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ABSTRACT 

While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D 

trajectories of particle probes, we have developed Single Particle Orientation and Rotational 

Tracking (SPORT) techniques to extract orientation and rotational information. Combined 

with DIC microscopy, the SPORT technique has been applied in biophysical studies, 

including membrane diffusion and intracellular transport.  

The rotational dynamics of nanoparticle vectors on live cell membranes was recorded 

and its influence on the fate of these nanoparticle vectors was elucidated. The rotational 

motions of gold nanorods with various surface modifiers were tracked continuously at a 

temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors 

of gold nanorod vectors are strongly related to their surface charge, specific surface 

functional groups, and the availability of receptors on cell membranes. The study of 

rotational Brownian motion of nanoparticles on cell membranes will lead to a better 

understanding of the mechanisms of drug delivery and provide guidance in designing surface 

modification strategies for drug delivery vectors under various circumstances.  

To characterize the rotation mode of surface functionalized gold nanorods on cell 

membranes, the SPORT technique is combined with the correlation analysis of the bright and 

dark DIC intensities. The unique capabilities of visualizing and understanding rotational 

motions of functionalized nanoparticles on live cell membranes allow us to correlate 

rotational and translational dynamics in unprecedented detail and provide new insights for 
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complex membrane processes, including electrostatic interactions, ligand-receptor binding, 

and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized 

nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct 

rotational modes. The early events of particle-membrane approach and attachment are 

directly visualized for the first time. 

The rotational dynamics of cargos in both active directional transport and pausing stages 

of axonal transport was also visualized using high-speed SPORT with a temporal resolution 

of 2 ms.  Both long and short pauses are imaged, and the correlations between the pause 

duration, the rotational behaviour of the cargo at the pause, and the moving direction after the 

pause are established. Furthermore, the rotational dynamics leading to switching tracks are 

visualized in detail. These first-time observations of cargo's rotational dynamics provide new 

insights on how kinesin and dynein motors take the cargo through the alternating stages of 

active directional transport and pause. 

To improve the localization precision of the SPT technique with DIC microscopy, a 

precise three-dimensional (3D) localization method of spherical gold nanoparticle probes 

using model-based correlation coefficient mapping was introduced. To accomplish this, a 

stack of sample images at different z-positions are acquired, and a 3D intensity profile of the 

probe serving as the model is used to map out the positions of nanoparticles in the sample. By 

using this model-based correlation imaging method, precise localization can be achieved in 

imaging techniques with complicated point spread functions (PSF) such as differential 
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interference contrast (DIC) microscopy. The 3D superlocalization method was applied to 

tracking gold nanospheres during live endocytosis events. 

Finally, a novel dual-modality imaging technique has been developed to super-localize a 

single gold nanorod while providing its orientation and rotational information. The 

super-localization of the gold nanorod can be accomplished by curve fitting the modified 

bright-field images generated by one of the two beams laterally shifted by the first Nomarski 

prism in a DIC microscope. The orientation and rotational information is derived from the 

DIC images of gold nanorods. The new imaging setup has been applied to study the steric 

hindrance induced by relatively large cargos in the microtubule gliding assay and to track 

nanocargos in the crowded cellular environment. 
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CHAPTER 1 INTRODUCTION 

This thesis is composed of eight chapters. Chapter 1 is the general introduction outlining 

the composition of the thesis. Chapter 2 is a feature article introducing current single particle 

orientation and rotational tracking techniques and their applications in biophysical studies. 

Chapter 3 is a paper published in Journal of the Ameircan Chemical Society, demonstrating 

the application of SPORT technique combining DIC microscopy and gold nanorods in 

rotational dynamic studies of nanoparticles modified with drug delivery agents on live cell 

membranes. Chapter 4 is a paper published in Small. It investigates the rotation modes of 

surface modified gold nanorods on cell membranes. Chapter 5 is a paper published in Nature 

Communications, reporting the rotataonal behaviors of cargos at the pauses stages during the 

axonal transport and their relationship with motor protein arrangement. Chapter 6 is a paper 

published in Analytical Chemistry, demontrating a 3D superlocalization approach for gold 

nanospheres. Chapter 7 is a paper published in ACS Nano. It describes a dual-mode 

microscope that is devised for sinultaneous super-localization and rotataional tracking of gold 

nanorods.  Chapter 8 is the general conclusions of the thesis and the outlook. 
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CHAPTER 2  

SINGLE PARTICLE ORIENTATION AND ROTATIONAL TRACKING (SPORT) IN 

BIOPHYSICAL STUDIES 

A feature article submitted to Nanoscale 

 

Yan Gua,b, Ji Won Haa,b, Ashley E. Augspurgera, Kuangcai Chena,b, Shaobin Zhua, and Ning Fanga,b* 

a Department of Chemistry, Iowa State University, Ames, Iowa, 50011 

b Ames Laboratory, U.S. Department of Energy, Ames, Iowa, 50011 

 

Abstract 

The single particle orientation and rotational tracking (SPORT) techniques have seen 

rapid development in the past 5 years. Recent technical advances have greatly expanded the 

applicability of SPORT in biophysical studies. In this feature article, we survey the current 

development of SPORT and discuss its potential applications in biophysics, including cellular 

membrane processes and intracellular transport.  

1. Introduction 

The real-time tracking of biological processes is essential in digging out mechanisms that 

are otherwise hidden in static observations. With the advances of optical microscopy 

techniques and photodetectors, sophisticated micro- and nano-scale biological phenomena 

can now be observed in real time with relative ease. It is usually necessary to label 

biomolecules of interest in live cells or bioengineered systems with contrast agents for 
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observation under light microscopes. Most single molecule tracking techniques employed in 

biophysical studies rely on fluorescent labeling of target molecules. For example, the lateral 

diffusion of membrane lipids and proteins1, signaling processes of membrane receptors2, and 

infection pathways of single viruses3 were observed by using fluorescent tags. However, the 

single molecule fluorescence techniques are usually limited by the stochastic intensity 

fluctuations, relatively short observation time due to the intrinsic photobleaching of organic 

dyes, and high autofluorescence background. Single particle tracking (SPT), as an alternative 

approach, sometimes serves as a more reliable imaging method. The SPT techniques 

typically incorporate labeling using fluorescent quantum dots (Q-dots)4 or non-fluorescent 

noble metal nanoparticles5, 6. They have been widely applied in biophysical studies, such as 

membrane diffusion7, 8, cellular uptake of extraneous substances9-11, and intracellular 

transport12-14. 

The conventional SPT techniques investigate biophysical phenomena from 

two-dimensional (2D) or three-dimensional (3D) translational movement of imaging probes. 

However, many biological processes involve orientation and rotational information, e.g., 

DNA polymerization15, ATP synthase self-rotation16, and the stepping of molecular motors17, 

18. Recent advances of imaging techniques have greatly expanded our ability to resolve not 

only the translational dynamics but also the rotational dynamics of imaging probes in cellular 

and engineered environments.  

It is our belief that the acronym “SPORT” for Single Particle Orientation and Rotational 
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Tracking is an appropriate name to encompass all of the techniques that are designed to 

resolve the orientation and rotational motion of single nanoparticle probes.  

A brief introduction to various SPORT techniques that utilize either fluorescent Q-dots or 

plasmonic nanoparticles will be provided. Readers are encouraged to read a recent 

comprehensive review on the technical details of single-cell optical imaging techniques19. In 

the present perspective, we will put more emphasis on the practical considerations and 

biophysical applications of SPORT and provide future perspectives on technical 

developments and experimental designs.  

 

2.  SPORT with Fluorescent Probes 

The fluorescence-based SPORT techniques have been widely used for biological studies, 

and they typically rely on the detection of the transition dipole orientation of fluorescent 

probes such as organic dye molecules, conjugated polymers, and Q-dots. The dipole 

orientation of an optical probe is obtained by measuring the fluorescence polarization 

anisotropy, or polarization-dependent absorption. In this section, we will focus on fluorescent 

Q-dots used as probes in SPORT.  

Using fluorescence polarization microscopy, the 3D orientation of a single CdSe Q-dot 

can be resolved by measuring its 2D transition dipole in multiple polarization channels at 

room temperature20. Toprak et al. combined defocused orientation and position imaging 

(DOPI) with fluorescence imaging with one-nanometer accuracy (FIONA) to resolve the step 
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sizes and behaviors of myosin V motor protein walking on actin filaments21. In their work, 

the Q-dots were imaged with circularly polarized light under a total internal reflection 

fluorescence (TIRF) microscope.  For the orientation tracking, the sample was imaged out 

of focus (~ 500 nm from the focal plane) and the 3D orientation was determined by 

comparing the defocused images with the theoretical models. The position tracking with 

1.5-nm accuracy was realized by taking focused images of Q-dots under the principle of 

FIONA. Compared with conventional organic dyes, Q-dots are photophysically more stable 

and brighter to allow a ~5-fold increase in temporal resolution. 

In addition to Q-dots, fluorescent quantum rods (Q-rods) with proper aspect ratios (>10:1) 

emit approximately linearly polarized light; therefore, they can also be used as rotational 

probes22-24. In another attempt to measure the stepping behaviors of myosin V, the 

fluorescence signals from the Q-rods emitters excited by a circularly polarized laser beam 

were split to 4 polarization components (0°, 45°, 90°, and 135°) and projected onto the same 

CCD chip by installing a half-mirror and a Wollaston prism in the light path23. In this way, 

the 3D orientation of Q-rods was determined with better than 10° accuracy at the temporal 

resolution of ~30 ms, while the 2D trajectories were acquired simultaneously. 

In another interesting study using Q-dots as rotational probes, instead of tracking the 

dipole orientation of Q-dots with polarized light, as in other experiments discussed in this 

section, Q-dots were labeled on single viruses, and the interferometric scattering of viruses 

and super-localization of Q-dots are combined for tracking the position and orientation of 
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viruses on synthetic lipid bilayers25.  

