Figure 5.4 shows ps(7T') for crystal #1 cal-
culated with A\(0) = 200 nm [128, 186]. The calculated superfluid density using this A(0)
value provides slope p.(T..) which is consistent with the Rutgers formula (see Fig. 3.3).
A noticeable positive curvature above T,/2 is similar to other Fe-based superconductors
[233] and MgB, [18], suggesting multigap superconductivity. We analyze p,(T) in the
framework of the self-consistent y—model [154]. LiFeAs is a compensated metal with 2D

cylindrical hole and somewhat warped electron Fermi surface sheets [234, 185]. To re-
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duce the number of fitting parameters, yet capturing compensated multiband structure,
we consider a simplest model of two cylindrical bands with the mass ratio, u = my/ma,
whence the partial density of states of the first band, ny = p/(1 + u). The total su-
perfluid density is ps = vp1 + (1 — v)pe with v = 1/(1 4+ ). We also use the Debye
temperature of 240 K [126] to calculate T,, which allows fixing one of the in-band pairing
potentials, A;;. This leaves three free fit parameters: the second in-band potential, Agg,
inter-band coupling, A2, and the mass ratio, p. Figure 5.4 shows that ps(7") can be
well described in the entire temperature range by this clean-limit weak-coupling BCS
model. In the fitting, the two gaps were calculated self-consistently (which is the major
difference between this one and the popular, but not self-consistent, « - model [17]) and
the self-consistent A;(7") and Ay(T") are shown in the upper inset in Fig. 5.4, while the
gap ratio is shown in the lower inset indicating strong non-single-gap-BCS behavior of
the small gap. The best fit, gives A;(0)/T. ~ 1.885 and A»(0)/T. ~ 1.111. As expected,
one of the gaps is larger and the other is smaller than the single-gap value of 1.76, which
is always the case for a self-consistent two-gap solution. The best fit parameters are:
A1 = 0.630, Ayo = 0.642, A5 = 0.061 and p = 1.384. The determined mass ratio gives
ny; = 0.581 and v = 0.419. This is consistent with bandstructure calculations that yield
ny = 0.57 and p = 1.34 (private communication with Mazin), and ARPES experiments
that find p ~ 1.7 [185]. The effective coupling strength, A.;; = 0.374, is not far from
0.35 estimated for 122 [235] and 0.21 for 1111 [236] pnictides. (The value of 0.21 is an
upper limit for the total electron-phonon interaction and the higher values would repre-
sent total strength of electron-boson coupling). The electron band with a smaller gap
gives about 1.5 times larger contribution to the total ps resulting in a crossing of the
partial densities at low temperatures. Similar result was obtained from magnetization
measurements [237]. We stress that while A;(T"), Ay(T) and p (hence, ny, ny and =)
and Ay are unique self-consistent solutions describing the data, the coupling matrix \;;

is not unique. There are other combinations that could produce similar results and \;;
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has to be calculated from first principles.

5.1.2 Nodal superconducting gap in KFe;As,

The discussion of the superconducting pairing mechanism in iron-based supercon-
ductors was guided by early observations of full superconducting gap [28] and neutron
resonance peak [61]. Based on these observations, Mazin et al. suggested pairing mech-
anism, in which superconducting order parameter changes sign between but the remains
full on all sheets of the Fermi surface [57, 36]. Verification of this so called sy pairing
quickly became a focal point of studies of the superconducting gap structure.

Probably the first clear deviations from full-gap s4 scenario were found in NMR and
heat capacity studies of KFeyAs, [188], which represents the terminal overdoped compo-
sition of (Ba,K)FesAs, series [44, 238] (we abbreviate the materials as K122 and BaK122
in the following). Systematic doping studies over the superconducting dome in electron-
doped Ba(Fe;_,Co,)2Ass (BaCol22) [77, 78, 86, 155, 239, 63, 71], NaFe; ,Co,As [240]
and hole doped BaK122 [241] suggest that the superconducting gap in all these cases
universally develops pronounced anisotropy at the dome edges. Thus K122 is not unique
as a nodal superconductor, and understanding of its superconducting gap is of great
importance for the whole iron-based family.

Evolution of the superconducting gap with doping distinguishes iron-based supercon-
ductors from cuprates, in which d-wave pairing is observed in all doping regimes. Several
theoretical explanations of this fact were suggested [242, 243, 179]. Doping evolution was
explained in sy scenario as a result of the competition between inter-band pairing and
intra-band Coulomb repulsion [179, 180]. Alternatively, it was explained as a result of a
phase transition between sy and d-wave superconducting states [243]. Important differ-
ence is that nodes in the gap structure are accidental in the first scenario, but symmetry
protected in the second.

The conclusion about existence of line nodes in superconducting gap in KFeyAs, [188]
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is supported by now by numerous experiments. London penetration depth studies found
close to T-linear dependence [84]. Small angle neutron scattering [244] found hexagonal
vortex lattice, which the authors argued as an evidence for horizontal line nodes in the
gap. Thermal conductivity studies reveal finite residual linear term in zero field, which
rapidly increases with magnetic field [189]. Moreover, residual linear term was found to
be independent of heat flow direction [204] and impurity scattering [204, 245], suggesting
symmetry imposed vertical line nodes in the superconducting gap structure, similar to
the d-wave superconducting state of the cuprates [19]. The specific heat of the samples
revealed rapid rise of the residual term on Na doping, as expected in d-wave scenario [246].
Moreover, non-monotonic dependence of T, on pressure was explained as an evidence of
a phase transition in the superconducting state of KFeyAsy [247].

These observations, however, are disputed by recent ARPES [248] studies in pure
samples, which both suggest extreme multi-band scenario with the existence of vertical
line nodes on one sheet of the Fermi surface, and large full gap on the others. It is im-
portant to notice though that neither ARPES nor heat capacity measurements directly
probe a response of the superconducting condensate, which allows alternative interpre-
tation of the data as being surface in origin in the former case [247] and of magnetic
origin in the latter [64].

In this section, we report systematic studies of the London penetration depth, its
anisotropy and response to isoelectron substitution in KFeyAsy. We show that response
of the superfluid to pair-breaking non-magnetic disorder is consistent with symmetry
imposed nodes in the superconducting gap and inconsistent with extreme multi-band
scenario. Our observations may be suggestive that gaps in heat capacity and ARPES
measurements are of non-superconducting origin.

Single crystals of KFeyAs, were grown using the KAs flux method as explained in
detail in Ref. [221]. Small resistance contacts (~ 10uf2) were tin-soldered and in-plane

resistivity was measured using a four probe technique in Quantum Design PPMS. The
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London penetration depth was measured with a TDR technique in 3He cryostat and
dilution refrigerator with operation frequency of 14 MHz and 17 MHz, respectively. The
sample was inserted into a 2 mm inner diameter copper coil that produced an rf excitation
field with amplitude H,. ~ 20 mOe, much smaller than typical H.;. Measurements of the
in-plane penetration depth, A\, (T"), were done with H,. || c-axis, while with H,.Lc we
measured A\, (7)) that contains a linear combination of A\, and A. [102]. The shift of
the resonant frequency (in cgs units), Af(T) = —G4nx(T'), where x(7T') is the differential
magnetic susceptibility, G = foV;/2V.(1 — N) is a constant, N is the demagnetization
factor, Vj is the sample volume and V. is the coil volume. The constant G was determined
from the full frequency change by physically pulling the sample out of the coil. With
the characteristic sample size, R, 4wy = (A\/R) tanh(R/\) — 1, from which A\ can be
obtained [100, 102].

In the top panels of Fig. 5.5 we show temperature-dependent resistivity of pure K122,
=0, and of Na-doped sample with x=0.07. Zoom on the superconducting transition
range in panel (b) shows a T2 fit of the p(T') curves used to evaluate residual resistivity
of the samples. Based on measurements on array of 12 crystals from the same batch, we
adopted that p(300K) for pure KFeyAsy is 300430 uQ2cm. The resistivity value for Na-
doped samples is indistinguishable from that of the pure material at high temperatures,
so we adopted the same p(300K). The p(T) of two sets of samples are identical as
well, except for increased residual resistivity and suppression of the superconducting
transition temperature in xt=0.07 samples. Extrapolated to T'=0 the residual resistivities
are 0.100£0.050 (z=0 ) and 1.7 pf2em (=0.07).

Scattering on non-magnetic alloy disorder in K;_,Na,FesAs, introduces strong pair
breaking effect, and strongly suppresses T,. In Fig. 5.5 (¢) we show T, as a function
of pg as determined in this study using p=0 criterion. For reference we show similar
data obtained on Co doping in K(Fe;_,Co,)2Asy, Ref. [245]. Despite the fact that Co-

substitution acts as electron-doping, while Na substitution is clearly isoelectronic, both
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Electrical resistivity of K;_,Na,FesAs, with x=0 and x=0.07 shown over
full temperature range (panel a) and zoomed on the superconducting transi-
tion region (panel b). Lines in panel (b) show T2 fit of the resistivity used for
T =0 extrapolation. Bottom left panel shows superconducting T, as a func-
tion of residual resistivity in isoelectron-substituted K;_,Na,FesAs, (cir-
cles) in comparison with electron-doped K(Fe;_,Co,)2Asy (squares). Bot-
tom right panel (d) shows penetration depth measurements in samples with
=0 and x=0.07 over the whole superconducting temperature range up to
T.. The difference in the A\ value above T, in samples =0 and x=0.07
reflects the difference in the normal state skin depth, proportional to the
square root of electrical resistivity.
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types of substitution introduce similar pair-breaking, suggestive that scattering, rather
than electron count, plays primary role in T, suppression.

In the bottom panel (d) of Fig. 5.5 we show temperature variation of London pene-
tration depth in samples x=0 and x=0.07 over the temperature range from base temper-
ature to above T,. The data were taken using a TDR setup in a 3He cryostat down to
T = 0.5 K, and in a dilution refrigerator in ~50 mK to ~3 K range. The superconduct-
ing transition is rather smooth in both =0 and x=0.07 samples, which is similar to the
results of previous radio frequency measurements on this compound [84]. The big width
of the tramnsition is caused not by the sample inhomogeneity, but small and strongly
temperature-dependent normal state skin-depth. In samples of this low resistivity, the
normal state skin effect makes significant contribution to the measured signal close to
T,.. For resistivity value of 0.5 uf2cm we can estimate skin depth at our experimental fre-
quency of 14 MHz as § ~ 8.6 um. Thus when the superconducting London penetration
depth (which should diverge on approaching T, on warming), becomes comparable to the
normal state skin depth, the transition is no longer sharp and becomes of a broad cross-
over type. This contribution of the skin depth makes determination of T, from purely
TDR measurements on the same crystals very criterion dependent. In the following we
rely on resistivity measurements on samples from the same batch for reference.

The variation of London penetration depth as a function of reduced temperature,
t = T/T., provides information about the nodal structure of the superconducting gap.
This statement is valid in a characteristic temperature range ¢ < 0.3, for which the
superconducting gap A can be considered as temperature-independent. For full gap
superconductors, AX(T") is exponential, as shown in Fig. 5.6(a) for optimally doped
BaK122, x=0.40 [249]. For gap with line nodes, temperature variation shows power-law
dependence AXN(T') = At", where n depends on sample purity and takes values between
n=1 (clean limit) to 2 (dirty limit). Same power-law dependence is expected for s,

however with exponent n decreasing with pair-breaking scattering from n=4 (clean case,
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Top panel (a) shows AX(T') for samples of K;_,Na,FesAsy x=0 and 2=0.07
in comparison with optimally doped Ba;_,K,FesAsy y=0.4 [249]. The data
are shown over characteristic temperature range up to 0.37,, in which the
gap of single-gap superconductors can be considered as constant. Solid lines
show best fits of the data with power-law function A\ = ag + AT? for =0
and x=0.07, and exponential function /2A,/T exp(—2A,/T") for BaK122.
Data for sample x=0.07 were offset for clarity. Inset in top panel shows data
for samples =0 and x=0.07 plotted vs. square of the reduced temperature,
t = T/T,, straight line is guide for eyes. Bottom panel (b) shows dependence
of the exponent n of the power-law fit, A\ = AT™, on the temperature T,
of the high-temperature end of the fitting range. The low-temperature end
was always fixed at base temperature.
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indistinguishable experimentally from exponential function) to about n=1.6 [90]. In top
panel of Fig. 5.6 we show A\ vs t of KNal22 samples with =0 and x=0.07. Inset shows
the same data plotted as AX(t?). It is clear that the exponent n increases with doping
and x=0.07 samples approaches the value n=2, both of the observations consistent with
the superconducting gap with line nodes.

The data between the base temperature and ¢ = 0.3 can be best fitted to the power-
law function with (n = 1.39 and A = 200 nm) and (n = 1.93 and A = 911 nm) for
K122 and KNal22, respectively. The observed n in KNal22 are in the range expected
in a line-node scenario with moderate scattering. According to Hirschfeld-Goldenfeld’s
theory [82], AXN(T) can be characterized by a function, T%/(T + T*) where T* is the
crossover temperature from T to 72 at low temperatures. Our fit using this formula
gives T* = 0.5T,, indicating a relatively clean case.

Alternatively, this crossover behavior can be due to multi-band effects in supercon-
ductivity. For multi-band superconductors the upper end of the characteristic AN(T')
dependence is determined by the smaller gap A,,;,, and shrinks proportional to A,,;,/A.
Because the bounds of the interval of the characteristic behavior are unknown a priori,
for quantitative analysis of the data we made power-law fitting with AA(¢t) = ao + At"
over floating temperature interval. The low-temperature end of this interval was always
kept fixed at base temperature, and the exponent of the power-law fit n was determined
as a function the high-temperature end 7',,. This dependence for KNal22 samples with
x=0 and £=0.07 is shown in bottom panel of Fig. 5.6.

Additional information on the direction of nodes in the superconducting gap can
be obtained from penetration depth anisotropy. In Fig. 5.7 we show T-variation of
the frequency shift Af(T) in TDR measurements for orientation of ac magnetic field
H along tetragonal c-axis and along ab-plane. Oscillating field H along c-axis induces
supercurrent in the ab plane, so measured AX(T') is proportional to the in-plane \. For H

applied along the ab plane we measure the linear combination of both in-plane A and inter-
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Figure 5.7 Af(T) in a sample of KFeyAs, positioned in a different way with respect to
the ac- magnetic field H generated by the TDR inductor coil, in configura-
tion H || ¢ (in-plane penetration depth A,b, squares) and H along ab-plane
(mixed penetration depth, circles). Triangles show the data for H || ab,
taken on a sample with the width (w) reduced two times compared to the
initial measurements (circles), representing different mixture of Ay, and ..
Inset shows the same data over a broader temperature range up to 0.767..
Identical temperature dependence in all cases provides a clear evidence for

the same functional form AX(T") of both in-plane and inter-plane penetration
depth.
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plane A., with relative contributions proportional to sample geometry. The combined
response of the supercurrent is associated with the so-called A\,izeq, see Ref. [102] for
details. For H along the ab-plane, the contribution from in-plane A can be changed by
reducing dimensions of the specimen, and, in principle, A along c-axis can be extracted
[102]. In our experiment, the width w of the sample perpendicular to H,. was reduced
to w/2 while maintaining thickness of the sample, so the contribution of in-plane A into
measured \,,;, has been reduced by half. We did not go into quantitative analysis of the
data because cutting of small samples of soft KFeyAss crystals always introduced cracks,
affecting geometry in poorly controlled way. However, as can be seen in Fig. 5.7, three
curves taken in sample with different geometry exhibit exactly the same temperature
dependences over practically full superconducting temperature range as shown in the
inset. The only way to explain this observation is to assume anisotropic superconducting
gap structure with vertical line nodes.

A further insight into the structure of the superconducting gap in KFeyAsy can be
obtained through the analysis of the temperature-dependent superfluid density, ps(T) =
A2(0)/A*(T). This quantity can be studied over the full superconducting temperature
range, and compared with various models. To calculate superfluid density we have to
know A(0), which does not come from standard TDR experiment.! For sample with z=0
we calculated p,(T") using A(0) = 0.26 pm following Ref. [84]. For sample with x=0.07
we estimated A\(0) = 1 pm using Homes scaling law based on resistivity and 7, data
(252, 253] The resulting ps(7') are shown in Fig. 5.8 using normalized scale ps/ps(0) vs

T/T.. The low-temperature part of ps(7") for both pure and doped samples are shown

!The slope of the experimental superfluid density at T, o (T/T.)|r, = p.(1), calculated in KFeyAs,
with A(0) = 260 nm [84], was compared to the Rutgers formula estimate. Using literature values of
AC = 164 mJ/mol-K [250] and H/,(1) = —0.55 T/K [250], we obtained p/ (1) = —2.5, using another
value of AC = 228 mJ/mol-K [251] with the same H/,(1), we obtained p’,(1) = —3.7. Both estimates
are significantly higher than the experimental value |p,(1)| ~ 1.5. The origin of this discrepancy can
be partially caused by strong curvature of ps near T, caused by comparable London penetration depth
and normal skindepth. Another possibility is non-superconducting contribution to the magnitude of
the specific heat jump [64], a problem similar to that found in application of the Rutgers formula
for optimally doped Baj_,K,FesAsy (see section 4.3). Additional complication may come from the
proximity to a state with different gap symmetry [247], which can lead to over-estimate of p/,(1).
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Temperature-dependent superfluid density, ps = A?(0)/A\*(T), in samples
of Ky_,Na,FeyAs, calculated from AX(T) data of Fig. 5.6 using A(0) = 260
nm for =0, Ref. [84], and A(0) =1 pm for z=0.07. Data are shown on
normalized scale as p;/ps(0)) vs T/T.. Superconducting 7. was determined
from resistivity measurements using zero resistivity criterion. Red and green
lines show theoretically expected superfluid density p(7") in a clean and dirty
d-wave superconductor. The anomalously slow variation of the superfluid
density at T, is caused by the interplay of London penetration depth and of
the skin depth close to T, the data for temperatures below T,/2, when the
effect of skin depth becomes negligible, are in good agreement with clean
(x=0) and dirty (z=0.07) d-wave cases (see zoom in the inset).
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in the inset of Fig. 5.12.

For reference we show expected temperature dependent superfluid density in clean
and dirty d-wave cases, which are representative of all superconductors with linear line
nodes. Because of uncertainty of T, determination in the same experiment and strong
interplay of London penetration depth with normal state skin-depth in these very con-
ductive materials, the data are not very well defined close to T.. The flat ps(T) at
T, is clearly an artifact of this interplay, and we neglect it in comparison with theory.
In pure material with skin depth 4.5 pm and A(0)=0.26 pm, the London penetration
depth becomes much smaller than skin-depth at temperatures of order of 0.87,.. Be-
low this temperature ps(7") indeed follows expectations for a d-wave superconductor,
though with somewhat suppressed T,.. In Na-doped sample the dependence also follows
expectations for dirty d-wave superconductors.

When analyzing ps(7), we should notice that deviation from d-wave calculations do
not leave room for any full gap contribution to superfluid density. If it was present, at a
level more that 0.1 of the total ps, it would result in significant exceeding of ps(T") over
the curve for a d-wave case. Based on this comparison we can disregard any contributions
from full gap-superfluid in both clean =0 and x=0.07 samples with the accuracy of less
than 0.1 of total superfluid density.

Along with the power-law behavior of AN(T) ~ T4 at low temperatures, our ob-
servations leave very little room for non-nodal contribution to the superfluid density of
KFeyAsy. The response of the superfluid in both clean and dirty samples is not only
consistent with the existence of line nodes in the superconducting gap, but does not
leave much room for any contribution from Fermi surfaces with full gap, as suggested by
ARPES [248]. Considering significant anomalies in the normal state of KFeyAsg, resem-
bling thous of heavy fermion materials, we speculate that specific heat jump in KFeyAs,
may contain magnetic contribution, which is a plausible scenario for CeColns. Whether

this is the case remains an interesting question for future studies.
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In conclusion, our resistivity and TDR penetration depth studies on high quality
pure and isoelectron Na substituted KFeyAss find the behavior which is consistent with
expectation with line nodes in the superconducting gap of the material. Analysis of
the superfluid density shows that the contribution of superfluid density from full-gap
Fermi surfaces is less than 0.1 of total superfluid density. These data can be viewed
as strong support of nodal superconducting gap on all Fermi surfaces contributing to

superconductivity.

5.2 Irradiation effect on London penetration depth in
Ba(Fe;_,T,)2Asy (T=Co, Ni) and Ba; K, FesAs,

superconductors

The mechanism of superconductivity in Fe-based pnictides [25] has not yet been
established despite extensive experimental [254] and theoretical [190, 38] efforts. While
the pairing “glue” is widely discussed, it seems that the pairing between bands with
different signs of the order parameter explains the majority of the observations [57]. In
particular, the Anderson theorem does not work for this state and even non-magnetic
impurity scattering is pair-breaking [190, 89, 157]. This is especially important, since
most Fe-based compounds become superconducting only upon substantial doping, which
also leads to an intrinsic disorder making the analysis of the experimental data difficult.

One way to test the pairing state is to deliberately introduce defects that do not
contribute extra charge but rather only induce additional scattering. In earlier studies,
especially in the cuprates, various ways of controlling the scattering rate have been
suggested and the effects have been examined by using transport [255] and magnetic
[256] measurements. Irradiation with heavy ions, which has been used to produce efficient
pinning centers, also results in the enhanced rates evident from the significant increase

of normal state resistivity [257, 258] as well as suppression of T..
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The temperature dependence of the penetration depth is a powerful tool for examining
the order parameter in iron-based superconductors. At low temperatures, an exponen-
tially activated dependence implies a finite, minimum gap magnitude in the density of
states vs. energy near the Fermi level. The behavior at higher temperatures can signal
gaps of different magnitude. Currently, one of the most plausible pairing scenarios in iron
- based superconductors is so-called si state proposed some time ago [57, 259] but proof
of a sign change remains a challenge. Several authors [89, 90] have shown that impurities
alter the temperature dependence of many thermodynamic quantities in a manner that
is sensitive to the relative sign. In particular, for the s; state one expects to move from
exponentially activated to a power law temperature dependence with increasing impu-
rity concentration. As far as suppression of T, is concerned, there are several predictions
and several experiments that seem to be controversial. Originally a very fast rate of
suppression was predicted [260], which however was later revised [261, 245].

Isolating the role of impurities is difficult since they may also change the carrier
concentration which may in turn change the pairing state. Columnar defects produced
by heavy ion irradiation offer an alternative. Columns do not ostensibly change the
carrier concentration or add magnetic scattering centers and their density may be varied
by controlled amounts. Since columns are also effective pinning centers [262, 263, their

effect on the superconducting properties is important to understand.

5.2.1 London penetration depth in Ba(Fe; ,T,);Asy; (T=Co, Ni) supercon-

ductors irradiated with heavy ions

In this section, we discuss the in-plane London penetration depth measured by us-
ing the tunnel diode resonator (TDR) technique in single crystals of optimally Co-and
Ni-doped BaFe,As, superconductors irradiated with 1.4 GeV 2%Pb%0* ions at different
fluences. While the phase diagrams in terms of T, vs. electron count are practically

identical for the two systems [264], the atomic percentage of Ni required to achieve the
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same T, is one half compared to the Co-doped samples. We find that both compositions
have shown similar evolution of AX(T") upon irradiation. The penetration depth follows
the power-law behavior at low temperatures, ANT) oc AT™ with 2.2 < n < 2.8. The
pre-factor, A, increases and the exponent, n, decreases upon irradiation dose. The T, is
suppressed by irradiation while the transition width remains nearly same. These find-
ings are supported by theoretical analysis that provides the most convincing case for the
nodeless sy state.

Single crystals of Ba(Fe;_,T;)2Asy (T=Co, Ni denoted FeCo122 and FeNil122, respec-
tively) were grown out of FeAs flux using a high temperature solution growth technique
[264, 222]. X-ray diffraction, resistivity, magnetization, and wavelength dispersive spec-
troscopy (WDS) elemental analysis have all shown good quality single crystals at the
optimal dopings with a small variation of the dopant concentration over the sample
and sharp superconducting transitions, 7.= 22.5 K for FeCo122 and 18.9 K for FeNil122
264, 222].

To examine the effect of irradiation, ~ 2 x 0.5 x 0.02 — 0.05 mm?

single crystals
were selected and then cut into several pieces preserving the width and the thickness.
Hence, the results reported here compare sets of samples, where the samples in each
set are parts of the same original larger crystal. Several such sets were prepared and
a reference piece was kept unirradiated from each set. The thickness was chosen in
the range of ~ 20 — 50um to be smaller than the penetration depth of the radiation
particle, 60 — 70 pum. Irradiation with 1.4 GeV 2%Pb%* jons was performed at the
Argonne Tandem Linear Accelerator System (ATLAS) with an ion flux of ~ 5 x 10!

jons-s~!

‘m~2. The actual total dose was recorded in each run. The density of defects (d)
created by the irradiation is usually expressed in terms of the ma7 hing field, B, = ®d,
which is obtained assuming one flux quanta, ®; ~ 2.07 x 10~7 G-cm? per ion track. Here

we studied samples with B, = 0.5, 1.0, and 2.0 T corresponding to d = 2.4 x 10'® cm ™2,

4.8x 10" cm~2 and 9.7 x 10'° ecm 2. The same samples were studied by magneto-optical
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imaging, and strong Meissner screening and large uniform enhancement of pinning have

shown that the irradiation produced uniformly distributed defects [265].
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Figure 5.9 Variation of the in-plane London penetration depth, AX(T'), for irradiated
FeCol122 (top panel) and FeNil22 (bottom panel). The low-temperature
variations are shown in the main frame ofeach panel along with the best
power-law fits. The curves are offset vertically for clarity. The variations in
the vicinity of T, are shown in the insets of each panel.

Figure 5.9 shows AX(T) for FeCo122 (top panel) and FeNil22 (bottom panel). The
low-temperature region up to ~ T./3 is shown in the main frame of each panel. Ver-
tical offsets were applied for clarity. The normalized penetration depths in the vicinity
of T, are shown in the inset of each panel to highlight the suppression of T, as the ra-
diation dose increases. Whereas T, is clearly suppressed, the transition width remains
nearly the same (see Fig. 5.11 below). All samples exhibit a power-law variation of
AXNT) oc T™ with 2.5 < n < 2.8 up to T../3, while the exponential fitting failed in all

cases. The best fitting curves are shown by solid lines in Fig. 5.9. We note that the
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set of FeCo122 samples used in this study exhibits higher exponents, n, compared to
our previous works [85, 140]. This variation of n previously observed in other studies
[86, 195, 140] is likely due to disorder variations, as we clearly demonstrate in this work.
Consequently, it is important to conduct the comparison on the same sample. Magneto-
optical characterization showed homogeneous superconducting response, and the widths
of the superconducting transitions were much smaller than the absolute shift due to ir-
radiation [265]. Therefore, it is very likely that the reported here effects are caused by

the enhanced scattering induced by the heavy-ion bombardment.
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Figure 5.10 Detailed comparison of the functional form of AX(T") for irradiated FeCo122
and FeNil22. In the main panels, AX(T) is plotted vs. (¢t = T'/T.)" with
the exponents n taken from the best fits of unirradiated samples: ng = 2.8
and 2.5 for FeCo122 and FeNil22, respectively (see Fig.5.9). Apparently,
irradiation causes low-temperature deviations, which are better seen in the
derivatives, dAA(t)/dt™ plotted in the insets.