 

3. SPORT with Plasmonic Nanoparticles 

The non-fluorescence SPORT techniques typically utilize anisotropic plasmonic metal 

nanoparticles as imaging probes. Gold nanorods26 (AuNRs) have been the most popular 

choice in orientation sensing and rotational tracking due to their photostability 

(non-photobleaching and non-blinking), easy surface modification, low toxicity to biological 

samples, and most importantly, the high scattering and absorption cross sections resulting 

from the localized surface plasmon resonance (LSPR). The plasmon band, which depends on 

the size and shape of the nanoparticles, as well as the dielectric constant of the surrounding 

medium, allow one to tune the desired LSPR frequency. The anisotropic AuNRs possess two 

geometrically confined LSPR bands: the longitudinal LSPR along the long axis and the 

transverse LSPR along the short axis. The single dipolar character of the plasmon bands 

enables AuNRs to be used as rotational probes in ways similar to fluorescent molecular 

dipoles. 

  In this section, we will focus on the working principles and experimental designs of 

several far-field optical imaging-based SPORT techniques that have been widely employed to 

measure the orientation of single AuNR probes. (See Fig. 2.1 for the definitions of the 

orientation angles.) The optical techniques include the scattering-based dark field microscopy, 

planar illumination microscopy, total internal reflection scattering (TIRS) microscopy, the 
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absorption-based photothermal heterodyne imaging, and the interferometry-based differential 

interference contrast (DIC) microscopy.   

 

3.1 Scattering-based optical techniques in SPORT 

The first demonstration of AuNRs as rotational probes was carried out with a dark field 

microscope by Sönnichsen and Alivisatos27. The AuNRs were illuminated with a tungsten 

lamp and the scattered light was split into two orthogonal polarization directions by a 

birefringent calcite crystal. The intensity signals of AuNRs loosely attached to the surface of 

a glass flow cell were recorded and the rotational diffusion time was estimated by calculating 

the autocorrelation of the intensity traces. The fastest rotation diffusion time was 60 ms, 

reflecting the large effective local viscosity near the surface. This technique was later applied 

in the study of rotational diffusion of surface modified AuNRs on synthetic lipid bilayers.28 

The characteristic rotation times were calculated by fitting the power spectral density of the 

reduced linear dichroism of the scattering intensities with the Lorentzian function.  

Xiao et al. described a planar illumination (or light-sheet) scattering microscope to 

directly track the rotational and translational diffusion dynamics of AuNRs in live cells29. 

Through illuminating AuNRs with two orthogonal light sheets and resolving the polarized 

scattering signals with a birefringent crystal, the rotational dynamics of individual AuNRs 

was recorded successfully. Moreover, the translational and rotational movements of 

individual AuNRs transported on the microtubules inside live cells were imaged. The 
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light-sheet illumination resulted in a simple continuous excitation probability function for 

AuNRs compared with dark field microscopy, and the background noise was also reduced. 

More recently, Fang and coworkers demonstrated a TIRS microscopy imaging system to 

probe rotational dynamics of AuNRs interacting with functional surfaces30. The 

orientation-dependent scattering intensity fluctuations of the longitudinal and transverse 

LSPR modes of AuNRs were used to determine the 3D orientation of the surface-bound 

AuNRs and resolve their conformations in unprecedented detail. Furthermore, the same 

research group also developed a TIRS-based method based on the far-field scattering patterns 

of in-focus AuNRs supported on a dielectric gold film31. The 3D orientation of AuNRs within 

a single frame can be extracted from the characteristic image patterns. Further discussion on 

the 3D orientation of AuNRs will be provided in Section 4. 

 

3.2 Absorption-based optical techniques in SPORT 

There are few reports on absorption-based polarization measurements of AuNRs. Valle et 

al. have developed spatial modulation spectroscopy, an extinction-based technique, to 

measure the extinction spectrum of single AuNRs32. They also reported the polarization 

dependence of the extinction cross section of a single AuNR at the longitudinal and 

transverse LSPR. The maximum intensity of the longitudinal LSPR indeed occurs at the 

polarization direction orthogonal to the transverse LSPR. Boyer et al. have developed another 

absorption-based technique, called photothermal imaging, to study the absorption properties 
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of nanostructures33. Briefly, they employed a frequency-modulated absorption beam to excite 

the plasmon band overlaid with another probe beam that probes the change in refractive 

index of the medium caused by the heat generated from the energy relaxation. Recently, 

Chang et al. demonstrated the photothermal imaging technique for determining the 2D 

orientation of single AuNRs34. AuNRs (25 nm µ 73 nm) were sparsely deposited onto a glass 

slide, and the polarized photothermal images were obtained as a function of polarization 

angle. The photothermal polarization traces were then fitted to an equation used to extract the 

orientation and conformation of a conjugated polymer in the isotropic environment. The 

photothermal measurement agreed well with the scanning electron microscopy (SEM) 

measurement. 

 

3.3 Differential interference contrast microscopy in SPORT 

DIC microscopy has long been used as a complementary technique to image cells 

because it provides better visualization (higher contrast, better resolution, and shallower 

depth of field) of cellular features than other far-field optical microscopy techniques. The 

recent efforts in the Fang laboratory have transformed DIC microscopy into a primary 

research tool for tracking plasmonic nanoparticles in biological samples. 

Nomarski DIC is the primary microscope design for imaging in the visible and near-IR 

range, and a Nomarski DIC microsope is equipped with two polarizers and two Nomarski 

prisms. The first Nomarski prism splits the illumination beam into two orthogonally 
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polarized beams that are separated by a sub-wavelength shear distance. Two intermediate 

images are generated behind the microscope objective and then laterally shifted back by the 

second Nomarski prism to overlay and form the interference DIC image. In essence, the 

Nomarski DIC microscope works as a two-beam interferometer that detects the optical path 

difference of the two beams passing through the specimen.  

Under a DIC microscope, anisotropic AuNRs display disproportionate bright and dark 

spots depending on their orientation relative to the optical axes and the illumination 

wavelength35. AuNRs with an average size of 25 nm × 73 nm may be imaged at the 

longitudinal LSPR wavelength of 700 nm or the transverse LSPR wavelength of 540 nm. 

DIC polarization anisotropy is defined in a way similar to fluorescence anisotropy with the 

bright and dark DIC intensities36.  

 

4. Recent Technical Advances of SPORT  

Although the optical techniques described above have been widely used to determine the 

orientation of AuNRs, it is still highly desirable to further improve these techniques for 

practical applications of SPORT in biophysical studies. In this section, we will therefore 

discuss the recent advances in far-field optical imaging-based SPORT techniques, in terms of 

the 3D orientation determination, lateral localization precision, temporal resolution, etc. This 

section is organized by features, and some papers may be discussed more than once in 

different subsections. 
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4.1 Resolving 3D orientation of rotational probes 

The ability to precisely resolve the 3D orientation of rotational probes is important 

because it can greatly enhance our understanding of interactions in complex biological 

systems. All of the aforementioned SPORT techniques can track a rotational probe’s in-plane 

orientation (azimuthal angle) reliably, while the out-of-plane orientation (polar or elevation 

angle) remains difficult to resolve with high accuracy. Recently, there have been several 

technical advances to overcome this limitation.    

 

4.1.1 Defocused dark-field microscopy 

The defocused orientation and position imaging (DOPI) techniques have been reported to 

have the capability of determining the 3D orientation of out-of-focus AuNRs without angular 

degeneracy. The DOPI techniques are based on the electron transition dipole approximation 

and the fact that the dipole radiation exhibits an angular anisotropy. The direct detection of 

the spatial distribution of the scattered field of a single dipole becomes possible when an 

aberration is deliberately applied to the imaging system. However, the DOPI techniques have 

major drawbacks in that both signal and resolution are sacrificed to devolve 3D information, 

and it is necessary to alternate between defocused and focused imaging for more precise 

simultaneous position and orientation measurements21. Recently, Xiao et al. reported a 

dual-wavelength dark field microscope to detect both the longitudinal and transverse SPR 

modes from individual AuNRs, and the well-focused transverse LSPR mode was used for 
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translational localization, while the 3D orientation information was simultaneously 

determined through the defocused longitudinal SPR mode37 (Fig. 2.2a).  

 

4.1.2 Differential interference contrast microscopy 

It has been demonstrated that DIC polarization anisotropy can be used to resolve both the 

in-plane azimuthal angle and the out-of-plane polar/elevation angles. However, it is important 

to note that the method can only resolve the azimuthal angle in the range of 0-90°, instead of 

0-360°. In other words, there is an angular degeneracy that prevents one from determining in 

which quadrant the azimuthal angle resides. The four quadrants are defined using the 

polarization directions of the two light beams after the first Nomarski prism of the DIC 

microscope. Another consequence of the angular degeneracy is the inability to tell the 

rotational direction (right-handed or left-handed).  

Recently, Xiao et al. overcame the limitations described above by combining DIC image 

pattern recognition with DIC polarization anisotropy measurement38. This approach was 

developed based on the finding that a AuNR that is tilted relative to the horizontal specimen 

plane would generate different DIC image patterns depending on the quadrant the azimuthal 

angle belongs (Fig. 2.2b). In this two-step process, the DIC polarization anisotropy 

measurement is first carried out to find the polar angle and the azimuthal angles in the range 

of 0-90°, and then the pattern recognition determines the quadrant for the exact azimuthal 

angle in the range of 0-360°. Using this technique, the rocking motion of tilted AuNRs was 
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detected on the cell membrane, and the rotational direction (clockwise or counter-clockwise) 

was determined38.  

This technique determines the orientation of AuNRs in the focal plane of the objective 

lens; therefore, it is attractive over the defocused imaging techniques in some applications. 

However, the requirement of a tilted AuNR is a major limitation. The estimated minimal 

polar angle for generating recognizable image patterns in each quadrant is ~70o. The 3D 

orientation tracking cannot be realized for a AuNR that settles flat relative to the horizontal 

plane. Furthermore, the tilted position results in reduced signals that affects the angular 

resolution in DIC microscopy.  

 

4.1.3 Total internal reflection scattering microscopy 

Ha et al. developed a high-throughput TIRS-based technique that enables the 

determination of the 3D orientation of single AuNRs within single frames without suffering 

from angular degeneracy31. This technique is based on the strong interaction of plasmonic 

AuNRs with dielectric substrates (Fig. 2.2c). When AuNRs deposited on a 50-nm thick gold 

film are illuminated with p-polarized laser light, the point spread function (PSF) of the 

scattered light from a single AuNR becomes donut-shaped. P-polarized excitation selectively 

excites the AuNR's out-of-plane transverse dipole perpendicular to the substrate and creates 

an image charge dipole that is in phase with the AuNR's out-of-plane dipole, resulting in 

constructive interference. The doughnut-shaped scattering pattern is formed by the net 
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out-of-plane transverse dipole and directly portrays the scattering intensity distribution from 

this dipole. When the nanorod is tilted from the surface and measured by p-polarized light, 

the spatial intensity distribution is no longer circularly symmetric. The characteristic image 

patterns allow the determination of the 3D spatial orientation of the AuNR in the focal plane 

of the objective lens. Unlike the DOPI techniques21, this focused orientation and position 

imaging (FOPI) technique provides the angular information from in-focus single framed 

images. As a result, such techniques allow high-throughput determination of the 3D 

orientation of single AuNRs without angular degeneracy and the sacrifice of image quality.  

The necessary interaction between the AuNR and the substrate limits the applicability of 

the FOPI technique in biological samples such as living cells. However, it can still be used in 

many artificial systems, such as synthetic lipid membranes. Considering its high 3D angular 

resolution, the FOPI technique may be used in surface studies that that require high-precision 

orientation information. 

Besides the FOPI technique, Marchuk et al. recently demonstrated another TIRS 

technique that can dynamically track 3D orientation changes of multiple AuNRs under a 

dual-color TIRS microscope (Fig. 2.2d)30. The p-polarized excitation light (perpendicular to 

the horizontal plane) at the longitudinal LSPR wavelength was used for tracking the 

out-of-plane angle, while the s-polarized excitation light (parallel to the horizontal surface) at 

the transverse LSPR wavelength was used for tracking the in-plane angle. This technique is 

capable of resolving the out-of-plane angle with a high angular resolution comparable to that 
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for the in-plane angle. However, it does suffer from the angular degeneracy (only 0-90°) for a 

AuNR in the focal plane of the objective lens. 

 

4.2 Simultaneous super-localization and rotational tracking  

High-precision localization of single molecule or nanoparticle probes is necessary to 

resolve nanoscale biological structures and dynamics. The localization precision in rotational 

tracking is significantly influenced by the 3D orientation of the emission dipole39, 40. The 

worst localization precision usually occurs when the dipole orientation is perpendicular to the 

polarization direction of the excitation beam.  

In the defocused imaging techniques, it is rather challenging to super-localize single 

imaging probes from the orientation-dependent image patterns. Therefore, switching back 

and forth between focused and defocused imaging is required to obtain both the orientation 

and the accurate centroid of the emitting dipoles21. By splitting the fluorescence signals to 

four polarization channels, the Yanagida group devised a simultaneous 3D orientation and 

position tracking technique using fluorescent QRs23.  

For super-localization of single AuNRs in dark field microscopy, Xiao et al. utilized a 

dual-wavelength setup to create a focused image plane and a defocused image plane 

simultaneously37. The precise location of a AuNR can be determined in the focused image 

plane at the transverse LSPR wavelength, while its 3D orientation is determined in the 

defocused image plane at the longitudinal LSPR wavelength. Using this technique, the 
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rotational and translational diffusion of AuNRs on live cell membranes were found to be 

unsynchronized.  

Under a TIRS microscope, Marchuk et al. presented a method in which one can 

simultaneously track 3D rotational dynamics in AuNRs while super-localizing their lateral 

motions across a surface. In combination with superlocalization through PSF fitting, they 

overcame the four-quadrant angular degeneracy of AuNRs in the focal plane of objective and 

resolve conformations of surface-bound anisotropic AuNRs in detail.  

For AuNRs under a DIC microscope, the varying image patterns also make it challenging 

to super-localize the particles while their orientations are being tracked. Due to the 

complicated PSF of the DIC microscope, the images under the microscope cannot be simply 

fitted by a 2D Gaussian function. Gu et al. developed the correlation mapping method to 

localize isotropic gold nanospheres41. Further endeavors are needed to develop new 

techniques that combine the SPORT technique and the super-localization of the AuNRs.   

 

4.3 Improving temporal resolution 

In studying biological systems, 3D trajectories of biological objects such as transport 

vesicles often need to be acquired with high temporal resolution. In particular, measuring 

rotational dynamics at the nanoscale require sub-millisecond time resolution. Therefore, it is 

highly desirable to improve temporal resolution in SPORT techniques for in-depth 

biophysical studies. Recently, there have been several reports to achieve high temporal 
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resolution. For example, Gu et al. tracked rotational motions of AuNRs with various surface 

modifiers at 2-5 ms temporal resolution under a DIC microscope42, 43. The high temporal 

resolution made it possible to reveal that the rotational behaviors of AuNR probes on live cell 

membranes are strongly related to their surface charges. In addition to enhancing temporal 

resolution, a way to semi-quantify the rotational dynamics needs to be found in order to 

analyze the rotational dynamics of AuNRs and compare the rotational dynamics at different 

time points and among various conditions. In the study of the rotational dynamics of AuNRs 

on synthetic bilayers, the power spectral density of the dark-field signals fitted by a 

Lorentzian function was applied44. However, the power spectral density of the time series of 

the fast rotating AuNR is usually noisy and affects the fitting result. To semi-quantify the 

rotational dynamics of AuNRs observed with the SPORT technique, Gu et al. calculated the 

autocorrelation of the DIC intensities and fitted with a stretched exponential function45, and 

the rotation time is semi-quantified as the characteristic time of the stretched exponential 

decay. 

 

4.4 Revealing fundamental rotational modes 

In addition to the technical advances in the SPORT techniques, simulations together with 

statistical correlation coefficient analysis are also essential in SPORT to provide important 

insights into the rotational mode, rotational rate and rotational behaviors of AuNRs 

interacting with cell membranes. A correlation analysis method was developed to extract 
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information about the rotational mode from the DIC intensities of the AuNRs rotating on the 

membranes46.  

Three fundamental rotational modes, as depicted in Fig. 2.3, are defined according to the 

orientation of the rotation axis relative to the horizontal plane and AuNR. The in-plane 

rotation is around a rotation axis perpendicular to the horizontal plane. The out-of-plane 

tilting is around a rotation axis in the horizontal plane. In either of these two rotational modes, 

the longitudinal and transverse SPR modes of anisotropic AuNRs change orientations to 

result in orientation-dependent signal intensities and/or image patterns. The third rotational 

mode, i.e., the rotation around the AuNR’s long axis, cannot be resolved directly as it does 

not give rise to any orientation changes. However, it should be pointed out that AuNRs, if 

firmly bound to other rotating objects, may resolve this type of rotation. For example, Wang 

et al. resolved the self-rotation of microtubules transported by kinesin motor proteins 

immobilized on the substrate surface35. All the other rotational motions of AuNRs can be 

deemed as the combination of these fundamental modes at different proportions.  

The rotational modes of AuNRs are reflected by the correlation between the bright and 

dark DIC intensities46. When the nanorod performs in-plane rotation, the bright and dark DIC 

intensities are correlated, with the correlation coefficient approaching 1. When the nanorod 

performs out-of-plane tilting motions, the bright and dark DIC intensities are anti-correlated, 

with the correlation coefficient approaching -1. Other rotational patterns can be considered as 

a mixture of the in-plane rotation and out-of-plane tilting motions at different proportions and 
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with different restrictions on the rotational angle ranges. The correlation coefficient would 

approach 0 if a AuNR rotates freely in space. This special case may be referred to as the 3D 

wandering mode. 

 

5. Biophysical Applications of SPORT 

5.1 Rotational motions of F1-ATP synthase 

The first biophysical application of AuNRs was reported by the Frasch group47, 48. The 

rotational behavior of F1-ATP synthase, a rotary molecular motor, was revealed by tracking 

single AuNRs attached to the γ-subunit of F1-ATP synthase. The employment of a single 

photon counting avalanche photodiode as detector improved the achievable temporal 

resolution to 2.5 µs, and the rotations of F1-ATP synthase at ~7.6 rad/ms were observed. The 

Frasch group also studied F0F1-ATP synthase using the same technique. They resolved the 

average time of the F0 subunit’s transient dwell interaction spent in the formation (163 µs) 

and dissociation (175 µs) processes.49 These experiments achieved the fastest temporal 

resolution in single particle tracking to date.   

 

5.2 Nanoparticle diffusion on membranes  

Membrane diffusion of various biomolecules and extraneous substances has aroused 

great interest as it is closely related with cross-membrane transport and drug delivery. The 

ensemble measurements of both lateral and rotational diffusion of membrane biomolecules 
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can be dated back to the early 1970s with techniques such as flash photolysis, fluorescence 

autocorrelation spectroscopy, fluorescence anisotropy, and polarized fluorescence 

photobleaching50-53. In the past two decades, single molecule and particle tracking techniques 

have emerged as the tools of choice. The discussion here will be focused on the rotational 

tracking with nanoparticle probes. 

AuNRs have been demonstrated to be a good model system for studying 

nanoparticle-based drug delivery42. The rotational dynamics of AuNRs can provide rich 

information on the interactions between nanoparticles and cell membranes. AuNRs were 

functionalized with various biomolecules including a cell penetrating peptide (CPP) from the 

HIV-1 protein Tat12, 13, 54 and transferrin (a glycoprotein used as a drug delivery agent55), and 

their rotational dynamics was followed at a temporal resolution of 5 ms to reveal the effects 

of electrostatic interactions and specific binding interactions between nanoparticles and cell 

membranes.  

In the follow-up study from the same group, the different rotational modes of 

functionalized AuNRs at first contact with live cell membranes were elucidated46. The Tat 

CPP modified AuNRs showed generally random rotational motions at first contact under the 

influence of electrostatic interactions and tended to perform in-plane rotations as the 

interactions between the AuNRs and the cell membranes got stronger likely through 

additional hydrogen bonds. The transferrin-modified AuNRs showed larger fractions of 

in-plane rotational modes at first contact with the cell membranes due to the existence of 
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specific receptors. The calibration of the rotational modes of AuNRs with various surface 

modifications was carried out on synthetic lipid bilayers. 