To further analyze the power-law behavior and its variation with irradiation, we
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plot A\ as a function of (¢t = T/T.)™ in Fig. 5.10, where the ng values for FeCo122
and FeNil22 were chosen from the best power-law fits of the unirradiated samples (see
Fig. 5.11). While the data for unirradiated samples appear as almost perfect straight lines
showing robust power-law behavior, the curves for irradiated samples show downturns at
low temperatures indicating smaller exponents. In order to emphasize this observation
and disentangle the change from the pre-factors, the derivatives, dAX(t)/dt™, are shown

in the inset of each frame of Fig. 5.10.
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Figure 5.11 Top panel: The evolution of T, and the width of the transition with irra-
diation. The vertical bars correspond to temperatures where diamagnetic
response changed from 90% (onset) to 20% (end of the transition), see
insets in Fig. 5.9. Lower panel: exponent n vs. B.

The variations of T, and n upon irradiation are illustrated in Fig. 5.11. Dashed lines
and circles show FeCo122, solid lines and triangles show FeNi122. The upper panel shows
variation of T, and width of the transition estimated by taking 90% and 20% cuts of the
transition curves (see insets in Fig. 5.9). Since B, is directly proportional to the area
density of the ions, d, we can say that 7T, decreases roughly linearly with d. The same
trend is evident for the exponent n shown in the lower panel of Fig. 5.11. The fitting
pre-factor A increases slightly upon increase of irradiation dose, but remains smaller than
measured previously in unirradiated samples [85, 86, 107]. Whereas pre-factor may vary

depending on the model for the gap, the exponent behaves more systematically.
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Figure 5.12 (a) Superfluid density, and (b) the density of states n(e) = N(e)/Ny
computed for sy state with sign-changing isotropic gaps, and impu-
rity parameters between the Born and unitary limits, with strong inter-
band scattering. The dashed line in (a) is an example of power-law fit
p(T)/po = p(0)/po — a(T/Tw)" for 0 < T < 0.4 Tpo; best fitting parameters
for a set of I' = np, /TNy are listed in the table. (b) As impurity concen-
tration (~ I') increases, the band of mid-gap states approaches Fermi level
and the power n is reduced. (c¢) T, vs. power n, from the theoretical model
(triangles) and experiment (squares and circles).

Our experimental results fit comfortably within the hypothesis of an sy supercon-

ductivity with two isotropic gaps. The superfluid density in linear response is,

A2
p(T) = 3 AT 3" N / dplv i © Vf’i]m(é?fw (5.1)
i=1,2 €m s, m i
where we sum over the contributions from the electron and hole bands; v¢; and Ny ; are
the Fermi velocity and density of states in these bands, taken equal for the calculations.
Two order parameters A;o are computed self-consistently together with the ¢-matrix
treatment of impurity effects, that renormalize the Matsubara energies &, = €, — Zimp.i
and the gaps Ai = A; + Aypi [266]. Impurities are characterized by the strength
of the potential for scattering within each band, vy (= v92), giving via the phase shift

§ = tan~! (7 Nyvq1), the ratio of potentials for inter-band and intra-band scattering rates,

dv = v1a/v11, and impurity scattering rate I' = ny,,, /TNy
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The essential results are presented in Fig. 5.12 while the full calculations will be pub-
lished elsewhere (Appendix Vorontsov2010). The best agreement with the experiment
is obtained for two isotropic gaps, Ay ~ —0.6A1, strong inter-band scattering dv = 0.9
and phase shift § = 60° between the Born (6 — 0) and unitary limits (6 — 90°).
Calculated p(T) was fitted to the power law, p(T)/po =~ p(0)/po — a (T/T™)", which
is directly related to the penetration depth, AXNT)/Ag ~ &' (T/T.)", with py and Ag
being the T" = 0 superfluid density and penetration depth in the clean system, and
a' = (a/2)[T./Tw|"[po/p(0)]>/?. We find that with increase in I' the power n decreases
from n 2 3 to n ~ 2 (see Fig. 5.12(a)), in a perfect agreement with experiment. The
values of n depend sensitively on the structure of the low-energy density of states, which
is shown in Fig. 5.12(b). The intermediate strength of scatterers is important for creation
of a small band of mid-gap states separated from the continuum. Such band does not
appear in either Born or unitary limit, which was probably the reason for power laws of
n < 2 [90]. As the disorder increased, these states close the gap in the spectrum, while
slowly increasing in magnitude, driving the low-temperature power-law dependence from
exponential like, n > 3, to n & 2. The prefactor o/, on the other hand, slightly decreases
with disorder, opposite to experimental increase of about 10% in A’ = AT,

However, this trend can be reversed by considering different ratios of the gaps on two
FSs and different impurity parameters.

Finally, in Fig. 5.12(c) we show the central result of our study: the suppression of T,
as a function of n. Note that these two quantities are obtained independently of each
other. Assuming that the unirradiated samples have some disorder due to doping, and
scaling their transition temperatures to lie on the theoretical curve, one finds that the
T.(By) of the irradiated samples also fall on this curve. This comparison tacitly implies
that the doping- and the radiation-induced disorders are of the same type, - assumption

that is left for future investigations.
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5.2.2 London penetration depth in Ba;_,K_ Fe;As, irradiated with heavy ion

In this section we discuss penetration depth measurements on single crystals of
Bag¢KgsFeoAsy, a 122 superconductor that is roughly the hole-doped counterpart to
Ba(Fe;_,Co,)2Asy but with a crucial difference. Substitution of Co for Fe leads to
considerably higher scattering rates in Ba(Fe;_,Co,)2Ase [157] than in Ba;_,K,FesAsy
[195, 194], making the latter material a better candidate for tests of pairing symmetry.
In fact, recent thermal conductivity measurements in Ba;_,K,Fe;As, show a transi-
tion from nodeless to nodal pairing state upon doping towards pure KFeyAs, [204]. By
studying both pristine and irradiated samples taken from the same crystal we isolate
the effect of columnar defects on both the penetration depth and T, as first carried out
on Ba(Fe;_,Co,)2Asy and Ba(Fe; ,Ni,)oAsy where a good agreement with sy pairing
was found [201]. Remarkably, in the case of Ba;_,K,FeyAsy heavy ion irradiation does
not change 7, at all, even with a column to column spacing of a few coherence lengths.
However, very dense columnar defects do cause the penetration depth to acquire a T2
power law. Our results could imply that pairing in Ba;_, K, FesAs, is mostly determined
by the in-band channels and therefore it is unclear whether it is s, or si, because the
latter is stable in the opposite regime [261, 245]. We note that London penetration depth
remains exponential at low temperatures even in the dirty limit of conventional isotropic
s-wave superconductor [102].

Measurements were performed on two sets of (nominally) optimally doped single
crystal Bag Ko FeaAsy [267]. Single crystals of Ba; K, FeyAsy were grown using high
temperature FeAs flux method [196]. Irradiation with 1.4 GeV 2%Pb ions was performed
at the Argonne Tandem Linear Accelerator. Heavy ions formed tracks along the c-axis
with an average stopping distance of 60-70 pm, larger than the thickness of the crystals.
For the first set, a single crystal with T, = 39 K was cut into several smaller segments.
One segment was left unirradiated (B, = 0) while the other segments had irradiation

doses corresponding to By = 2 T and 4 T. The penetration depth was measured at the
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Ames Laboratory. Two other samples were taken from a single crystal with 7. = 36.8
K. One kept unirradiated while the second had a column density of B, = 21 T. Changes
in the penetration depth with temperature were measured at the University of Illinois

with the tunnel diode resonator method described in several previous publications [101].

15

12

Figure 5.13 Change in penetration depth for the first set of three samples (7, = 39 K).
For columnar defect densities of By = 0, 2, 4 T. Fits to BCS temperature
dependence are shown as solid curves. Ref. [249]

Figure 5.13 shows the penetration depth in the low temperature region (7'/7. <
0.32) for the first set of samples (7. = 39 K). Over the temperature range shown the
data for each irradiation level was fit to a single gap BCS form.? The gap values were
Ao/kpT. =099 (B; =0),0.99 (By =2T) and 0.81 (By, =4 T). In each case the BCS
expression provided a superior fit to a power law. For comparison, STM measurements
give Ag/kpT. = 1.1 for the minimum gap energy [267] and ellipsometry experiments
have also reported Ag/kpT. = 1.1 [268]. Figure 5.14 shows similar data for the second
sample group (7, = 36.8 K). Data for the unirradiated sample was best fit to a BCS
form with Ag/kgT. = 0.97. The lower panel of Fig. 5.14 shows data for the heavily

irradiated (B, = 21 T) sample. In this case a T? power law provided a clearly superior

ZANT) = M0)\/7Ao/2kpT exp(—Ao/kpT) where A(0) and Aq are set as free fitting parameters.
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fit to the BCS form. There was no evidence of a low temperature upturn in frequency
that can arise from magnetic impurities. Therefore any scattering from the columnar
defects should be regarded as nonmagnetic. Figure 5.15 shows data in the vicinity of
T.. For the first set (lower panel) the midpoint transition temperature of 7, = 39 K was
unaffected by irradiation for all three matching fields. This data should be contrasted
with a systematic suppression of 7T, for similar irradiation levels in Ba(Fe;_,T,)oAsy (T
= Co, Ni) [201]. For the second set of samples (upper panel) the midpoint transition
of T, = 36.8 K was the same for both unirradiated and irradiated samples. It should
be noted that the highest irradiation level of B, = 21 T corresponds to an average
column separation of 10 nm. TEM images show that the columns themselves have a
mean diameter of 5 nm so the superfluid is confined to regions of order 5 nm or less, i.e.,
roughly 2 coherence lengths. In such a confined geometry one might expect a suppression
of the order parameter, though we have no evidence for it.

The data presented here appear difficult to reconcile. The evolution from BCS-like
or at least 7" with n > 2 temperature dependence toward 7% with increased scattering
has been reported in several different iron-based superconductors [102]. It is predicted
to occur with an si order parameter but not for an s, pairing state [89, 90, 261, 245].
Indeed, no such evolution has been reported in MgB,, currently our best candidate for
sy, pairing. However, the insensitivity of T, to defect density is an extreme example
of a trend throughout the 122 family of superconductors; namely that 7. sensitivity to
impurity scattering is not universal and depends on details of the pairing interactions
as well as bandstructure [261, 245, 259]. If defects produce purely intraband scattering
then one expects Andersons theorem to hold and no 7T, suppression is expected in either
an s, or an s4 state. Nonmagnetic interband scattering does suppress 7, in a multigap
superconductor, the degree to which depends upon the band to band variation of the
energy gap [269, 270]. Owing to the factor of two ratio of energy gaps, MgBs might be

expected to show strong T, suppression but it does not [271]. Peculiarities of the MgB,
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AL (nm)

AL (nm)

Figure 5.14 Change in penetration depth for the second set of samples (7, = 36.8 K).
Upper panel: data fro unirradiated sample with BCS-like fit. Lower panel:
Sample with B, = 21 T matching field showing quadratic power law fit.
Ref. [249]

electronic structure apparently strongly reduce interband scattering [269, 270] and 7.
suppression is instead very weak.

In the experiment described in the previous section, penetration depth in irradiated
samples of Ba(Fe;_,T,)2Asy (T = Co, Ni) [201] showed an evolution from T to T? power
law with increasing irradiation level, consistent with si pairing. The change in power
law with increased defect density was accompanied by a continuous decrease in T, also
explained within an si picture and demonstrating that columnar defects can produce
interband scattering. Due to the substitution of Co or Ni for Fe, the electron-doped 122

superconductors have higher scattering rates than BaggKg4FeaAsy; and an exponential
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temperature dependence of the penetration depth was not observed. Indeed, Charnunkha

et. al. found that differences in infrared reflectance data between Ba(Fe;_,Co,)sAss and

BaggKg4FesAsy could be accounted for entirely by the disparity in scattering rates,

assuming that both materials pair in an s state [268].

Our data are consistent with recent models [261, 245] that argue that the sign of the

interband pairing interaction is crucial. In the pure superconductor both repulsive and

attractive interband coupling can lead to an s, state. However, the difference is revealed

upon addition of nonmagnetic impurities. For repulsive interactions T, suppression fol-

lows an Abrikosov-Gor’kov [11] scenario in which a generalized scattering rate of order

hI' ~ T,y drives T, to zero, all the while maintaining an s; symmetry. For attractive
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interband coupling, T, suppression by impurities is much weaker but as the scattering
rate increases the gap structure eventually crosses over from si to s, . The penetration
depth in the pure state is exponentially activated, as we observe, and with increased
scattering it approaches the T-quadratic dependence that we also observe. For strong
enough scattering they predict the formation of an s, . state, for which activated behav-
ior should once again be observed. This scenario is consistent with our data, suggesting
attractive interband interactions and a scattering rate even at the highest irradiation
level that is not sufficient to induce s, superconductivity. An alternative picture in-
vokes a competition between superconducting and spin density wave (SDW) order [272].
For doping somewhat below optimal, superconductivity in Ba;_, K, FesAsy coexists with
a spin density wave [267]. Disorder generally suppresses the SDW transition, a process
that may enhance sy superconductivity despite interband scattering. Moreover, SDW
cannot coexist with s, , superconductivity [203], so the s; pairing is likely. The behavior
of T, therefore depends on the level of doping as well as the strength and character of
the scattering. This model could also reconcile the appearance of a T? power law with
negligible change in T,.. However, there is no evidence within our measurements for the
coexistence of an SDW with the superconducting phase so an alternative probe would
be needed to test this model.

Our results could imply that pairing in Ba;_, K, FeyAss is mostly determined by the
in-band channels and therefore it is unclear whether it is s4. It is also possible that for

some reason columnar defect in BaK122 mostly affect the intraband scattering.

5.3 Summary

Temperature variation of the London penetration depth was measured in two stoichio-
metric superconductors: LiFeAs and KFeyAsy. Using known from the literature values of

A(0), we calculated a superfluid density and found fully gapped and line nodal supercon-
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ducting states in LiFeAs and KFeyAss, respectively. Variation of superfluid density in
the whole temperature range in LiFeAs could be well described in two s-wave gap model
in clean limit. On the other hand, superfluid density in KFeyAs, is consistent with the
presence of line nodes in the gap. Na-doping into KFeyAsy change the low-temperature
A\ to T-quadratic which is consistent with symmetry imposed d-wave state with vertical
line nodes. These observations are in line with studies of thermal conductivity (which
is not as sensitive to scattering) in LiFeAs [187] and KFeyAs, [204]. Considering similar
full-gap superconducting state in optimally doped BaK122 [273], overall, this establishes
a common trend for all Fe-based superconductors to have a superconducting gap that
evolves from full to nodal when moving towards the edge of the superconducting dome.