 

5.3 Cargo transport by molecular motors 

Molecular motors, including kinesin, dynein and myosin, are largely responsible for 

intracellular trafficking of biomolecules, vesicles, and organelles along microtubules and 

actin filaments of the cytoskeleton. These molecular motors are evolutionarily developed to 

perform their functions extremely efficiently and precisely56. Direct visualization of cargo 

transportation in living cells and engineered systems with high localization precision and fast 

temporal resolution has contributed significantly to our current understanding of this 

complicated transport system.  

 

5.3.1 In-vitro microtubule gliding assays 

In microtubule gliding assays, reconstituted microtubules act as shuttles to move cargos 

and they are transported by the kinesin motors immobilized on the substrate surface upon the 

addition of Adenosine-5'-triphosphate (ATP). Microtubules are normally composed of 13 

linear protofilaments in eukaryotic cells. These 13-protofilament microtubules glide on the 

substrate surface without rotating around their longitudinal axis. Under various assembly 

conditions, however, one can also make reconstituted microtubules that are composed of 

non-13 protofilaments57. The protofilaments in non-13-mers may not be linear but twisted 
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left-handedly (14-mers) or right-handedly (12-mers); therefore, these microtubules can rotate 

around their longitudinal axis when being driven to move laterally.  

Efforts have been taken to elucidate the 3D rotation of the gliding 12- or 

14-protofilament microtubules, including using microtubules with a side arm57,58, 

Q-dot-assisted fluorescence interference contrast microscopy (FLIC)59, and placing a wedge 

prism at the back focal plane to track the 3D position60. More recently, the DIC 

microscopy-based SPORT technique has been employed to make arguably the most direct 

measurement of the microtubule’s rotation35. 

AuNRs (10 nm µ 35 nm) were attached to the microtubules through the strong 

biotin-neutravidin linkage (Fig. 2.4A). These AuNRs were small enough to avoid obstructing 

the rotation of the microtubules. The rotation was detected by monitoring the periodic DIC 

signal changes corresponding to the orientation changes of the AuNRs.  

It is important to note that the greatest advantage of the AuNR and DIC 

microscopy-based SPORT technique is the ability to track the rotational motions of cargos in 

live intracellular transport (Fig. 2.4B). The rest of this section is devoted to the recent 

applications of SPORT on intracellular transport. 

 

5.3.2 Intracellular transport 

Although there have been many reports on the intracellular transport of subcellular 

organelles or nanoprobes, e.g., Tat modified Q-dots9, the orientation and rotational tracking 
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of cargos during the transport has rarely been studied until recently. The AuNR and DIC 

microscopy-based SPORT technique show great potential in elucidating the working 

mechanisms of molecular motors by visualizing the rotational motions of cargos in live 

cells35. In this new approach, transferrin-conjugated AuNRs (25 nm × 73 nm) are 

endocytosed and contained within the lipid membranes of small endocytic vesicles. These 

AuNRs are chosen for their sufficiently high DIC contrast and angular resolution at the 

longitudinal SPR wavelength (~700 nm) and for their size matching with typical endocytic 

vesicles. Furthermore, these AuNRs are bound to the transferrin receptors imbedded in the 

lipid membranes to keep them stationary with respect to the vesicle on the time scale of the 

transport events.  

    It has been found that the AuNR-containing vesicles usually show relatively 

constant DIC image patterns during the active directional transport along linear 

protofilaments in eukaryotic cells. The restriction on the cargo’s rotational motion during the 

directional transport is believed to be caused by tension applied by multiple motor proteins 

bound to the cargo. Two examples are provided in the supplementary movies. In 

Supplementary Movie 2.1, a cargo (indicated by the red arrow) takes a 90o turn in the 

transport direction while the DIC image pattern changes drastically from dark to bright, 

indicating a 90° turn in the cargo’s orientation. In Supplementary Movie 2.2, the cargo 

(indicated by the red arrow) goes back and forth on the same microtubule track while 

maintaining relatively constant DIC image patterns.  
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    A dual-modality SPORT technique has also been developed to image fluorescent 

microtubule tracks and AuNRs in live cells simultaneously61. Using this technique, one can 

localize the AuNRs while they dock to or undock from the microtubule tracks in real time. 

Co-localization of AuNRs and associated fluorescent biomolecules or cellular structures is an 

essential requirement in drawing conclusions on nearly all of dynamic tracking experiments 

in live cells. 

The orientation and rotational studies of cargo transport on microtubule tracks promise 

further investigations into the intracellular transport, e.g., the navigation of cargos among the 

cytoskeleton network62 and the motions of cargos in front of road blocks such as microtubule 

or actin associated proteins63-65.   

 

5.3.3 Axonal transport 

Axonal transport, as a special type of intracellular transport, is of vital importance to 

neuronal growth and functions. On the other hand, axonal transport is a good platform for 

studying the working mechanisms of kinesin and dynein motors because of the simplicity of 

the unidirectional microtubule cytoskeleton with plus end outwards in the slender axons. 

Axonal transport has mainly been studied using fluorescence-based imaging techniques to 

follow fluorescently-labeled organelles66-68 or nerve growth factor-modified Q-dots in 

endosomes69. The ability to resolve the rotational motions of cargos during the active 

directional transport and pauses offers new experimental and theoretical perspectives in 
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studying axonal transport45.  

Using a similar approach discussed in the previous section, transferrin-modified AuNRs 

are endocytosed by the differentiated PC12 cells and contained in the endocytic vesicles. The 

rotational motions of cargos during short and long pauses can be captured and analyzed. The 

correlation analysis of the bright and dark DIC intensities of the AuNRs performing 

rotational motions during the pauses compared with free rotational diffusions indicates that 

the cargos were still tethered to the microtubule tracks during the pauses. The rotational 

motion and the transport direction right after a pause are also correlated with the pause 

duration, indicating that certain regulatory mechanisms likely exist in the cargo transport by 

kinesin and dynein motors.  

    Cultured PC12 cells provide a simplified platform because of the convenient access 

to the cell line, the robustness of the cells and easy manipulation of cell differentiation. 

However, they still differ from the primary neuronal cells since they lack many neuronal 

functions and regulatory factors. Here we want to emphasize that it is possible to track the 

axonal transport of endocytosed functionalized AuNRs in primary neuronal cells. Fig. 2.5 

shows the DIC intensities and corresponding lateral displacement of a AuNR-containing 

vesicle (particle a in Fig. 2.5A, Supplementary Movie 2.3) undergoing directional transport, 

pause and directional transport again in the same direction. During the directional transport, 

the AuNR moves at a speed of ~ 1 mm/s and generally kept constant DIC image patterns 

except when the smooth transport was interrupted by the short pauses (at 1.8 s, 2.4 s, etc.). 



26 

 

 

 

Starting at 2.9 s, the AuNR pauses for 1.2 s, which was accompanied by a ~180o turn of the 

AuNR, and the DIC intensity changed from dark to bright and to dark again. The nanorod 

then resumed the directional transport, with short pauses and fluctuations during the short 

pauses. As a comparison, the nanorod (particle b in Figure 2.5A) highlighted on the top of 

Supplementary Movie 2.3 shows quite different behaviors. The DIC intensities and the 

lateral displacement are shown in Figure 2.5C. The AuNR continues to rotate while moving 

back and forth along the axon. No directional transport with constant DIC image patterns was 

observed. Although there are many small reversals during the movement, transport along the 

axon is still observed from the general trend of the displacement. The nanorod generally 

moved downwards at 0-0.8 s, 1.4-2.5 s, and 3.1-3.4 s, while moved upwards at 1.2-1.5 s and 

2.5-3.1 s. One likely explanation of the frequent reversals and rotational motions of the cargo 

is that kinesin and dynein motors are constantly competing with each other to move the cargo 

on the microtubule track.  

Direct visualization of the cargo’s rotational dynamics during the active transport and the 

pauses provides a novel approach to acquire new knowledge about the working mechanisms 

of motor proteins and associated regulatory proteins that were unattainable previously using 

other imaging techniques.  

 

6. Summary and outlook 

SPORT has been realized with a variety of microscopy modalities, including 
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fluorescence microscopy, dark field microscopy, total internal reflection scattering 

microscopy, photothermal imaging, and DIC microscopy. Recent advances, such as the full 

3D orientation tracking with high angular resolution and high precision localization of single 

nanoparticle probes, have greatly expanded the applicability of SPORT in biophysical studies. 

However, a number of key improvements are still necessary in order to fully realize the 

potential of SPORT. First, dynamic tracking in the axial direction remains challenging and 

the axial localization precision is still more than an order of magnitude worse than the lateral 

precision. As such, it is necessary to develop new SPORT techniques that provide accurate 

measurements of both 3D position and orientation of rotational probes. Second, the temporal 

resolution of SPORT is usually much worse than the conventional SPT, as a larger number of 

photons need to be collected in order to resolve the orientation. Faster image rates and 

innovative data analysis methods are desirable to elucidate fast rotational motions 

encountered in live biological systems. The current state-of-the-art SPORT techniques are 

mainly applicable to study rotational probes that are restrained by certain factors, such as 

being tethered to membrane receptors or encapsulated inside small compartments. 

 Most of the current biophysical studies using SPORT are technical demonstrations or 

reports of direct observations of rotational motions. Future SPORT studies should be focused 

on elucidating the underlying mechanisms that govern the observed rotational motions. The 

arguably most important topic of SPORT is nanoparticle-based drug delivery. Functionalized 

nanoparticles can be fashioned as model systems to allow the studies on the detailed 
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mechanisms of membrane diffusion/interactions, internalization, targeted delivery to the 

diseased organ, controlled drug release, and nanotoxicity. 

Finally, live rotational motions captured by SPORT provide a significant new 

dimensionality to the computational efforts. As the translational freedom does not necessarily 

correlate directly with the rotational freedom, the new dimension in experimental and 

simulated data will provide a more accurate interpretation of the influences of individual 

factors. 
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Figures 

Figure 2.1 3D orientation angles of a AuNR: azimuthal angle ϕ, polar angle θ, and elevation 
angle f. The x- and y-axes are typically set according to the polarization direction(s) of the 
illumination light. 
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Figure 2.2. New strategies for resolving the orientation of AuNRs. (a) Dual-view dark-field 
optics for single particle translational and rotational tracking which provide a well-focused 
image at 540 nm and a defocused image at 700 nm. The focused image is used to determine 
the position and the defocused image is used to determine the 3D orientation of the gold 
nanorod. Reprinted with permission from ref. 37. Copyright 2012 John Wiley & Sons, Inc. 
(b) Changes in DIC image patterns of a tilted gold nanorod as a function of azimuthal angle. 
The red (bright) and blue (dark) axes correspond to the polarization directions of the two 
light beams after the first Nomarski prism in a DIC microscope. When illuminated under the 
longitudinal LSPR wavelength, a AuNR gives rise to a mostly bright (dark) image when its 
LSPR mode is aligned with the bright (dark) axis. Reprinted with permission from ref. 38. 
Copyright 2012 John Wiley & Sons, Inc. (c) Schematic diagram for a tilted AuNR on the Au 
film under a TIRS microscope with p-polarized excitation. The red arrow indicates the 
direction of the excitation polarization. The net out-of-plane dipole torus is no longer 
circularly symmetric and results in Pac-Man-like patterns. Reprinted with permission from 
ref. 31. Copyright 2012 American Chemical Society. (d) Schematic diagram for a AuNR 
illuminated with p (red) & s (green) polarized light under a dual-color TIRS microscope. 
POI: plane of incident. Reprinted with permission from ref. 30. Copyright 2013 American 
Chemical Society. 
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Fig. 2.3. Three fundamental rotational modes. Adapted with permission from ref. 46. 
Copyright 2013 John Wiley & Son, Inc. 
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Fig. 2.4. Cargo transport by molecular motors. (A) Schematic illustration of a piece of 
gliding microtubule serving as the shuttle on a kinesin
biotin, and the purple dots are neutravidin. (B) Schematic illustration of the 
microtubule-associated intracellular transport of a AuNR
blue motor proteins represent kinesin and dynein motors, respectively. Adapted with 
permission from ref. 35. Copyright 2010 American Chemical Society.
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Cargo transport by molecular motors. (A) Schematic illustration of a piece of 
gliding microtubule serving as the shuttle on a kinesin-coated glass slide. The blue dots are 
biotin, and the purple dots are neutravidin. (B) Schematic illustration of the 

associated intracellular transport of a AuNR-containing vesicle. The red and 
blue motor proteins represent kinesin and dynein motors, respectively. Adapted with 
permission from ref. 35. Copyright 2010 American Chemical Society. 

Cargo transport by molecular motors. (A) Schematic illustration of a piece of 
coated glass slide. The blue dots are 

biotin, and the purple dots are neutravidin. (B) Schematic illustration of the 
containing vesicle. The red and 

blue motor proteins represent kinesin and dynein motors, respectively. Adapted with 
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Fig. 2.5. (A) The DIC image of two gold nanorods (a and b) transported in the axon of a 
neuron cell. (B) The normalized DIC intensities and the lateral displacement of particle a 
during the 6.4 s of active transport. The green rectangles highlight the pauses during the 
transport. (C) The normalized DIC intensities and the lateral displacement of particle b 
during the 4 s of active transport. 
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SINGLE PARTICLE ORIENTATION AND ROTATION TRACKING DISCLOSES              

DISTINCTIVE ROTATIONAL DYNAMICS OF DRUG DELIVERY VECTORS ON LIVE 

CELL MEMBRANES 
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Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, 
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Abstract 

Engineered nanoparticles have emerged as potentially revolutionary drug and gene 

delivery vectors. Using rod-shaped gold nanoparticles as a model, we studied for the first 

time the rotational dynamics of nanoparticle vectors on live cell membranes and its impact on 

the fate of these nanoparticle vectors. The rotational motions of gold nanorods with various 

surface modifiers were tracked continuously at 200 frames per second under a differential 

interference contrast (DIC) microscope. We found that the rotational behaviors of gold 

nanorod vectors are strongly related to their surface charges. Specific surface functional 

groups and the availability of receptors on cell membranes also contribute to the rotational 

dynamics. The study of nanoparticle’s rotational Brownian motion on cell membranes will 

lead to a better understanding of the mechanisms of drug delivery and provide guidance in 
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designing surface modification strategies for drug delivery vectors under different 

circumstances. 

 

Introduction 

Among the numerous drug delivery strategies that have been developed to overcome the 

physiological barrier of the cell and nuclear membranes,1 engineered nanoparticles have 

emerged as potentially revolutionary drug carriers for diagnosis and treatment of many 

diseases,2 for their advantages including enhanced drug solubility, improved internalization 

efficiency, targeted delivery to the diseased organ, controlled drug release, and reduced side 

effects. For example, gold nanoparticles have been used to deliver drugs3-5 and biological 

molecules.6-10 

In order to rationally design nanoparticle carriers, it is imperative to understand the 

influences of nanoparticle’s physical and chemical properties, including particle size, shape, 

and surface characteristics, on nanoparticle-based drug delivery.2,11 Most of the reported 

research efforts in this area were focused on identifying these effects from static fluorescence 

and electron micrographs taken at different stages;12-17 however, characteristic translational 

and rotational dynamics of functionalized nanoparticle carriers resulting from their 

interactions with the cellular environment have not been fully elucidated. 

Conventional single particle tracking (SPT)18 techniques are useful to probe the structure 

and biological functions of cell membrane at the molecular level, but its usefulness is limited 
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to translational motions. To overcome this limitation, plasmonic gold nanorods with 

anisotropic absorption and scattering properties have been utilized as orientation probe under 

dark field microscopy,19,20 photothermal imaging,21 and Nomarski-type differential 

interference contrast (DIC) microscopy.22 These methods were successful in characterizing 

well-defined rotational motions, e.g., the rotational motion of the center domain of 

F1-ATPase immobilized on glass substrate,20 by resolving the nanorod orientation in each 

image frame of a recorded rotation sequence. On the other hand, the characterization of the 

rotational Brownian motion requires statistical analysis on a large number of consecutive 

images taken at fast frame rates. Pierrat et al. demonstrated that 2-D rotational dynamics of 

laterally frozen nanoparticles on synthetic membranes is controlled in part by dragging forces 

introduced by the surface viscosity of the membrane;23 however, the rotational Brownian 

motion has never been elucidated for functionalized nanoparticles on live cell membranes. 

In the present study, the integrated imaging platform based on DIC microscopy for single 

particle orientation and rotation tracking (SPORT)22 was employed for direct visualization of 

the distinctive rotational dynamics of gold nanorods functionalized with different surface 

modifiers on live cell membranes. The images of both the cell and nanoparticle vectors were 

acquired at 200 frames per second (fps) under a DIC microscope, which provides a unique 

advantage of visualizing fast rotational and translational motions of nanoparticle probes and 

the cellular environment simultaneously with sufficient angular resolution.22,24,25   
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Gold nanorods with an average size of 25 nm × 73 nm were surface-modified with 

polyethylene glycol (PEG), carboxyl-terminated PEG (PEG-CO2
2-), transferrin26 through 

PEG linkers, trans-activating transcriptional (TAT) activator (a cell penetrating peptide from 

Human Immunodeficiency Virus 117,27,28) through PEG linkers, and two forms of polyether 

imide (PEI): linear 22 kDa and branched 25 kDa. (See Supplementary Figure 2 for the 

illustrations of the functionalized nanorods.) All of these modifiers, except PEG-CO2
2-, have 

been used as either gene/drug delivery agents or agents that promote the delivery efficiencies 

of nanoparticle carriers. 

The functionalized gold nanorods were tracked continuously to reveal their rotational 

dynamics until they were internalized by the cells or stayed on the membrane sufficiently 

long (> 2 hours) in non-internalization cases. Movie 3.1 shows such an example that a 

PEG-CO2
2--modified gold nanorod was undergoing both translational and rotational motions 

on the membrane of an A549 human lung cancer cell. Unlike spherical probes, the gold 

nanorods displayed flickering bright/dark images for active rotational motions under the DIC 

microscope. Figure 2 shows the DIC intensities of the gold nanorod in 4000 consecutive 

images acquired at 200 fps. The two DIC intensity traces present typical fast (Figure 2C) and 

slow (Figure 1D) rotations of the gold nanorod as revealed by the frequencies of the DIC 

intensity variations in both the bright and dark parts. 



41 

 

 

 

To semi-quantify the rotational dynamics of gold nanorods, we analyze the stochastic 

DIC intensity fluctuations using the autocorrelation function.29-31 The DIC contrast, which is 

defined as the difference between the bright intensity and the dark intensity divided by the 

background intensity, is used as the signal in computing an autocorrelation function for 4000 

consecutive images in each movie. The autocorrelation curve can be satisfactorily fitted with 

a stretched exponential function.29-31 (See the Supporting Information for details.) The mean 

relaxation time (<τ>) of decay of the autocorrelation function reflects the rotation speed of 

the gold nanorod, with a smaller <τ> value corresponding to a faster rotation. The mean 

relaxation times are 0.02 s for the fast rotation in Figure 2C and 0.48 s for the slow rotation in 

Figure 2D through non-linear least squares fittings (Supplementary Figure 2.2). 

Using the autocorrelation analysis, we found that the time evolution of rotational 

dynamics of gold nanorods was tightly related to their surface charges. The functionalized 

nanoprobes can be categorized according to their surface charges: positively charged (TAT, 

linear or branched PEI), neutral (PEG), and negatively charged (PEG-CO2
2-, transferrin). The 

positively charged particles were adsorbed quickly by the negatively charged cell membrane 

through electrostatic interactions, while the neutral or negatively charged particles were 

captured at much slower rates and usually had much longer active rotation durations on the 

cell membrane. For each type of functionalized nanoparticle vector, multiple examples were 

recorded and all of them demonstrated similar characteristic rotational dynamics. 
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    We begin our detailed discussion with the simplest case: the linear or branched 

PEI-modified gold nanorods. These nanorods were strongly positively charged, and they lost 

their rotation almost immediately after appearing on the cell membrane due to strong 

electrostatic interactions. In Movie 3.2, a nanorod modified with branched 25-kDa PEI 

showed little rotation for the entire 20-s recording time. Some slight changes of DIC 

intensities were likely caused by the fluidity of the membranes. 