The effect of heavy ion irradiation on A(7") was studied in optimally electron-doped
Ba(Fe,T)3Asy (T=Co, Ni). We found that the disorder leads to suppression of 7, and
the reduction of the power-law exponent 2 < n < 3. This is naturally explained in terms
of the isotropic extended s -wave state [190, 38] with pair-breaking interband scattering
[190, 157, 202]. Taken together with reports of fully gapped states from thermal con-
ductivity [77] and angle resolved photoemission spectroscopy [274], our results present
a convincing case in favor of the extended sy pairing symmetry with nodeless order
parameter in the optimally doped 122 system.

On the other hand, in optimally hole-doped (Ba,K)FeyAsy, T, remains the same in
heavy ion irradiated samples with By at least up to 21 T in which the inter colum-
nar distance is comparable to the coherence length. Our results imply that pairing in
Ba;_ K, FeyAsy is mostly determined by the in-band channel and therefore it can be
different from s; pairing. Alternative scenario is that columnar defect in (Ba,K)FeyAsy

predominantly affect inter-band scattering.
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CHAPTER 6. CONCLUSIONS

In this thesis, the low temperature London penetration depth and superfluid density
were studied in several families of the Fe-based, and related, superconductors. The
penetration depth data presented in this thesis were measured by using a tunnel diode
resonator technique in a 3He cryostat and extended to lower temperatures (~ 50 mK)
using a dilution refrigerator with technique developed in the course of thesis.

For the analysis of superconducting gap structure we measured and characterized the
low temperature dependence of London penetration depth and temperature dependent
superfluid density, calculated from measured penetration depth and separately measured
A(0). Measurements of A\(0) were performed using the Al-coating technique, and original
contribution of this thesis is use of thermodynamic Rutgers formula for A(0) determi-
nation. We were able to modify original Rutgers relation so that it allows quantitative
analysis of the superfluid density from knowledge of other thermodynamic quantities
such as heat capacity jump and slope of the upper critical field.

Extension of measurements down to 50 mK using a dilution refrigerator enabled us
to study materials with low 7T.. We found that all related low 7, superconductors includ-
ing SrPdyGes and APdyAsy (A=Ca,Sr) are full gap s-wave superconductors. In sharp
contrast, low T, Fe-based superconductor KFeyAsy is shown to be nodal with symme-
try imposed nodes and the superfluid density closely following expectation for d-wave
superconducting state. Doping evolution of the superconducting gap in Ba; K, FeyAss
shows that, similar to previously studied case of Ba(Fe,Co)sAss, the superconducting

gap develops extreme anisotropy at the edges of the superconducting dome and is full
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at the optimal doping. This full gap picture of the superconducting gap is found in
stoichiometric LiFeAs as well. The doping evolution trend of the superconducting gap
was verified in another family of materials Cayo(Pt3Ass)[(Fe;—.Pt,)2Ass]s in which ex-
ponent of the power-law monotonically changes from 2.36 at optimal doping to 1.7 in
heavily underdoped compositions. Because magnetism and superconductivity coexist
in the phase diagram of underdoped BaK122 and are separated in 10-3-8, similar gap
structure in both materials suggests that the long range magnetic order does not affect
nodal structure, contrary to expectation for conventional superconductors. Study of the
penetration depth and superfluid density in Fe,,Te;_;Se, found a robust power-law be-
havior of the low-temperature AX(T") o< T™ with n &~ 2.1 and 2.3 for Fey o3(Teq ¢35€0.37)
and Fe(Tegs35e0.42), respectively. The absolute value, A\(0) ~ 560 + 20 nm, was deter-
mined in Fey o3(Tegg35€0.37) by the Al-coating technique. The analysis of the superfluid
density shows a clear signature of nodeless two-gap superconducting state with strong
pair breaking effect. Except for nodal superconducting gap structure in KFeyAss all
these observations do not contradict superconducting sy pairing.

To get further insight into the superconducting pairing mechanism we studied effect of
deliberately introduced disorder. Na-doping into KFe;As, was shown to increase residual
electrical resistivity, and suppress T, showing pairbreaking character of scattering. Dis-
order changes exponent from T-linear to T2, as expected for superconducting gap with
vertical line nodes. Temperature dependent superfluid density in a Na-doped sample in
the whole temperature range closely follows expectation for dirty d-wave state. Irradi-
ation with heavy ions in optimally electron-doped Ba(Fe,T),Asy (T=Co, Ni) results in
slight suppression of T, and decrease of the exponent of the power-law function. Taken
together with reports of the fully gapped states from other measurements, our results
present a convincing case in favor of the extended sy pairing symmetry with nodeless
order parameter in the optimally doped 122 system.

Experimental results presented in this thesis support evolution of the superconducting
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gap from isotropic and full at optimal doping to highly anisotropic at the edges of the
superconducting dome. Unfortunately, for hole-doped BaK122 materials high quality
single crystals are not available for over-doped compounds at the moment, similar to
Cal0-3-8. Different symmetry of the superconducting gap at optimal doping and at
terminal KFeyAss suggest a phase transition as a function of doping. Similar phase
transition was suggested to happen in KFeyAs, under pressure [247]. Study of this
phase transition maybe important future continuation of this thesis. This would require
development of London penetration depth measurement under pressure. In principle,
TDR measurements can be performed with a small pickup coil inside a pressure cell, but
this would require to overcome issues related to thermal instability of the TDR circuit
as well as non-trivial background signal.

As can be seen from this study, stoichiometric KFeyAs, and LiFeAs offer unique
opportunity to study materials free of substitutional disorder. Another way to study
evolution of the superconducting gap in clean materials is to use pressure as a tuning
parameter. It is known that stoichiometric BaFesAsy can be tuned across the whole
superconducting dome by application of pressure of order of 100 kbar. Provided we have
capability to measure London penetration depth under pressure, this experiment would
allow us to study the evolution of superconducting gap in clean materials for all doping

regime.



120

BIBLIOGRAPHY

[1] J. Bardeen, Physics Today 43, 25 (1990).

[2] F. London and H. London, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 149, 71 (1935).

[3] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teo. Fiz. 20, 1064 (1950).
[4] E. Maxwell, Phys. Rev. 78, 477 (1950).

[5] W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev.
102, 656 (1956).

[6] L. N. Cooper, Phys. Rev. 104, 1189 (1956).
[7] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[8] W. L. McMillan, Phys. Rev. 167, 331 (1968).
[9] M. L. Cohen and P. W. Anderson, AIP Conference Proceedings 4, 17 (1972).
[10] P. Anderson, Journal of Physics and Chemistry of Solids 11, 26 (1959).
[11] A. A. Abrikosov and L. P. Gor’kov, Sov. Phys.-JETP 12, 1243 (1961).

[12] R.J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen, J. J. Krajewski, W. F. Peck,
R. B. van Dover, R. J. Felder, T. Siegrist, K. Mizuhashi, J. O. Lee, H. Eisaki, S. A.
Carter, and S. Uchida, Nature 367, 146 (1994).


http://dx.doi.org/10.1063/1.881218
http://www.jstor.org/stable/96265
http://www.jstor.org/stable/96265
http://dx.doi.org/10.1103/PhysRev.78.477
http://dx.doi.org/10.1103/PhysRev.102.656
http://dx.doi.org/10.1103/PhysRev.102.656
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.167.331
http://link.aip.org/link/?APC/4/17/1
http://dx.doi.org/ http://dx.doi.org/10.1016/0022-3697(59)90036-8
http://dx.doi.org/10.1038/367146a0

[13]

[14]

[15]

[16]

[21]

22]

23]

[24]

[25]

121

P. C. Canfield, P. L. Gammel, and D. J. Bishop, Physics Today 51, 40 (1998).

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature
410, 63 (2001).

P. C. Canfield and G. W. Crabtree, Physics Today 56, 34 (2003).

S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and
P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).

F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and
N. E. Phillips, EPL (Europhysics Letters) 56, 856 (2001).

J. D. Fletcher, A. Carrington, O. J. Taylor, S. M. Kazakov, and J. Karpinski,
Phys. Rev. Lett. 95, 097005 (2005).

C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and
H. Schéifer, Phys. Rev. Lett. 43, 1892 (1979).

G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W.
Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).

C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D.
Thompson, Z. Fisk, and P. Monthoux, Journal of Physics: Condensed Matter 13,

1.337 (2001).

J. D. Thompson and Z. Fisk, Journal of the Physical Society of Japan 81, 011002
(2012).

Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130,
3296 (2008).


http://dx.doi.org/10.1063/1.882396
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1063/1.1570770
http://dx.doi.org/ 10.1103/PhysRevLett.86.1877
http://stacks.iop.org/0295-5075/56/i=6/a=856
http://dx.doi.org/10.1103/PhysRevLett.95.097005
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/ 10.1103/PhysRevLett.43.1892
http://dx.doi.org/10.1103/RevModPhys.56.755
http://dx.doi.org/10.1038/27838
http://stacks.iop.org/0953-8984/13/i=17/a=103
http://stacks.iop.org/0953-8984/13/i=17/a=103
http://dx.doi.org/10.1143/JPSJ.81.011002
http://dx.doi.org/10.1143/JPSJ.81.011002

122

[26] Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li,
L.-L. Sun, F. Zhou, and Z.-X. Zhao, EPL (Europhysics Letters) 83, 17002 (2008).

[27] N. Spyrison, M. A. Tanatar, K. Cho, Y. Song, P. Dai, C. Zhang, and R. Prozorov,
Phys. Rev. B 86, 144528 (2012).

[28] T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature 453,
1224 (2008).

[29] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman, E. D. Mun,
J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski,
Phys. Rev. Lett. 101, 147003 (2008).

[30] P. C. Canfield and S. L. Bud’ko, Annual Review of Condensed Matter Physics 1,
27 (2010).

[31] D. C. Johnston, Advances in Physics 59, 803 (2010).
[32] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[33] K. Cho, M. A. Tanatar, H. Kim, W. E. Straszheim, N. Ni, R. J. Cava, and
R. Prozorov, Phys. Rev. B 85, 020504 (2012).

[34] N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, Proceedings of the National
Academy of Sciences 108, E1019 (2011).

[35] J. Paglione and R. L. Greene, Nat Phys 6, 645 (2010).
36] L. I Mazin, Nature 464, 183 (2010).

[37] N. E. Hussey, M. Abdel-Jawad, A. Carrington, A. P. Mackenzie, and L. Balicas,
Nature 425, 814 (2003).

[38] I. I. Mazin and J. Schmalian, Physica C 469, 614 (2009).


http://stacks.iop.org/0295-5075/83/i=1/a=17002
http://dx.doi.org/10.1103/PhysRevB.86.144528
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104041
http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1103/RevModPhys.83.1589
http://dx.doi.org/10.1103/PhysRevB.85.020504
http://dx.doi.org/10.1073/pnas.1110563108
http://dx.doi.org/10.1073/pnas.1110563108
http://dx.doi.org/10.1038/nphys1759
http://dx.doi.org/10.1038/nature08914
http://dx.doi.org/10.1038/nature01981

123

[39] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison,
R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).

[40] S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni,
S. L. Bud’ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, and A. I. Goldman,
Phys. Rev. Lett. 104, 057006 (2010).

[41] S. Avci, O. Chmaissem, D. Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P.
Castellan, 1. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Aladine, D. D.
Khalyavin, M. G. Kanatzidis, and R. Osborn, Phys. Rev. B 85, 184507 (2012).

[42] S. Kasahara, T. Shibauchi, K. Hashimoto, K. Tkada, S. Tonegawa, R. Okazaki,
H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Phys. Rev. B 81, 184519 (2010).

[43] C. Meingast, O. Kraut, T. Wolf, H. Wiihl, A. Erb, and G. Miiller-Vogt, Phys.
Rev. Lett. 67, 1634 (1991).

[44] M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

[45] A. Thaler, N. Ni, A. Kracher, J. Q. Yan, S. L. Bud’ko, and P. C. Canfield, Phys.
Rev. B 82, 014534 (2010).

[46] M. Gooch, B. Lv, J. H. Tapp, Z. Tang, B. Lorenz, A. M. Guloy, and P. C. W.
Chu, EPL 85, 27005 (2009).

[47] J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F.
Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat Mater 7, 953 (2008).

[48] N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T. J. Sato, J. Wen, Z. Xu, G. Gu,
G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J. M. Tranquada, Journal of
the Physical Society of Japan 79, 113702 (2010).


http://dx.doi.org/10.1038/nature05872
http://dx.doi.org/10.1103/PhysRevLett.104.057006
http://dx.doi.org/10.1103/PhysRevB.85.184507
http://dx.doi.org/ 10.1103/PhysRevLett.67.1634
http://dx.doi.org/ 10.1103/PhysRevLett.67.1634
http://dx.doi.org/10.1103/PhysRevLett.101.107006
http://dx.doi.org/ 10.1103/PhysRevB.82.014534
http://dx.doi.org/ 10.1103/PhysRevB.82.014534
http://dx.doi.org/10.1038/nmat2315
http://dx.doi.org/10.1143/JPSJ.79.113702
http://dx.doi.org/10.1143/JPSJ.79.113702

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

124

G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and
N. L. Wang, Phys. Rev. Lett. 100, 247002 (2008).

M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu,
and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008).

T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen,
Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J.
Cava, Phys. Rev. B 79, 014522 (2009).

E. Boaknin, R. W. Hill, C. Proust, C. Lupien, L. Taillefer, and P. C. Canfield,
Phys. Rev. Lett. 87, 237001 (2001).

T. Baba, T. Yokoya, S. Tsuda, T. Watanabe, M. Nohara, H. Takagi, T. Oguchi,
and S. Shin, Phys. Rev. B 81, 180509 (2010).

P. Szab¢, P. Samuely, J. Kacmarcik, T. Klein, J. Marcus, D. Fruchart, S. Miraglia,
C. Marcenat, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001).