TAT peptide is among the most widely used cell penetrating reagents. Although how 

TAT peptide enters cell membranes is still under debate, it is generally believed that a 

multiplicity of pathways are involved in the internalization process.32 The TAT-modified 

gold nanorods with a zeta potential (ζ) of +22.3 mV had much weaker positive charges than 

the PEI-modified nanorods, resulting in longer periods of active rotation on the membrane. 

Movie 3.3 shows six movie segments, displayed side-by-side, of the same TAT-modified 

nanorod at different times after its appearance on the cell membrane. The corresponding DIC 

intensity traces are displayed in Supplementary Figure 3.3. The mean relaxation time 

increased gradually within the first 4 minutes (Figure 3.2A), most likely because the TAT 

peptides on the nanorod surface incorporated more and more effectively into the membrane. 

The nanorod rotation became very slow, and nearly came to a stop after ~4 minutes on the 

membrane. This nanorod was eventually internalized by the cell. Similar observations were 

recorded for other TAT-modified gold nanorods. 
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PEG is a neutral polymer that is well known for resisting non-specific adsorption.33 The 

PEG-modified gold nanorods (ζ = +1.5 mV) showed evident reluctance to bind firmly to the 

cell membrane. Desorption of the PEG-modified nanorods from the membrane occurred 

frequently. During the whole time these nanorods were adsorbed onto the membrane, they 

showed active lateral movement while maintaining high speed of rotation (Figure 3.2B, 

Movie 3.4, and Supplementary Figure 3.4). No internalization events were observed before 

the cells lost their viability on the microscope stage.  

The PEG-CO2
2--modified gold nanorods had negative surface charges (ζ = -20 mV); thus, 

it was difficult for them to be adsorbed onto the negatively charged cell membrane due to 

electrostatic repulsion. When they did land on the membrane through nonspecific binding to 

the cationic sites, many of them desorbed from the membrane within seconds to minutes, 

which was similar to the PEG-modified nanorods. For those nanorods that stayed on the 

membrane, the fluctuation in rotation speed was much more significantly than that for the 

PEG-modified nanorods. They could slow down the rotation significantly or even come to 

full stop for up to a few minutes, and then resumed back to fast rotation, showing the 

struggles between weak binding interactions and thermal activities of the nanorod and its 

surrounding environment. Figure 3.2C, Movie 3.5 and Supplementary Figure 3.5 shows 

such an example that a nanorod rotated for a prolonged period, stopped rotation occasionally, 

before finally anchored on the membrane. 
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Finally, transferrin is a naturally occurring plasma protein involved in iron delivery. The 

internalization of transferrin involves the specific binding to the transferrin receptors on the 

cell membrane.34 Similar to the PEG-CO2
2--modified gold nanorods, the transferrin-modified 

nanorods (ζ = -11.2 mV) also showed reluctance to bind onto the cell membrane due to 

negative charges on their surfaces. However, once they bound to the cell surface, their active 

rotation lasted much shorter than the PEG-CO2
2--modified ones. Figure 3.2D, Movie 3.6, 

and Supplementary Figure 3.6 show such an event, during which the transferrin-modified 

nanorod was endocytosed within 7 minutes after it was adsorbed onto the membrane. While 

staying at the initial landing site on the membrane, the nanorod rotation started at fast rates, 

then slowed down significantly, followed by a quick return to fast rotation. This pattern of 

speed change happened twice before the nanorod moved laterally to a new site. At this new 

location, the nanorod stopped rotating for ~25 s and then was endocytosed by the cell. The 

lateral movement likely involved a change of binding from a non-specific site to transferrin 

receptors, thus facilitating receptor mediated endocytosis. As a comparison, it usually takes a 

much longer time (tens of minutes to hours) for the PEG-CO2
2--modified gold nanorods to be 

anchored on the cell membrane due to the lack of specific receptors. Thus for the first time, 

the distinctive rotational behaviors of the transferrin- and PEG-CO2
2--modified nanorods 

were revealed and convincingly attributed to the availability of specific binding sites on the 

cell membrane. 
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Conclusions 

In summary, we studied real-time rotational dynamics of differently functionalized gold 

nanoparticle vectors on live cell membranes for the first time. The rotational behaviors of the 

gold nanorods were strongly related to the surface charges. Specific surface functional groups 

and the availability of receptors on cell membranes also contribute to the rotational dynamics 

of the gold nanorods. Because the gold nanorods are non-blinking and non-bleaching, they 

can be tracked continuously for a much longer time compared to fluorophore-based 

techniques. The study of rotational behaviors of gold nanoparticles on live cells can be 

extended to other cellular processes, such as endocytosis, exocytosis, intracellular transport 

and cell-cell communication, and thus bring us further on the exploration into the cell 

kingdom. More significantly, the studies of nanoparticle’s rotational Brownian motion on cell 

membranes will lead to a better understanding of the nanoparticle-based drug delivery 

mechanisms and provide guidance in designing modification strategies for drug delivery 

vectors under different circumstances.    
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Figures 

 

 

Figure 3.1. (A) DIC image of an A549 cell with a PEG-CO2
2--modified gold nanorod 

highlighted in the red square. (B) 100 consecutive images of the gold nanorod. (C, D) Typical 

DIC intensity traces as a function of time for a fast rotation (C) and a slow rotation (D). The 

rectangle in (C) distinguishes the intensities of the 100 DIC images shown in (B). The fast 

rotation trace was recorded right after the nanorod landed on the cell membrane and the slow 

rotation trace was recorded 7 minutes later for the same nanorod.  
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Figure 3.2. The representative evolution (at a time interval of 0.5 min) of the mean relaxation 

time <τ> of (A) TAT-; (B) PEG-; (C) PEG-CO2
2--; and (D) transferrin-modified gold 

nanorods on live cell membranes. Each data point was calculated from 4000 frames in a 20-s 

movie. The dotted vertical lines indicate the pauses of rotation, for which no mean relaxation 

times were calculated. The arrows point out the movie segments that are included in the 

corresponding movies in the Supporting Information. 
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Single Particle Orientation and Rotation Tracking Discloses Distinctive 

Rotational Dynamics of Drug Delivery Vectors on Live Cell Membranes  

 

Yan Gu, Wei Sun, Gufeng Wang, and Ning Fang* 

Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, 

Ames, Iowa, 50011 

 

Experimetnal Section 

DIC microscopy. An upright Nikon Eclipse 80i microscope with a pair of Nomarski prisms 

and two polarizers was used in this study. The microscope was equipped with a 100× 1.40 

numerical aperture (NA) Plan Apo oil immersion objective and 1.4 NA oil immersion 

condenser. A 700-nm optical filter (Semrock, Rochester, NY) with a bandwidth of 20 nm was 

inserted at the illumination side. The movies were taken by an Andor iXonEM+ 897 camera. 

The collected videos were analyzed with MATLAB and NIH ImageJ.  

Surface modification of gold nanorods. The carboxylic and ctab-stabilized gold nanorods 

(25 nm × 73 nm) were purchased from nanopartz (salt lake city, ut). Gold nanorods were 

modified with peg, peg-transferrin, pei and peg-tat molecules according to the protocols 

below. The ctab-stabilized gold nanorods were washed twice with 18.2 mΩ deionized water 
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to remove excessive ctab in the solution to reduce cytotoxicity.  

PEG-TAT modified gold nanorods: 2 µL of 20 mM NHS-PEG-thiol solution in DMSO 

(Sigma Aldrich) was added to react with 200 µL pre-cleaned gold nanorod solution for 2 

hours. The solution was cleaned up by centrifugation and resuspended in 2 mM borate buffer. 

Then, 2 µL of 2 mg/mL trans-activating transcriptional activator (TAT) peptide solution 

(sequence: YGRKKRRQRRR, AnaSpec, San Jose, CA) in deionized water was added for 

reaction for 2 hours. The final solution was washed again with 18.2 MΩ deionized water.  

PEG-transferrin modified gold nanorods: 2 µL of 20 mM NHS-PEG-thiol solution in 

DMSO was added to react with 200 µL pre-cleaned gold nanorod solution for 2 h. The gold 

nanorods were then washed with 18.2 MΩ deionized water and mixed with 20 µg transferrin 

(Sigma-Aldrich) for 8 hours. The final solution was washed and resuspended in 18.2 MΩ 

deionized water.  

Poly(ethylene glycol) (PEG) modified gold nanorods: 2 µL PEG-thiol (MW 5000, Sigma 

Aldrich, Catalog #11124, diluted to 20 mM in DMSO) was added to 200 µL pre-cleaned gold 

nanorods solution to react under room temperature for 2 h. The gold nanorods were then 

washed and resuspended in 18.2 MΩ deionized water.  

Polyethyleneimine (PEI) modified gold nanorods: Two types of PEI polymers were 

chosen: branched PEI polymer (MW ~ 25,000, Sigma Aldrich #408727), and linear PEI 

polymer (MW ~ 22,000, Exgen 500 in vitro, United States Biological). In preparation, 200 

µL pre-cleaned gold nanorod solution were reacted with 0.2 mg 11-mercaptoundecanoic acid 
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(Sigma Aldrich) for 30 min and then washed and resuspended in 1 mM NaCl solution. The 

gold nanorods then reacted with 0.2 mg PEI for 30 minutes at room temperature. The solution 

was finally washed and resuspended in 1 mM NaCl solution.  

Cell culture and imaging. A549 human lung cancer cells (ATCC, CCL-185) were cultured 

on 22 mm × 22 mm poly-lysine coated glass coverslips in a six-well tissue culture plate. 

Minimum essential cell culture medium (ATCC) with 10% fetal bovine serum supplement 

was added to the plates. The cell culture was incubated at 37ºC under 5% CO2. After the cell 

culture covered 70% of a coverslip, the coverslip was rinsed with a 10-mM phosphate 

buffered saline (PBS) at pH 7.4 and then placed on a clean glass slide for observation. Two 

pieces of double-sided tape served as spacers between the glass slide and the coverslip to 

form a chamber. 30 µL of the cell culture medium without BSA was added into the chamber 

to keep the cells from drying out and to provide the cells with some nutrition.  

It is well known that proteins can be adsorbed onto the surface of functionalized 

nanoparticles and change the surface properties, such as the zeta potential. To minimize this 

effect, we took the following steps to introduce the surface-modified nanoparticles to the cell 

surface: (1) The cell coverslips were rinsed with the PBS buffer to remove BSA and other 

proteins on cell membranes; (2) A surface-modified gold nanorod solution was diluted to a 

final concentration of 1.0×109 particles/mL in the cell culture medium without BSA; (3) 

Immediately after the dilution, 20 µL of the gold nanorod solution was added into the 

chamber. Movies of single nanorod rotation were recorded when or right after a single 
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nanorod adsorbed onto the cell membrane. The size of region of interest (ROI) was limited to 

64×64 pixels in order to increase the camera’s recording speed. All of the movies were taken 

at 200 fps.  

Measurement of zeta potential in water. After the gold nanorods were functionalized with 

one of the surface modifiers, they were cleaned up by centrifugation and resuspension in 1 ml 

Milli-Q water. The zeta potential of the surface-modified gold nanoparticle, which refers to 

the electrostatic potential created as a result of the accumulation of electrons at the surface, 

was measured in Nano-ZS90 Zetasizer (Malvern Instruments, United Kingdom).  

All of the surface-modified gold nanorods, except the PEI-modified ones, were stable in 

water at sufficiently high concentrations for measuring their zeta potentials. The zeta 

potentials of TAT-, PEG-, PEG-CO2
2--, and transferrin-modified nanorods in water were 

measured to be +22.3, +1.5, -20, and -11.2 mV, respectively. These zeta potentials did not 

change much during the time we carried out the experiments (up to several days).  

The zeta potential for the PEI-modified nanorod was not provided here for two reasons: 

(1) PEI is so highly positively charged that there is no doubt that the PEI-modified nanorod is 

also highly positively charged, which explains its distinctive rotational dynamics on the cell 

membrane; (2) Due to the relatively long PEI chain and high charge density, the 

PEI-modified nanorod solution could only be kept relatively stable at low concentrations, 

which made it difficult to measure the zeta potential reliably.  

Measurement of zeta potential of TAT-modified gold nanorods in the cell culture 



54 

 

 

 

medium. To understand how the protein adsorption to the surface of nanoparticles change 

their surface charges, we measured the zeta potentials of the TAT-modified gold nanorod 

solution diluted in the cell culture medium over a time span that is comparable to the rotation 

duration time. An equal amount of the cell culture medium was added into the nanorod 

solution for a dilution factor of two. The zeta potential was +17.8 mV in the first 

measurement (the measurement lasted for 1.5 min), which was a little smaller than the zeta 

potential measured in water (+22.3 mV). The zeta potential changed to +11.2 mV in the 

second measurement that occurred 1.5 min after the first measurement, and then to +6.85 mV 

in the third measurement. Within the duration of rotation (~3.5 min), the zeta potential 

changed gradually, but was still positive as it was supposed to be. 

It should be noted that the surface charge in the first few minutes from the moment a 

gold nanoparticle starts to interact with the cell membrane is of greater significance to the 

present study. After the first contact, the gold nanorod was embedded gradually on the cell 

membrane and was less affected by the cell culture medium.  

Calculation of characteristic relaxation time. The autocorrelation curve can be fitted by a 

stretched exponential function:1 

βτ )(
0)( teftf −= ,             (1) 

where f0 is the pre-exponential factor that is used in the fitting, τ is the characteristic time 
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constant, and β is the stretching exponent. The mean relaxation time ( >< τ ) can be 

calculated as:  

   )
1

())/(exp(
0 ββ

τ
ττ β Γ=−>=< ∫

∞
tdt ,        (2) 

where Γ denotes the Gamma function. >< τ  of the decay reflects the rotating speed of the 

gold nanorod, with a smaller >< τ  value corresponding to a faster rotation. The mean 

relaxation times of the stretched exponential decays are 0.02 s for the fast rotation and 0.48 s 

for the slow rotation through non-linear least squares fittings (Supplementary Figure 3.2). 

It should be noted that this analysis gives accurate rotational information only if the 

nanorods rotate neither too fast nor too slow. The imaging rate of 200 fps used in this study is 

adequate to characterize the rotation of the functionalized nanorods that are restricted and 

slowed down by electrostatic and binding interactions on the cell membrane. The fastest 

rotation rate that can be resolved by the 200-fps imaging rate is 100π radians/s or 50 rounds/s, 

which happens when a nanorod rotates 90° during the 5-ms time interval between two 

consecutive frames. On the other hand, if a nanorod is fixed or rotates very slowly, which can 

be identified by inspecting the recorded intensity series, the uncertainties in DIC intensity 

measurement become a dominant factor, thus leading to inaccurate assessment of rotational 

motions. The slowest observable rotation happens when a nanorod takes only one full circle 

in the entire 20-s recording time for each movie. 
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Figures 
 

 

 

Figure 3.S1. The schematic illustrations of the functionalized nanorods. 
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Figure 3.S2. Autocorrelation analysis for (A) fast and (B) slow rotational dynamics. The 
autocorrelation curves (red and blue) are satisfactorily fitted with a stretched exponential 
function (black). The mean relaxation times are 0.02 s for the fast rotation (raw data in Figure 
2.1C) and 0.48 s for the slow rotation (raw data in Figure 2.1D). 
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Figure 3.S3. Selected DIC intensity traces of a TAT-modified gold nanorod. 
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Figure 3.S4. Selected DIC intensity traces of a PEG-modified gold nanorod. 
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Figure 3.S5. Selected DIC intensity traces of a PEG-CO2
2--modified gold nanorod. 
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Figure 3.S6.  Selected DIC intensity traces of a transferrin-modified gold nanorod. 
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Abstract 

A full understanding of cell mechanics requires knowledge of both translational and 

rotational dynamics. The single particle orientation and rotational tracking (SPORT) 

technique is combined here with correlation analysis to identify the fundamental rotational 

modes: in-plane rotation and out-of-plane tilting, as well as other more complex rotational 

patterns, from the vast image data captured at a temporal resolution of 5 ms for single gold 

nanorod probes in live cell imaging experiments. The unique capabilities of visualizing and 

understanding rotational motions of functional nanoparticles on live cell membranes allow us 

to correlate rotational and translational dynamics in unprecedented detail and provide new 

insights into complex membrane processes. Particles with functionalized surfaces, which 

interact with the membrane in fundamentally different ways, can exhibit distinct rotational 

modes and are, for the first time, directly visualized, and these show the early events for 

membrane approach and attachment.  

 

Introduction 

Fully understanding cell mechanics requires knowledge of not only translational but also 

rotational motions of biomolecules. Fluorescence polarization techniques have been 

commonly attempted to probe rotational motions of biomolecules using organic dyes, 

conjugated polymers, and inorganic semiconductor nanocrystals [1-7]; however, the 

well-known limitations of fluorescence-based techniques, such as fluorescence intermittency 
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and high photobleaching tendency, have limited their applicability to live cell imaging, 

especially when long imaging time and high tracking precision are required.  

Plasmonic gold nanoparticles have been demonstrated to provide excellent alternatives to 

fluorescent probes for cell imaging experiments [8-15]. Optically anisotropic gold nanorods 

are particularly useful for single particle orientation and rotational tracking (SPORT) because 

of their orientation-dependent optical responses under a variety of imaging tools, including 

polarization-sensitive dark-field microscopy [16, 17], absorption-based photothermal 

imaging [18], and differential interference contrast (DIC) microscopy [15]. The DIC 

microscopy-based SPORT technique provides additional advantages for live cell imaging, 

such as higher spatial resolution, shallower optical sectioning, and significantly reduced 

interference from light scattered by cellular components and debris when compared to 

dark-field microscopy, and faster imaging rate (down to a few milliseconds temporal 

resolution [19]) than raster-scanning photothermal imaging.  

Using the DIC microscopy-based SPORT technique, we have demonstrated that the 

rotational rate of a nanorod probe resting on the cell membrane can be semi-quantified 

through autocorrelation analysis of the time series of DIC contrast fluctuations recorded at a 

temporal resolution of 5 ms [19]. Represented by the characteristic time of the stretched 

exponential decay that fitted the autocorrelation of the DIC intensities, the rotational rate 

characterizes how fast the nanorod rotates on the cell membrane. The distinctive changing 

patterns of rotational rate of surface modified gold nanorods on cell membranes were shown 
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to correlate with their surface charges and the availability of specific membrane receptors, 

demonstrating the ability of SPORT to interrogate different types of particle-membrane 

interactions.  

In addition to the rotational rate, the rotational mode is another essential property 

providing important insights into the interactions between nanoparticles and cell membranes. 

Considering the vast amount of noisy data collected from typical membrane studies, it is 

challenging to resolve the rotational modes of the nano-objects performing random rotational 

diffusion on cell membranes. In the present study, the SPORT technique extends its reach 

through the introduction of statistical correlation coefficient analysis to identify the basic 

rotational modes: in-plane rotation and out-of-plane tilting, with the cell membrane plane as 

the reference. All rotational behaviors of gold nanorods on cell membranes can be seen as a 

combination of the two basic modes, and the two components are mixed in different 

proportions, exhibiting various degrees of randomness. Random rotational behavior is 

mentioned with special emphasis because it is associated with distinctively different binding 

characteristics on the membrane, and corresponds to the various degrees of rotational 

freedom.  

To demonstrate the power of the current method to reveal the characteristic rotational 

mode on live cell membranes, we study how single functionalized gold nanorods behave 

during the adhesion process, which is loosely defined in the present work as the first 30 

seconds from the moment a nanorod makes the first contact with the cell membrane. 
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Nanoparticle adhesion to the cell membrane is an important indicator of the internalization 

efficiency. In these experiments, the gold nanorods with an average size of 25 nm × 73 nm 

were functionalized with two distinctively different surface modifiers: a cell penetrating 

peptide (CPP) from the HIV-1 protein Tat [12, 20, 21] (residues 47-57: YGRKKRRQRRR) 

and transferrin (a glycoprotein used as a drug delivery agent [22]). The cationic Tat CPP 

interacts with the cell membrane through electrostatic interactions and bidentate hydrogen 

bonding of the cationic guanidinium groups to anionic cell surface groups, resulting in 

effective incorporation of CPP-modified gold nanorods into the cell membrane [23-25]. For 

the other modification, the negatively charged protein transferrin is bound on the cell 

membrane through specific ligand-receptor binding interactions [26]. The different 

characteristics of these two surface modifiers give rise to distinctively different rotational 

behaviors of the bio-conjugated gold nanorods.  