M. Iavarone, G. Karapetrov, A. E. Koshelev, W. K. Kwok, G. W. Crabtree, D. G.
Hinks, W. N. Kang, E.-M. Choi, H. J. Kim, H.-J. Kim, and S. I. Lee, Phys. Rev.
Lett. 89, 187002 (2002).

M. Putti, M. Affronte, C. Ferdeghini, P. Manfrinetti, C. Tarantini, and
E. Lehmann, Phys. Rev. Lett. 96, 077003 (2006).

I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101,
057003 (2008).

R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Ying, Y. J. Yan,
Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, Nature 459, 64 (2009).


http://dx.doi.org/10.1103/PhysRevLett.100.247002
http://dx.doi.org/10.1103/PhysRevB.78.224503
http://dx.doi.org/ 10.1103/PhysRevB.79.014522
http://dx.doi.org/ 10.1103/PhysRevLett.87.237001
http://dx.doi.org/10.1103/PhysRevB.81.180509
http://dx.doi.org/ 10.1103/PhysRevLett.87.137005
http://dx.doi.org/ 10.1103/PhysRevLett.89.187002
http://dx.doi.org/ 10.1103/PhysRevLett.89.187002
http://dx.doi.org/ 10.1103/PhysRevLett.96.077003
http://dx.doi.org/10.1038/nature07981

125

[59] P. M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida, Y. Tanaka, H. Eisaki,
and A. Iyo, Phys. Rev. Lett. 105, 037004 (2010).

[60] C. Stock, C. Broholm, J. Hudis, H. J. Kang, and C. Petrovic, Phys. Rev. Lett.
100, 087001 (2008).

[61] A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lums-
den, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis,
R. I. Bewley, and T. Guidi, Nature 456, 930 (2008).

[62] D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
[63] J.S. Kim, B. D. Faeth, and G. R. Stewart, Phys. Rev. B 86, 054509 (2012).

[64] J. S. Kim, E. G. Kim, G. R. Stewart, X. H. Chen, and X. F. Wang, Phys. Rev. B
83, 172502 (2011).

[65] S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79, 220516 (2009).
[66] V. G. Kogan, Phys. Rev. B 80, 214532 (2009).
[67] V. G. Kogan, Phys. Rev. B 81, 184528 (2010).

[68] M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, Phys. Rev. B 84, 140502
(2011).

[69] J. Zaanen, Phys. Rev. B 80, 212502 (2009).
[70] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

[71] K. Gofryk, A. S. Sefat, E. D. Bauer, M. A. McGuire, B. C. Sales, D. Mandrus,
J. D. Thompson, and F. Ronning, New Journal of Physics 12, 023006 (2010).

[72] K. Gofryk, A. B. Vorontsov, I. Vekhter, A. S. Sefat, T. Imai, E. D. Bauer, J. D.
Thompson, and F. Ronning, Phys. Rev. B 83, 064513 (2011).


http://dx.doi.org/10.1103/PhysRevLett.105.037004
http://dx.doi.org/ 10.1103/PhysRevLett.100.087001
http://dx.doi.org/ 10.1103/PhysRevLett.100.087001
http://dx.doi.org/10.1038/nature07625
http://dx.doi.org/10.1103/RevModPhys.67.515
http://dx.doi.org/10.1103/PhysRevB.86.054509
http://dx.doi.org/ 10.1103/PhysRevB.83.172502
http://dx.doi.org/ 10.1103/PhysRevB.83.172502
http://dx.doi.org/10.1103/PhysRevB.79.220516
http://dx.doi.org/10.1103/PhysRevB.81.184528
http://dx.doi.org/10.1103/PhysRevB.84.140502
http://dx.doi.org/10.1103/PhysRevB.84.140502
http://dx.doi.org/10.1103/PhysRevB.80.212502
http://dx.doi.org/10.1103/RevModPhys.63.239
http://stacks.iop.org/1367-2630/12/i=2/a=023006
http://dx.doi.org/ 10.1103/PhysRevB.83.064513

126

[73] G. E. Volovik, JETP Lett. 58, 469 (1993).
[74] C. Kiibert and P. Hirschfeld, Solid State Communications 105, 459 (1998).

[75] D.-J. Jang, A. B. Vorontsov, I. Vekhter, K. Gofryk, Z. Yang, S. Ju, J. B. Hong,
J. H. Han, Y. S. Kwon, F. Ronning, J. D. Thompson, and T. Park, New Journal
of Physics 13, 023036 (2011).

[76] G. Mu, B. Zeng, P. Cheng, Z.-S. Wang, L. Fang, B. Shen, L. Shan, C. Ren, and
H.-H. Wen, Chinese Physics Letters 27, 037402 (2010).

[77) M. A. Tanatar, J.-P. Reid, H. Shakeripour, X. G. Luo, N. Doiron-Leyraud, N. Ni,
S. L. Bud’ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. Lett. 104,
067002 (2010).

[78] J.-P. Reid, M. A. Tanatar, X. G. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni,
S. L. Bud’ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. B 82,
064501 (2010).

[79] X. G. Luo, M. A. Tanatar, J.-P. Reid, H. Shakeripour, N. Doiron-Leyraud, N. Ni,
S. L. Bud’ko, P. C. Canfield, H. Luo, Z. Wang, H.-H. Wen, R. Prozorov, and
L. Taillefer, Phys. Rev. B 80, 140503 (2009).

[80] B. S. Chandrasekhar and D. Eizel, Ann. Physik 2, 535 (1993).
[81] D. Xu, S. K. Yip, and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).
[82] P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).

[83] L. Malone, J. D. Fletcher, A. Serafin, A. Carrington, N. D. Zhigadlo, Z. Bukowski,
S. Katrych, and J. Karpinski, Phys. Rev. B 79, 140501 (2009).


http://dx.doi.org/10.1016/S0038-1098(97)10154-5
http://stacks.iop.org/1367-2630/13/i=2/a=023036
http://stacks.iop.org/1367-2630/13/i=2/a=023036
http://stacks.iop.org/0256-307X/27/i=3/a=037402
http://dx.doi.org/10.1103/PhysRevLett.104.067002
http://dx.doi.org/10.1103/PhysRevLett.104.067002
http://dx.doi.org/10.1103/PhysRevB.51.16233
http://dx.doi.org/10.1103/PhysRevB.48.4219
http://dx.doi.org/ 10.1103/PhysRevB.79.140501

[84]

[85]

[88]
[89]

[90]

[91]

[92]

[93]

127

K. Hashimoto, A. Serafin, S. Tonegawa, R. Katsumata, R. Okazaki, T. Saito,
H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, H. Tkeda, Y. Mat-
suda, A. Carrington, and T. Shibauchi, Phys. Rev. B 82, 014526 (2010).

R. T. Gordon, N. Ni, C. Martin, M. A. Tanatar, M. D. Vannette, H. Kim, G. D.
Samolyuk, J. Schmalian, S. Nandi, A. Kreyssig, A. I. Goldman, J. Q. Yan, S. L.
Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. Lett. 102, 127004 (2009).

R. T. Gordon, C. Martin, H. Kim, N. Ni, M. A. Tanatar, J. Schmalian, I. I. Mazin,
S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 79, 100506(R) (2009).

C. Martin, M. E. Tillman, H. Kim, M. A. Tanatar, S. K. Kim, A. Kreyssig, R. T.
Gordon, M. D. Vannette, S. Nandi, V. G. Kogan, S. L. Bud’ko, P. C. Canfield,
A. I. Goldman, and R. Prozorov, Phys. Rev. Lett. 102, 247002 (2009).

J. R. Cooper, Phys. Rev. B 54, R3753 (1996).
Y. Bang, EPL (Europhysics Letters) 86, 47001 (2009).

A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 79, 140507
(2009).

J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytis, J.-H. Chu, A. S. Erickson,
[. R. Fisher, and A. Carrington, Phys. Rev. Lett. 102, 147001 (2009).

C. W. Hicks, T. M. Lippman, M. E. Huber, H. G. Analytis, J.-H. Chu, and A. S.
Erickson, Phys. Rev. Lett. 103, 127003 (2009).

Y. Imai, H. Takahashi, K. Kitagawa, K. Matsubayashi, N. Nakai, Y. Nagai, Y. Uwa-
toko, M. Machida, and A. Maeda, Journal of the Physical Society of Japan 80,
013704 (2011).


http://dx.doi.org/ 10.1103/PhysRevLett.102.247002
http://dx.doi.org/10.1103/PhysRevB.54.R3753
http://stacks.iop.org/0295-5075/86/i=4/a=47001
http://dx.doi.org/10.1103/PhysRevB.79.140507
http://dx.doi.org/10.1103/PhysRevB.79.140507
http://dx.doi.org/ 10.1103/PhysRevLett.102.147001
http://dx.doi.org/10.1143/JPSJ.80.013704
http://dx.doi.org/10.1143/JPSJ.80.013704

[94]

[95]

[101]

102]
[103]
[104]

[105]

[106]

107]

128

H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Phys. Rev. B
83, 100502 (2011).

K. Hashimoto, S. Kasahara, R. Katsumata, Y. Mizukami, M. Yamashita, H. Tkeda,
T. Terashima, A. Carrington, Y. Matsuda, and T. Shibauchi, Phys. Rev. Lett. 108,
047003 (2012).

C. Boghosian, H. Meyer, and J. E. Rives, Phys. Rev. 146, 110 (1966).
C. T. V. Degrift, Review of Scientific Instruments 46, 599 (1975).

M. D. Vannette, Ph.D. thesis, lowa State University (2009).

R. T. Gordon, Ph.D. thesis, lowa State University (2011).

R. Prozorov, R. W. Giannetta, A. Carrington, and F. M. Araujo-Moreira, Phys.

Rev. B 62, 115 (2000).

R. Prozorov and R. W. Giannetta, Superconductor Science and Technology 19,

R41 (2006).

R. Prozorov and V. G. Kogan, Reports on Progress in Physics 74, 124505 (2011).
J. E. Sonier, Reports on Progress in Physics 70, 1717 (2007).

D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L. Greene, P. Gup-

tasarma, D. G. Hinks, and A. R. Banks, Appl. Phys. Lett. 77, 4202 (2000).

T. M. Lippman, B. Kalisky, H. Kim, M. A. Tanatar, S. L. Budko, P. C. Canfield,

R. Prozorov, and K. A. Moler, Physica C: Superconductivity 483, 91 (2012).

L. Luan, O. M. Auslaender, T. M. Lippman, C. W. Hicks, B. Kalisky, J.-H. Chu,
J. G. Analytis, I. R. Fisher, J. R. Kirtley, and K. A. Moler, arXiv:0909.0744v2
(2010).


http://dx.doi.org/ 10.1103/PhysRevB.83.100502
http://dx.doi.org/ 10.1103/PhysRevB.83.100502
http://dx.doi.org/ 10.1103/PhysRevLett.108.047003
http://dx.doi.org/ 10.1103/PhysRevLett.108.047003
http://dx.doi.org/10.1103/PhysRev.146.110
http://dx.doi.org/10.1063/1.1134272
http://stacks.iop.org/0953-2048/19/i=8/a=R01
http://stacks.iop.org/0953-2048/19/i=8/a=R01
http://stacks.iop.org/0034-4885/74/i=12/a=124505
http://stacks.iop.org/0034-4885/70/i=11/a=R01
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/ 10.1016/j.physc.2012.08.001

[108]
109

[110]

[111]

[112]

[113]
[114]

[115]

[116]

117]

[118]

[119]

[120]

[121]

129

J. R. Kirtley, Reports on Progress in Physics 73, 126501 (2010).
A. Rutgers, Physica 1, 1055 (1934).

S. Kamal, R. Liang, A. Hosseini, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 58,
R8933 (1998).

E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous

Media, 2nd ed. (Butterworth-Heinemann, 1984).

R. Parks, Superconductivity, Superconductivity No. v. 2 (Marcel Dekker, Incorpo-
rated, 1969).

V. G. Kogan, Phys. Rev. B 66, 020509 (2002).
D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563 (1963).

K. D. Belashchenko, M. v. Schilfgaarde, and V. P. Antropov, Phys. Rev. B 64,
092503 (2001).

H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66,
020513 (2002).

V. G. Kogan and R. Prozorov, Reports on Progress in Physics 75, 114502 (2012).

H. W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, and
D. Eckert, Phys. Rev. B 44, 7585 (1991).

M. Ito, H. Muta, M. Uno, and S. Yamanaka, Journal of Alloys and Compounds

425, 164 (2006).
S. J. Williamson, Phys. Rev. B 2, 3545 (1970).

B. W. Maxfield and W. L. McLean, Phys. Rev. 139, A1515 (1965).


http://stacks.iop.org/0034-4885/73/i=12/a=126501
http://dx.doi.org/10.1016/S0031-8914(34)80300-X
http://dx.doi.org/ 10.1103/PhysRevB.58.R8933
http://dx.doi.org/ 10.1103/PhysRevB.58.R8933
http://www.worldcat.org/isbn/0750626348
http://www.worldcat.org/isbn/0750626348
http://books.google.com/books?id=D4hK-yGBEmoC
http://dx.doi.org/10.1103/PhysRevB.66.020509
http://dx.doi.org/10.1103/PhysRev.131.563
http://dx.doi.org/10.1103/PhysRevB.64.092503
http://dx.doi.org/10.1103/PhysRevB.64.092503
http://dx.doi.org/ 10.1103/PhysRevB.66.020513
http://dx.doi.org/ 10.1103/PhysRevB.66.020513
http://stacks.iop.org/0034-4885/75/i=11/a=114502
http://dx.doi.org/ 10.1103/PhysRevB.44.7585
http://dx.doi.org/ 10.1016/j.jallcom.2006.01.043
http://dx.doi.org/ 10.1016/j.jallcom.2006.01.043
http://dx.doi.org/10.1103/PhysRevB.2.3545
http://dx.doi.org/10.1103/PhysRev.139.A1515

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

131]

[132]

130

C. Niedermayer, C. Bernhard, T. Holden, R. K. Kremer, and K. Ahn, Phys. Rev.
B 65, 094512 (2002).

K. Ohishi, T. Muranaka, J. Akimitsu, A. Koda, W. Higemoto, and R. Kadono,

Journal of the Physical Society of Japan 72, 29 (2003).

H. Kim, N. H. Sung, B. K. Cho, M. A. Tanatar, and R. Prozorov, Phys. Rev. B
87, 094515 (2013).

J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M.
Guloy, Phys. Rev. B 78, 060505 (2008).

F. Wei, F. Chen, K. Sasmal, B. Lv, Z. J. Tang, Y. Y. Xue, A. M. Guloy, and
C. W. Chu, Phys. Rev. B 81, 134527 (2010).

K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A. Coniglio, C. C.
Agosta, A. Gurevich, and R. Prozorov, Phys. Rev. B 83, 060502 (2011).

F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, H. J. Lewtas, P. Adamson,
M. J. Pitcher, D. R. Parker, and S. J. Clarke, Phys. Rev. B 79, 052508 (2009).

D. Braithwaite, G. Lapertot, W. Knafo, and I. Sheikin, Journal of the Physical

Society of Japan 79, 053703 (2010).

T. Klein, D. Braithwaite, A. Demuer, W. Knafo, G. Lapertot, C. Marcenat,
P. Rodiere, 1. Sheikin, P. Strobel, A. Sulpice, and P. Toulemonde, Phys. Rev.
B 82, 184506 (2010).

P. K. Biswas, G. Balakrishnan, D. M. Paul, C. V. Tomy, M. R. Lees, and A. D.
Hillier, Phys. Rev. B 81, 092510 (2010).

H. Kim, C. Martin, R. T. Gordon, M. A. Tanatar, J. Hu, B. Qian, Z. Q. Mao,
R. Hu, C. Petrovic, N. Salovich, R. Giannetta, and R. Prozorov, Phys. Rev. B 81,
180503 (2010).


http://dx.doi.org/ 10.1103/PhysRevB.65.094512
http://dx.doi.org/ 10.1103/PhysRevB.65.094512
http://dx.doi.org/ 10.1143/JPSJ.72.29
http://dx.doi.org/ 10.1103/PhysRevB.87.094515
http://dx.doi.org/ 10.1103/PhysRevB.87.094515
http://dx.doi.org/10.1103/PhysRevB.78.060505
http://dx.doi.org/10.1103/PhysRevB.81.134527
http://dx.doi.org/ 10.1103/PhysRevB.83.060502
http://dx.doi.org/10.1103/PhysRevB.79.052508
http://dx.doi.org/10.1143/JPSJ.79.053703
http://dx.doi.org/10.1143/JPSJ.79.053703
http://dx.doi.org/ 10.1103/PhysRevB.82.184506
http://dx.doi.org/ 10.1103/PhysRevB.82.184506
http://dx.doi.org/10.1103/PhysRevB.81.092510
http://dx.doi.org/ 10.1103/PhysRevB.81.180503
http://dx.doi.org/ 10.1103/PhysRevB.81.180503

131

[133] C. Poole, H. Farach, R. Creswick, and R. Prozorov, Superconductivity, 2nd ed.,

Superconductivity Series (Academic Press, 2010) p. 670.
[134] Y. Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B 63, 094508 (2001).

[135] U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu, Phys.
Rev. Lett. 62, 1908 (1989).

[136] L. Shan, K. Xia, Z. Y. Liu, H. H. Wen, Z. A. Ren, G. C. Che, and Z. X. Zhao,
Phys. Rev. B 68, 024523 (2003).

[137] G. MacDougall, R. Cava, S.-J. Kim, P. Russo, A. Savici, C. Wiebe, A. Winkels,
Y. Uemura, and G. Luke, Physica B: Condensed Matter 374 - 375, 263 (2006).

[138] A. Carrington, A. P. Mackenzie, and A. Tyler, Phys. Rev. B 54, R3788 (1996).

[139] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba,
A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F.
Chen, J. L. Luo, and N. L. Wang, EPL 83, 47001 (2008).

[140] C. Martin, H. Kim, R. T. Gordon, N. Ni, V. G. Kogan, S. L. Bud’ko, P. C. Canfield,
M. A. Tanatar, and R. Prozorov, Phys. Rev. B 81, 060505 (2010).

[141] T. Zhou, G. Koutroulakis, J. Lodico, N. Ni, J. D. Thompson, R. J. Cava, and
S. E. Brown, Journal of Physics: Condensed Matter 25, 122201 (2013).

[142] R. Hu, K. Cho, H. Kim, H. Hodovanets, W. E. Straszheim, M. A. Tanatar, R. Pro-
zorov, S. L. Budko, and P. C. Canfield, Superconductor Science and Technology
24, 065006 (2011).

[143] W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zh-
ernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham,
L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).


http://books.google.com/books?id=HWnDpQPpM3kC
http://dx.doi.org/ 10.1103/PhysRevB.63.094508
http://dx.doi.org/ 10.1103/PhysRevLett.62.1908
http://dx.doi.org/ 10.1103/PhysRevLett.62.1908
http://dx.doi.org/10.1103/PhysRevB.68.024523
http://dx.doi.org/10.1016/j.physb.2005.11.070
http://dx.doi.org/10.1103/PhysRevB.54.R3788
http://dx.doi.org/ 10.1103/PhysRevB.81.060505
http://stacks.iop.org/0953-8984/25/i=12/a=122201
http://stacks.iop.org/0953-2048/24/i=6/a=065006
http://stacks.iop.org/0953-2048/24/i=6/a=065006
http://dx.doi.org/ 10.1103/PhysRevLett.102.247001

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

152]

[153]

132

A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).

T.-L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang,
J. H. Wei, Z.-Y. Lu, and Q. M. Zhang, Phys. Rev. B 79, 140510 (2009).

K.-W. Yeh, T.-W. Huang, Y. lin Huang, T.-K. Chen, F.-C. Hsu, P. M. Wu, Y.-C.
Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, EPL (Euro-
physics Letters) 84, 37002 (2008).

Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Applied
Physics Letters 94, 012503 (2009).

Y. Qiu, W. Bao, Y. Zhao, C. Broholm, V. Stanev, Z. Tesanovic, Y. C. Gasparovic,
S. Chang, J. Hu, B. Qian, M. Fang, and Z. Mao, Phys. Rev. Lett. 103, 067008
(2009).

S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Ka-
gayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506
(2009).

T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett.
102, 177005 (2009).

H. Kotegawa, S. Masaki, Y. Awai, H. Tou, Y. Mizuguchi, and Y. Takano, Journal
of the Physical Society of Japan 77, 113703 (2008).

R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski,
J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, and N. D.
Zhigadlo, Phys. Rev. B 78, 220510 (2008).

J. K. Dong, T. Y. Guan, S. Y. Zhou, X. Qiu, L. Ding, C. Zhang, U. Patel, Z. L.
Xiao, and S. Y. Li, Phys. Rev. B 80, 024518 (2009).


http://dx.doi.org/10.1103/PhysRevB.78.134514
http://dx.doi.org/10.1103/PhysRevB.79.140510
http://stacks.iop.org/0295-5075/84/i=3/a=37002
http://stacks.iop.org/0295-5075/84/i=3/a=37002
http://dx.doi.org/ 10.1063/1.3058720
http://dx.doi.org/ 10.1063/1.3058720
http://dx.doi.org/ 10.1103/PhysRevLett.103.067008
http://dx.doi.org/ 10.1103/PhysRevLett.103.067008
http://dx.doi.org/ 10.1103/PhysRevB.80.064506
http://dx.doi.org/ 10.1103/PhysRevB.80.064506
http://dx.doi.org/ 10.1103/PhysRevLett.102.177005
http://dx.doi.org/ 10.1103/PhysRevLett.102.177005
http://dx.doi.org/10.1143/JPSJ.77.113703
http://dx.doi.org/10.1143/JPSJ.77.113703
http://dx.doi.org/10.1103/PhysRevB.78.220510
http://dx.doi.org/10.1103/PhysRevB.80.024518

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

164]

133

V. G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B 80, 014507 (2009).

R. T. Gordon, H. Kim, N. Salovich, R. W. Giannetta, R. M. Fernandes, V. G.
Kogan, T. Prozorov, S. L. Bud’ko, P. C. Canfield, M. A. Tanatar, and R. Prozorov,
Phys. Rev. B 82, 054507 (2010).

R. Hu, E. S. Bozin, J. B. Warren, and C. Petrovic, Phys. Rev. B 80, 214514
(2009).

R. T. Gordon, H. Kim, M. A. Tanatar, R. Prozorov, and V. G. Kogan, Phys. Rev.
B 81, 180501 (2010).

A. Serafin, A. I. Coldea, A. Y. Ganin, M. J. Rosseinsky, K. Prassides, D. Vignolles,
and A. Carrington, Phys. Rev. B 82, 104514 (2010).

M. Bendele, S. Weyeneth, R. Puzniak, A. Maisuradze, E. Pomjakushina, K. Con-
der, V. Pomjakushin, H. Luetkens, S. Katrych, A. Wisniewski, R. Khasanov, and
H. Keller, Phys. Rev. B 81, 224520 (2010).

T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano,
Phys. Rev. B 80, 180507 (2009).

J. Hu, T. J. Liu, B. Qian, A. Rotaru, L. Spinu, and Z. Q. Mao, Phys. Rev. B 83,
134521 (2011).

C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu,
Phys. Rev. B 81, 180508 (2010).

W. K. Park, C. R. Hunt, H. Z. Arham, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. D.
Gu, and L. H. Greene, arXiv:1005.0190 (2010).

K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian, G. F. Chen,
J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Phys. Rev. Lett. 105, 197001
(2010).


http://dx.doi.org/ 10.1103/PhysRevB.82.054507
http://dx.doi.org/10.1103/PhysRevB.80.214514
http://dx.doi.org/10.1103/PhysRevB.80.214514
http://dx.doi.org/ 10.1103/PhysRevB.81.180501
http://dx.doi.org/ 10.1103/PhysRevB.81.180501
http://dx.doi.org/ 10.1103/PhysRevB.82.104514
http://dx.doi.org/10.1103/PhysRevB.81.224520
http://dx.doi.org/ 10.1103/PhysRevB.80.180507
http://dx.doi.org/10.1103/PhysRevB.83.134521
http://dx.doi.org/10.1103/PhysRevB.83.134521
http://dx.doi.org/10.1103/PhysRevB.81.180508
http://dx.doi.org/ 10.1103/PhysRevLett.105.197001
http://dx.doi.org/ 10.1103/PhysRevLett.105.197001

[165]

[166]

[167]

[168]

[169]

[170]

171]

172]

[173]

134

M. Nohara, S. Kakiya, and K. Kudo, Proceedings of the International Workshop

on Novel Superconductors and Super Materials , a (2011).

M. Neupane, C. Liu, S.-Y. Xu, Y.-J. Wang, N. Ni, J. M. Allred, L. A. Wray,
N. Alidoust, H. Lin, R. S. Markiewicz, A. Bansil, R. J. Cava, and M. Z. Hasan,
Phys. Rev. B 85, 094510 (2012).

S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto,
T. Nozaka, and M. Nohara, Journal of the Physical Society of Japan 80, 093704
(2011).

C. Lohnert, T. Stiirzer, M. Tegel, R. Frankovsky, G. Friederichs, and D. Johrendt,

Angewandte Chemie International Edition 50, 9195 (2011).

M. M. Altarawneh, K. Collar, C. H. Mielke, N. Ni, S. L. Bud’ko, and P. C. Canfield,
Phys. Rev. B 78, 220505 (2008).

A. Gurevich, Reports on Progress in Physics 74, 124501 (2011).

M. Putti, I. Pallecchi, E. Bellingeri, M. R. Cimberle, M. Tropeano, C. Ferdeghini,
A. Palenzona, C. Tarantini, A. Yamamoto, J. Jiang, J. Jaroszynski, F. Kametani,
D. Abraimov, A. Polyanskii, J. D. Weiss, E. E. Hellstrom, A. Gurevich, D. C. Lar-
balestier, R. Jin, B. C. Sales, A. S. Sefat, M. A. McGuire, D. Mandrus, P. Cheng,
Y. Jia, H. H. Wen, S. Lee, and C. B. Eom, Superconductor Science and Technology
23, 034003 (2010).

R. Prozorov, M. A. Tanatar, N. Ni, A. Kreyssig, S. Nandi, S. L. Bud’ko, A. I.
Goldman, and P. C. Canfield, Phys. Rev. B 80, 174517 (2009).

N. Plakida, High-Temperature Cuprate Superconductors: Experiment, Theory and
Applications, Springer series in solid-state sciences (Springer Berlin Heidelberg,

2010).


http://dx.doi.org/ 10.1103/PhysRevB.85.094510
http://dx.doi.org/10.1143/JPSJ.80.093704
http://dx.doi.org/10.1143/JPSJ.80.093704
http://dx.doi.org/ 10.1002/anie.201104436
http://dx.doi.org/ 10.1103/PhysRevB.78.220505
http://stacks.iop.org/0034-4885/74/i=12/a=124501
http://stacks.iop.org/0953-2048/23/i=3/a=034003
http://stacks.iop.org/0953-2048/23/i=3/a=034003
http://dx.doi.org/ 10.1103/PhysRevB.80.174517
http://books.google.com/books?id=6h253TfrKYUC
http://books.google.com/books?id=6h253TfrKYUC

[174]

[175]

[176]
[177)
[178]
[179]

[180]

[181]

[182]

[183]

[184]

[185]

135

T. Nakano, S. Tsutsumi, N. Fujiwara, S. Matsuishi, and H. Hosono, Phys. Rev. B
83, 180508 (2011).

H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klin-
geler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann,
M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and
B. Buchner, Nat Mater 8, 305 (2009).

H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).

S. Onari, H. Kontani, and M. Sato, Phys. Rev. B 81, 060504 (2010).

T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 82, 144510 (2010).

A. Chubukov, Annual Review of Condensed Matter Physics 3, 57 (2012).

P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Reports on Progress in Physics
74, 124508 (2011).

S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov,
Phys. Rev. B 84, 224505 (2011).

F. Wang and D.-H. Lee, Science 332, 200 (2011).

F. Hardy, T. Wolf, R. A. Fisher, R. Eder, P. Schweiss, P. Adelmann,
H. v. Lohneysen, and C. Meingast, Phys. Rev. B 81, 060501 (2010).

P. J. Hirschfeld and D. J. Scalapino, Physics 3, 64 (2010).

S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, 1. V. Morozov,
A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Biichner,
Phys. Rev. Lett. 105, 067002 (2010).


http://dx.doi.org/ 10.1103/PhysRevB.83.180508
http://dx.doi.org/ 10.1103/PhysRevB.83.180508
http://dx.doi.org/10.1038/nmat2397
http://dx.doi.org/10.1103/PhysRevLett.104.157001
http://dx.doi.org/10.1103/PhysRevB.81.060504
http://dx.doi.org/10.1103/PhysRevB.82.144510
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125055
http://stacks.iop.org/0034-4885/74/i=12/a=124508
http://stacks.iop.org/0034-4885/74/i=12/a=124508
http://dx.doi.org/10.1103/PhysRevB.84.224505
http://dx.doi.org/10.1126/science.1200182
http://dx.doi.org/ 10.1103/PhysRevB.81.060501
http://dx.doi.org/10.1103/Physics.3.64

[186]

[187]

188

[189)]

[190]

191]

[192]

193]

136

D. S. Inosov, J. S. White, D. V. Evtushinsky, I. V. Morozov, A. Cameron, U. Stock-
ert, V. B. Zabolotnyy, T. K. Kim, A. A. Kordyuk, S. V. Borisenko, E. M. Forgan,
R. Klingeler, J. T. Park, S. Wurmehl, A. N. Vasiliev, G. Behr, C. D. Dewhurt,
and V. Hinkov, Phys. Rev. Lett. 104, 187001 (2010).

M. A. Tanatar, J.-P. Reid, S. René de Cotret, N. Doiron-Leyraud, F. Laliberté,
E. Hassinger, J. Chang, H. Kim, K. Cho, Y. J. Song, Y. S. Kwon, R. Prozorov,
and L. Taillefer, Phys. Rev. B 84, 054507 (2011).

H. Fukazawa, T. Yamazaki, K. Kondo, Y. Kohori, N. Takeshita, P. M. Shirage,
K. Kihou, K. Miyazawa, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 78,
033704 (2009).

J. K. Dong, S. Y. Zhou, T. Y. Guan, H. Zhang, Y. F. Dai, X. Qiu, X. F. Wang,
Y. He, X. H. Chen, and S. Y. Li, Phys. Rev. Lett. 104, 087005 (2010).

A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov, Phys. Rev. B 80, 140515
(2009).

K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshu, N. Nakata, S. Tonegawa,
K. Tkada, A. Serafin, A. Carrington, T. Terashima, H. Tkeda, T. Shibauchi, and
Y. Matsuda, Phys. Rev. B 81, 220501 (2010).

K. Nakayama, T. Sato, P. Richard, Y.-M. Xu, T. Kawahara, K. Umezawa, T. Qian,
M. Neupane, G. F. Chen, H. Ding, and T. Takahashi, Phys. Rev. B 83, 020501
(2011).

Z. Li, D. L. Sun, C. T. Lin, Y. H. Su, J. P. Hu, and G.-q. Zheng, Phys. Rev. B
83, 140506 (2011).


http://dx.doi.org/ 10.1103/PhysRevB.84.054507
http://dx.doi.org/10.1143/JPSJ.78.033704
http://dx.doi.org/10.1143/JPSJ.78.033704
http://dx.doi.org/10.1103/PhysRevB.80.140515
http://dx.doi.org/10.1103/PhysRevB.80.140515
http://dx.doi.org/ 10.1103/PhysRevB.83.020501
http://dx.doi.org/ 10.1103/PhysRevB.83.020501
http://dx.doi.org/ 10.1103/PhysRevB.83.140506
http://dx.doi.org/ 10.1103/PhysRevB.83.140506

[194]

[195]

[196]

197]

[198]

199]

[200]

201]

[202]

203]

137

C. Martin, R. T. Gordon, M. A. Tanatar, H. Kim, N. Ni, S. L. Bud’ko, P. C.
Canfield, H. Luo, H. H. Wen, Z. Wang, A. B. Vorontsov, V. G. Kogan, and
R. Prozorov, Phys. Rev. B 80, 020501 (2009).

K. Hashimoto, T. Shibauchi, S. Kasahara, K. Ikada, S. Tonegawa, T. Kato,
R. Okazaki, C. J. van der Beek, M. Konczykowski, H. Takeya, K. Hirata,
T. Terashima, and Y. Matsuda, Phys. Rev. Lett. 102, 207001 (2009).

H. Luo, Z. Wang, H. Yang, P. Cheng, X. Zhu, and H.-H. Wen, Supercond. Sci.
Technol. 21, 125014 (2008).

S. Avci, O. Chmaissem, E. A. Goremychkin, S. Rosenkranz, J.-P. Castellan, D. Y.
Chung, I. S. Todorov, J. A. Schlueter, H. Claus, M. G. Kanatzidis, A. Daoud-
Aladine, D. Khalyavin, and R. Osborn, Phys. Rev. B 83, 172503 (2011).

G. Li, W. Z. Hu, J. Dong, Z. Li, P. Zheng, G. F. Chen, J. L. Luo, and N. L. Wang,
Phys. Rev. Lett. 101, 107004 (2008).

P. Popovich, A. V. Boris, O. V. Dolgov, A. A. Golubov, D. L. Sun, C. T. Lin,
R. K. Kremer, and B. Keimer, Phys. Rev. Lett. 105, 027003 (2010).

G. Mu, H. Luo, Z. Wang, L. Shan, C. Ren, and H.-H. Wen, Phys. Rev. B 79,
174501 (2009).

H. Kim, R. T. Gordon, M. A. Tanatar, J. Hua, U. Welp, W. K. Kwok, N. Ni,
S. L. Bud’ko, P. C. Canfield, A. B. Vorontsov, and R. Prozorov, Phys. Rev. B 82,
060518 (2010).

A. Glatz and A. E. Koshelev, Phys. Rev. B 82, 012507 (2010).

R. M. Fernandes and J. Schmalian, Phys. Rev. B 82, 014521 (2010).


http://dx.doi.org/10.1103/PhysRevB.83.172503
http://dx.doi.org/10.1103/PhysRevLett.101.107004
http://dx.doi.org/ 10.1103/PhysRevLett.105.027003
http://dx.doi.org/10.1103/PhysRevB.79.174501
http://dx.doi.org/10.1103/PhysRevB.79.174501
http://dx.doi.org/10.1103/PhysRevB.82.060518
http://dx.doi.org/10.1103/PhysRevB.82.060518
http://dx.doi.org/10.1103/PhysRevB.82.012507
http://dx.doi.org/10.1103/PhysRevB.82.014521

204]

[205]

206]

207]

208]

209]
210
[211]

212]

[213]

[214]

138

J.-P. Reid, M. A. Tanatar, A. Juneau-Fecteau, R. T. Gordon, S. R. de Cotret,
N. Doiron-Leyraud, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo,
H. Eisaki, R. Prozorov, and L. Taillefer, Phys. Rev. Lett. 109, 087001 (2012).

N. Kurita, F. Ronning, Y. Tokiwa, E. D. Bauer, A. Subedi, D. J. Singh, J. D.
Thompson, and R. Movshovich, Phys. Rev. Lett. 102, 147004 (2009).

N. Kurita, F. Ronning, C. F. Miclea, E. D. Bauer, K. Gofryk, J. D. Thompson,
and R. Movshovich, Phys. Rev. B 83, 094527 (2011).

T. K. Kim, A. N. Yaresko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky,
N. H. Sung, B. K. Cho, T. Samuely, P. Szab¢é, J. G. Rodrigo, J. T. Park, D. S.
Inosov, P. Samuely, B. Biichner, and S. V. Borisenko, Phys. Rev. B 85, 014520
(2012).

V. K. Anand, H. Kim, M. A. Tanatar, R. Prozorov, and D. C. Johnston, Phys.
Rev. B 87, 224510 (2013).

H. Fujii and A. Sato, Phys. Rev. B 79, 224522 (2009).
N. H. Sung, J.-S. Rhyee, and B. K. Cho, Phys. Rev. B 83, 094511 (2011).
E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).

N. H. Sung, C. J. Roh, B. Y. Kang, and B. K. Cho, Journal of Applied Physics
111, 07E117 (2012).

T. Samuely, P. Szabd, Z. Pribulové, N. H. Sung, B. K. Cho, T. Klein, V. Cambel,
J. G. Rodrigo, and P. Samuely, Superconductor Science and Technology 26, 015010
(2013).

J. D. Fletcher, A. Carrington, P. Diener, P. Rodiere, J. P. Brison, R. Prozorov,
T. Olheiser, and R. W. Giannetta, Phys. Rev. Lett. 98, 057003 (2007).


http://dx.doi.org/10.1103/PhysRevLett.109.087001
http://dx.doi.org/ 10.1103/PhysRevLett.102.147004
http://dx.doi.org/ 10.1103/PhysRevB.83.094527
http://dx.doi.org/10.1103/PhysRevB.85.014520
http://dx.doi.org/10.1103/PhysRevB.85.014520
http://dx.doi.org/ 10.1103/PhysRevB.87.224510
http://dx.doi.org/ 10.1103/PhysRevB.87.224510
http://dx.doi.org/10.1103/PhysRevB.79.224522
http://dx.doi.org/10.1103/PhysRevB.83.094511
http://dx.doi.org/10.1103/PhysRev.147.288
http://dx.doi.org/10.1063/1.3672089
http://dx.doi.org/10.1063/1.3672089
http://stacks.iop.org/0953-2048/26/i=1/a=015010
http://stacks.iop.org/0953-2048/26/i=1/a=015010

[215]

[216]

217]

[218]

[219]

[220]

[221]

222]

[223]

224]

[225]

139

R. T. Gordon, M. D. Vannette, C. Martin, Y. Nakajima, T. Tamegai, and R. Pro-
zorov, Phys. Rev. B 78, 024514 (2008).

F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk,
R. Movshovich, and J. D. Thompson, Journal of Physics: Condensed Matter
20, 342203 (2008).

I. Bonalde, B. D. Yanoff, M. B. Salamon, and E. E. M. Chia, Phys. Rev. B 67,
012506 (2003).

A. F. Kemper, C. Cao, P. J. Hirschfeld, and H.-P. Cheng, Phys. Rev. B 80, 104511
(2009).

O. V. Dolgov, A. A. Golubov, and D. Parker, New J. Phys. 11, 075012 (2009).

Y. J. Song, J. S. Ghim, B. H. Min, Y. S. Kwon, M. H. Jung, and J.-S. Rhyee,
App. Phys. Lett. 96, 212508 (2010).

Y. Liu, M. A. Tanatar, V. G. Kogan, H. Kim, T. A. Lograsso, and R. Prozorov,
Phys. Rev. B 87, 134513 (2013).

N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud’ko, and
P. C. Canfield, Phys. Rev. B 78, 214515 (2008).

E. Colombier, S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79, 224518
(2009).

C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lorenz, B. Lv, K. Sasmal, Z. J.
Tang, J. H. Tapp, and Y. Y. Xue, Physica C 469, 326 (2009).

E. Colombier, M. S. Torikachvili, N. Ni, A. Thaler, S. L. Budko, and P. C. Canfield,

Superconductor Science and Technology 23, 054003 (2010).


http://stacks.iop.org/0953-8984/20/i=34/a=342203
http://stacks.iop.org/0953-8984/20/i=34/a=342203
http://dx.doi.org/10.1103/PhysRevB.67.012506
http://dx.doi.org/10.1103/PhysRevB.67.012506
http://dx.doi.org/10.1103/PhysRevB.80.104511
http://dx.doi.org/10.1103/PhysRevB.80.104511
http://stacks.iop.org/1367-2630/11/i=7/a=075012
http://dx.doi.org/ 10.1103/PhysRevB.87.134513
http://dx.doi.org/ 10.1103/PhysRevB.78.214515
http://dx.doi.org/10.1103/PhysRevB.79.224518
http://dx.doi.org/10.1103/PhysRevB.79.224518
http://stacks.iop.org/0953-2048/23/i=5/a=054003

140

[226] S. J. Zhang, X. C. Wang, Q. Q. Liu, Y. X. Lv, X. H. Yu, Z. J. Lin, Y. S. Zhao,
L. Wang, Y. Ding, H. K. Mao, and C. Q. Jin, EPL (Europhysics Letters) 88,
47008 (2009).

[227] Y. J. Song, J. S. Ghim, J. H. Yoon, K. J. Lee, M. H. Jung, H.-S. Ji, J. H. Shim,
Y. Bang, and Y. S. Kwon, EPL (Europhysics Letters) 94, 57008 (2011).

[228] M. A. Tanatar, N. Ni, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Supercond.
Sci. Technol. 23, 054002 (2010).

[229] C. Martin, H. Kim, R. T. Gordon, N. Ni, A. Thaler, V. G. Kogan, S. L. Budko,
P. C. Canfield, M. A. Tanatar, and R. Prozorov, Superconductor Science and
Technology 23, 065022 (2010).

[230] N. Doiron-Leyraud, P. Auban-Senzier, S. R. de Cotret, C. Bourbonnais, D. Jérome,
K. Bechgaard, and L. Taillefer, Phys. Rev. B 80 80, 214531 (2009).

[231] W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev.
Lett. 70, 3999 (1993).

[232] S. L. Bud’ko, N. Ni, S. Nandi, G. M. Schmiedeshoff, and P. C. Canfield, Phys.
Rev. B 79, 054525 (2009).

[233] R. Prozorov, M. A. Tanatar, R. T. Gordon, C. Martin, H. Kim, V. G. Kogan, N. Ni,
M. E. Tillman, S. L. Bud’ko, and P. C. Canfield, Physica C 469, 582 (2009).

[234] 1. Nekrasov, Z. Pchelkina, and M. Sadovskii, JETP Letters 88, 543 (2008).

[235] L. Boeri, M. Calandra, I. I. Mazin, O. V. Dolgov, and F. Mauri, Phys. Rev. B 82,
020506 (2010).

[236] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).


http://stacks.iop.org/0295-5075/88/i=4/a=47008
http://stacks.iop.org/0295-5075/88/i=4/a=47008
http://stacks.iop.org/0295-5075/94/i=5/a=57008
http://stacks.iop.org/0953-2048/23/i=6/a=065022
http://stacks.iop.org/0953-2048/23/i=6/a=065022
http://dx.doi.org/ 10.1103/PhysRevLett.70.3999
http://dx.doi.org/ 10.1103/PhysRevLett.70.3999
http://dx.doi.org/ 10.1103/PhysRevB.79.054525
http://dx.doi.org/ 10.1103/PhysRevB.79.054525
http://dx.doi.org/10.1134/S0021364008200150
http://dx.doi.org/ 10.1103/PhysRevB.82.020506
http://dx.doi.org/ 10.1103/PhysRevB.82.020506
http://dx.doi.org/10.1103/PhysRevLett.101.026403

237

23]

239

240

[241]

242

243]

[244]

[245]

[246]

141

K. Sasmal, B. Lv, Z. Tang, F. Y. Wei, Y. Y. Xue, A. M. Guloy, and C. W. Chu,
Phys. Rev. B 81, 144512 (2010).

M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, Angewandte Chemie Interna-
tional Edition 47, 7949 (2008).

G. Mu, J. Tang, Y. Tanabe, J. Xu, S. Heguri, and K. Tanigaki, Phys. Rev. B 84,
054505 (2011).

K. Cho, M. A. Tanatar, N. Spyrison, H. Kim, Y. Song, P. Dai, C. L. Zhang, and
R. Prozorov, Phys. Rev. B 86, 020508 (2012).

J.-P. Reid, A. Juneau-Fecteau, R. T. Gordon, S. R. de Cotret, N. Doiron-Leyraud,
X. G. Luo, H. Shakeripour, J. Chang, M. A. Tanatar, H. Kim, R. Prozorov,
T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, B. Shen,
H.-H. Wen, and L. Taillefer, Superconductor Science and Technology 25, 084013
(2012).

T. Das, EPJ Web of Conferences 23, 00014 (2012).

R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Phys. Rev. Lett.
107, 117001 (2011).

H. Kawano-Furukawa, C. J. Bowell, J. S. White, R. W. Heslop, A. S. Cameron,
E. M. Forgan, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa,
Y. Kohori, R. Cubitt, C. D. Dewhurst, J. L. Gavilano, and M. Zolliker, Phys.
Rev. B 84, 024507 (2011).

A. F. Wang, S. Y. Zhou, X. G. Luo, X. C. Hong, Y. J. Yan, J. J. Ying, P. Cheng,
G. J. Ye, Z. J. Xiang, S. Y. Li, and X. H. Chen, arXiv:1206.2030 (2012).

M. Abdel-Hafiez, V. Grinenko, S. Aswartham, I. Morozov, M. Roslova, O. Vakaliuk,
S. Johnston, D. V. Efremov, J. van den Brink, H. Rosner, M. Kumar, C. Hess,


http://dx.doi.org/10.1103/PhysRevB.81.144512
http://dx.doi.org/ 10.1002/anie.200803641
http://dx.doi.org/ 10.1002/anie.200803641
http://dx.doi.org/10.1103/PhysRevB.84.054505
http://dx.doi.org/10.1103/PhysRevB.84.054505
http://dx.doi.org/10.1103/PhysRevB.86.020508
http://stacks.iop.org/0953-2048/25/i=8/a=084013
http://stacks.iop.org/0953-2048/25/i=8/a=084013
http://dx.doi.org/10.1051/epjconf/20122300014
http://dx.doi.org/ 10.1103/PhysRevLett.107.117001
http://dx.doi.org/ 10.1103/PhysRevLett.107.117001
http://dx.doi.org/10.1103/PhysRevB.84.024507
http://dx.doi.org/10.1103/PhysRevB.84.024507

[247]

[248]

[249]

[250]

[251]

252]

253

[254]

142

S. Wurmehl, A. U. B. Wolter, B. Biichner, E. L. Green, J. Wosnitza, P. Vogt,
A. Reifenberger, C. Enss, M. Hempel, R. Klingeler, and S.-L. Drechsler, Phys.
Rev. B 87, 180507 (2013).

F. F. Tafti, A. Juneau-Fecteau, M.-E. Delage, S. Rene de Cotret, J.-P. Reid, A. F.
Wang, X.-G. Luo, X. H. Chen, N. Doiron-Leyraud, and L. Taillefer, Nat Phys 9,
349 (2013).

K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss,
S. Watanabe, C.-T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito,
H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda,
H. Miyahara, R. Arita, A. Chainani, and S. Shin, Science 337, 1314 (2012).

N. W. Salovich, H. Kim, A. K. Ghosh, R. W. Giannetta, W. Kwok, U. Welp,
B. Shen, S. Zhu, H.-H. Wen, M. A. Tanatar, and R. Prozorov, Phys. Rev. B 87,
180502 (2013).

M. Abdel-Hafiez, S. Aswartham, S. Wurmehl, V. Grinenko, C. Hess, S.-L. Drech-
sler, S. Johnston, A. U. B. Wolter, B. Biichner, H. Rosner, and L. Boeri, Phys.
Rev. B 85, 134533 (2012).

S. L. Bud’ko, Y. Liu, T. A. Lograsso, and P. C. Canfield, Phys. Rev. B 86, 224514
(2012).

C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy,
S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and
T. Timusk, Nature 430, 539 (2004).

V. G. Kogan, Phys. Rev. B 87, 220507 (2013).

K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).


http://dx.doi.org/10.1103/PhysRevB.87.180507
http://dx.doi.org/10.1103/PhysRevB.87.180507
http://dx.doi.org/10.1038/nphys2617
http://dx.doi.org/10.1038/nphys2617
http://dx.doi.org/10.1126/science.1222793
http://dx.doi.org/ 10.1103/PhysRevB.87.180502
http://dx.doi.org/ 10.1103/PhysRevB.87.180502
http://dx.doi.org/ 10.1103/PhysRevB.85.134533
http://dx.doi.org/ 10.1103/PhysRevB.85.134533
http://dx.doi.org/10.1103/PhysRevB.86.224514
http://dx.doi.org/10.1103/PhysRevB.86.224514
http://dx.doi.org/10.1038/nature02673
http://dx.doi.org/10.1103/PhysRevB.87.220507

143

[255] S. Jin, ed., Processing and Properties of High-T,. Superconductors (World Scientific,
1993).

[256] G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur,
Rev. Mod. Phys. 66, 1125 (1994).

[257] Y. Zhu, Z. X. Cai, R. C. Budhani, M. Suenaga, and D. O. Welch, Phys. Rev. B
48, 6436 (1993).

[258] S. I. Woods, A. S. Katz, M. C. de Andrade, J. Herrmann, M. B. Maple, and R. C.
Dynes, Phys. Rev. B 58, 8800 (1998).

[259] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki,
Phys. Rev. Lett. 101, 087004 (2008).

[260] S. Onari and H. Kontani, Phys. Rev. Lett. 103, 177001 (2009).

[261] D. V. Efremov, M. M. Korshunov, O. V. Dolgov, A. A. Golubov, and P. J.
Hirschfeld, Phys. Rev. B 84, 180512 (2011).

[262] Y. Nakajima, Y. Tsuchiya, T. Taen, T. Tamegai, S. Okayasu, and M. Sasase,
Phys. Rev. B 80, 012510 (2009).

[263] L. Fang, Y. Jia, C. Chaparro, G. Sheet, H. Claus, M. A. Kirk, A. E. Koshelev,
U. Welp, G. W. Crabtree, W. K. Kwok, S. Zhu, H. F. Hu, J. M. Zuo, H.-H. Wen,
and B. Shen, Applied Physics Letters 101, 012601 (2012).

[264] P. C. Canfield, S. L. Bud’ko, N. Ni, J. Q. Yan, and A. Kracher, Phys. Rev. B 80,
060501 (2009).

[265] R. Prozorov, M. A. Tanatar, B. Roy, N. Ni, S. L. Bud’ko, P. C. Canfield, J. Hua,
U. Welp, and W. K. Kwok, Phys. Rev. B 81, 094509 (2010).


http://dx.doi.org/10.1103/PhysRevLett.101.087004
http://dx.doi.org/10.1103/PhysRevLett.103.177001
http://dx.doi.org/10.1103/PhysRevB.84.180512
http://dx.doi.org/10.1103/PhysRevB.80.012510
http://dx.doi.org/10.1063/1.4731204
http://dx.doi.org/ 10.1103/PhysRevB.80.060501
http://dx.doi.org/ 10.1103/PhysRevB.80.060501
http://dx.doi.org/10.1103/PhysRevB.81.094509

144

[266] V. Mishra, A. Vorontsov, P. J. Hirschfeld, and I. Vekhter, Phys. Rev. B 80, 224525
(2000).

[267] L. Shan, Y.-L. Wang, J. Gong, B. Shen, Y. Huang, H. Yang, C. Ren, and H.-H.
Wen, Phys. Rev. B 83, 060510 (2011).

[268] A. Charnukha, O. V. Dolgov, A. A. Golubov, Y. Matiks, D. L. Sun, C. T. Lin,
B. Keimer, and A. V. Boris, Phys. Rev. B 84, 174511 (2011).

[269] 1. I. Mazin, O. K. Andersen, O. Jepsen, O. V. Dolgov, J. Kortus, A. A. Golubov,
A. B. Kuz’'menko, and D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002).

[270] 1. Mazin and V. Antropov, Physica C: Superconductivity 385, 49 (2003).

[271] N. Chikumoto, A. Yamamoto, M. Konczykowski, and M. Murakami, Physica C:
Superconductivity 378-381, Part 1, 466 (2002).

[272] R. M. Fernandes, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 85, 140512
(2012).

[273] H. Kim, M. A. Tanatar, B. Shen, H.-H. Wen, and R. Prozorov, arXiv:1105.2265
(2011).

[274] K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato,
P. Richard, Y. M. Xu, L. J. Li, G. H. Cao, Z. A. Xu, H. Ding, and T. Takahashi,
PNAS 106, 7330 (2009).


http://dx.doi.org/10.1103/PhysRevB.80.224525
http://dx.doi.org/10.1103/PhysRevB.80.224525
http://dx.doi.org/10.1103/PhysRevB.83.060510
http://dx.doi.org/10.1103/PhysRevB.84.174511
http://dx.doi.org/ 10.1103/PhysRevLett.89.107002
http://dx.doi.org/10.1016/S0921-4534(02)02299-2
http://dx.doi.org/10.1016/S0921-4534(02)01472-7
http://dx.doi.org/10.1016/S0921-4534(02)01472-7
http://dx.doi.org/10.1103/PhysRevB.85.140512
http://dx.doi.org/10.1103/PhysRevB.85.140512

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Preface
	1.2 Properties of Fe-based superconductors
	1.2.1 Crystal structures
	1.2.2 Generic doping phase diagram: comparison to cuprates
	1.2.3 Magnetic structures
	1.2.4 Fermi surfaces
	1.2.5 Temperature-concentration Phase diagrams
	1.2.6 Superconducting mechanism and order parameter

	1.3 London penetration depth
	1.3.1 Theory of the London penetration depth
	1.3.2 London penetration depth in Fe-based superconductors


	2. EXPERIMENTAL
	2.1 Tunnel diode resonator technique for London penetration depth measurements
	2.1.1 Principles of tunnel diode resonator
	2.1.2 Calibration: conversion of measured f to 


	3. USE OF RUTGERS RELATION FOR THE ANALYSIS OF THE SUPERFLUID DENSITY
	3.1 Thermodynamic Rutgers relation
	3.2 Theoretical results relevant for the analysis of the superfluid density
	3.2.1 Penetration depth in anisotropic materials
	3.2.2 MgB2
	3.2.3 d-wave
	3.2.4 Scattering

	3.3 Determination of (0) 
	3.4 Application of Rutgers formula to unconventional superconductors

	4. DOPING DEPENDENCE OF LONDON PENETRATION DEPTH AND SUPERFLUID DENSITY IN IRON-BASED SUPERCONDUCTORS
	4.1 Fe1+yTe1-xSex
	4.1.1 Fe1.03(Te0.63Se0.37)
	4.1.2 Fe(Te0.58Se0.42)

	4.2 Ca10(Pt3As8)((Fe1-xPtx)2As2)5 (0.028 x 0.097)
	4.3 Ba1-xKxFe2As2 (0.13 x 0.4)
	4.4 Full substitution of Fe with Pd: APd2As2 (A = Ca, Sr) and SrPd2Ge2
	4.4.1 APd2As2 (A = Ca, Sr)
	4.4.2 SrPd2Ge2

	4.5 Summary

	5. EFFECT OF DISORDER ON LONDON PENETRATION DEPTH IN IRON-BASED SUPERCONDUCTORS
	5.1 Superconducting gap structure in stoichiometric LiFeAs and KFe2As2
	5.1.1 Nodeless multi-gap superconductivity in LiFeAs
	5.1.2 Nodal superconducting gap in KFe2As2

	5.2 Irradiation effect on London penetration depth in Ba(Fe1-xTx)2As2 (T=Co, Ni) and Ba1-xKxFe2As2 superconductors
	5.2.1 London penetration depth in Ba(Fe1-xTx)2As2 (T=Co, Ni) superconductors irradiated with heavy ions
	5.2.2 London penetration depth in Ba1-xKxFe2As2 irradiated with heavy ion

	5.3 Summary

	6. CONCLUSIONS
	BIBLIOGRAPHY