 

Results 

Basic Rotational Modes 

In our previous reports on the SPORT technique [15, 27], the gold nanorods immobilized 

on a glass coverslip were positioned at different orientations during a 360° rotation of the 

sample with 5° steps. This perfect in-plane rotation results in correlated intensity changes in 

the bright and dark parts of the DIC images. This correlation is also predictable from the 

simplified mathematical equations derived in the previous report [15] for a gold nanorod 
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oriented with the elevation angle ψ and the azimuthal angle φ. In the current study, the 

correlation analysis is used to extract the rotational information on single gold nanoparticles 

from the vast DIC intensity data that are otherwise difficult to interpret. Although it has been 

demonstrated that the rotational rate could be derived from methods such as power spectral 

density analysis [16] or autocorrelation analysis [28], this is the first time that the information 

about the rotational mode is being extracted. 

As depicted in Figure 4.S1 in the Supporting Information, the bright and dark intensities 

are correlated, i.e., the two intensity values increase or decrease together, as the nanorod 

rotates in a horizontal plane with a fixed angleψ and a varying angle φ, or anti-correlated, i.e., 

the two intensity values change in opposite directions, when the gold nanorod rotates out of 

the horizontal plane with a fixed angle φ and a varying angle ψ. Therefore, the rotational 

patterns of a single gold nanorod can be characterized by the extent of the correlation of the 

bright and dark intensities of its DIC images. This is described by Pearson’s correlation 

coefficients r, which have a maximum value of +1 when the two are perfectly correlated, a 

minimum value of -1 when the two are perfectly anti-correlated, and a value of 0 if two 

variables are fully independent. It should be noted that the correlated cases illustrated in 

Figure 4.S1 do not produce a perfect correlation score of +1 because the two simulated 

intensities do not have a perfect linear interdependency (Figure 4.S1h). 

The basic rotational modes – in-plane rotation and out-of-plane tilting – are identified by 

characterizing the correlation between the bright and dark DIC intensities from both 
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computer simulations and from the live cell imaging experiments (Figure 4.1). The computer 

simulations have been carried out for a rotating nanorod with one end permanently attached 

to the center of a hemisphere and the other end taking random movements on the surface of 

the hemisphere. To depict the nanorod’s rotational Brownian motion, both the rotation 

direction and step size are randomized. To account for relative errors of around 10% in the 

intensity measurement in the actual imaging experiments, a Gaussian noise of 10% was 

added to the simulated DIC intensities displayed in Figure 4.. The simulation results in the 

presence of different noise levels are shown in Figure 4.S2-4.  

For the in-plane rotational mode, the nanorod rotates clockwise or counter-clockwise at 

each step with equal probability while keeping the angleψ constant. The trace of the moving 

end of the nanorod is limited within a circle on the hemisphere for the 4000 random steps 

(Figure 4.1a). The generated DIC bright and dark intensities are clearly correlated (an 

example shown in Figure 4.1b). The average correlation coefficient for 100 simulation runs 

with a fixed angleψ of 30° is 0.84 with a standard deviation of 0.02. In this mode, the 

correlation coefficient is not affected either by varying the angleψ or by limiting the range of 

the angle φ. An example of this rotational mode recorded on the live cell membrane is 

displayed in Figure 4.1c and 4.1d. The correlation coefficient for this example is 0.81, 

suggesting predominantly in-plane rotational motion. This mode may be interpreted as that 

the nanorod rotation being restrained to the membrane plane by strong interactions, which 

might include either specific receptor binding or more general nanorod-membrane 
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interactions.  

In the out-of-plane tilting mode, which is describable as a seesaw-like motion, the 

nanorod’s rotating end swings out of the horizontal plane while keeping the azimuthal angle 

φ constant (Figure 4.1e). An example with a fixed angle φ of 60° is shown in Figure 4.1f. At 

first glance, the bright and dark intensity curves do not appear to be anti-correlated as might 

be expected based on the curves in Figure 4.S1g. This is explained by the fact that when the 

angle φ is fixed at 60°, a nanorod’s projection on the dark axis is smaller than its projection 

on the bright axis resulting in much smaller changes in the dark intensity, which is nearly 

indistinguishable to the eye because of the 10% Gaussian background noise. The average 

correlation coefficient for 100 simulation runs at this noise level is -0.54 with a standard 

deviation of 0.06, still suggesting that there is a significant anti-correlation between the bright 

and dark intensities. Changing the range of the angle ψ does not significantly affect this 

correlation coefficient. In the actual live-cell imaging experiments, we encounter almost no 

negative correlation coefficients. This may be ascribed to two facts. First, a nanorod can 

easily change its angle φ on the relatively flat and fluid cell surface to produce a persistent 

in-plane rotation component. Second, similarly to other optical microscopic techniques, the 

vertical angular resolution is far poorer than the lateral angular resolution so that the signals 

arising from out-of-plane motions are more affected by noise. Nonetheless, the out-of-plane 

tilting mode can be identified by the visual cue that there are no alternating bright/dark 

changes, but only changes in either bright or dark intensity. Figure 4.1g and 4.1h shows a 
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representative example with a correlation coefficient of 0.26. It is worth noting that it takes 

much stronger forces to stop the nanorod’s in-plane rotation in the fluid cell membrane; 

therefore, this motion is likely due to the vertical motions of the nanorod along with the 

fluctuation of the membrane surface while their rotational motions in the horizontal plane are 

impeded by strong, multi-point binding interactions. 

Other rotational patterns on cell membranes can be treated as a mixture of the in-plane 

rotation and out-of-plane tilting motions at different ratios and with different restrictions on 

the rotational angle ranges. One important case is seen where a nanorod rotates completely 

freely in 3D space, with its rotational motions comprised of equal proportions of the two 

basic modes. This special case is designated here as “3D wandering” below. Figure 4.1i 

shows a simulated example of the 3D wandering case with the walking trace of the free end 

covering the entire surface of the hemisphere. The average correlation coefficient for 100 

simulation runs with 10% Gaussian noise is 0.39, with a standard deviation of 0.08.  A 

representative example for the live cell membrane, having a correlation coefficient of 0.38, is 

shown in Figure 4.1k and 4.1l. The 3D wandering motion is observed for a nanorod with 

high rotational freedom in 3D space, while experiencing relatively weak interactions with the 

membrane. 

Another special case occurs when the nanorod is fixed on the membrane with no motion, 

and then the noise becomes the dominant factor in the correlation analysis and results in 

correlation scores near 0. This special case can be readily identified by examining the bright 



76 

 

 

 

and dark DIC intensity traces directly. 

A nanorod’s full rotational motion in 3D is more complex than the examples shown in 

Figure 4.1, and the next level of complexity arises when the nanorod cannot rotate through 

the entire 360°, either vertically or horizontally, due to either external forces or steric 

hindrance. It is challenging to extract additional information about the rotational angle ranges 

from only the bright and dark DIC intensity traces, especially when the angular resolution is 

sacrificed for faster temporal resolution. Some examples of more complex rotational patterns 

are discussed in the Supporting Information and Figures 4.S5 and 4.S6. 

Although some ambiguity is inevitable for more complex rotational behaviors, the 

present method still provides important new information about fast rotational Brownian 

motions. Next, the correlation coefficients of DIC bright and dark intensities will be used to 

characterize different rotational behaviors of gold nanorods with different surface properties 

on synthetic lipid bilayers and live cell membranes.  

 

Rotational Dynamics of Gold Nanorods on Synthetic Lipid Bilayers 

To elucidate how interactions between functionalized gold nanorods and lipid bilayers 

affect the rotational behavior, gold nanorods with different surface properties have been 

introduced onto the synthetic lipid bilayers having various compositions, and their rotational 

modes were evaluated using correlation analysis of the bright and dark DIC intensities. The 

detailed discussion and additional methods are provided in the Supporting Information and 
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Figure 4.S7. 

 

Rotational Modes of Surface Modified Gold Nanorods on Live Cell Membranes at First 

Contact 

In the live cell experiments, the colloidal solution containing gold nanorods having 

surface-modifications with either Tat CPP or transferrin were introduced to the cell sample 

slides on a microscope stage. The microscope objective’s focal plane was at the membrane 

surface and the camera began recording before the nanorods appeared on the cell membrane, 

to ensure that the first contacts were captured. The distinctive rotational behaviors of the Tat 

CPP and transferrin-modified gold nanorods are described as follows. 

The arginine-rich Tat CPP carries positive charges on the peptide. Due to the favorable 

electrostatic attraction between the Tat CPP-modified gold nanorods and the cell membrane, 

these nanorods readily adsorb onto the membrane and start fast rotations on the cell 

membrane.[19] A total of 133 Tat CPP-modified nanorods with first contacts on cell 

membranes have been recorded and analyzed. The correlation coefficients calculated from 

the first 200 frames captured within 1 s following the nanorod appearance on the membrane 

are shown as a histogram (Figure 4.2a). The Gaussian fitting of the histogram shows that the 

distribution of the correlation coefficients is centered around 0.55. The correlation coefficient 

tends to increase over time, and a histogram of the correlation coefficients calculated from 

200 frames captured after the first 35 s is shown in Figure 4.2c.  
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A typical example (available in Movie 4.1) is presented in Figure 4.2b, where the 

correlation coefficient increases from 0.54 to 0.85 over a time span of 35 s with its 

corresponding DIC intensity traces over the same time span shown in Figure 4.S8. Such a 

time span is smaller than the reported time scale before the endocytosis or uncoated cell 

surface invagination process initiated [29]. The initial smaller correlation coefficient indicates 

a more random rotational motion on the cell membrane, which coincident with the first stage 

of rotation due to the resistant interaction with the cell membrane in the simulated results 

reported elsewhere [30]. The increase in correlation coefficient suggests that the nanorod has 

an increasing in-plane rotation component, which may be attributed to stronger and more 

stable interactions forming between the nanorod and the cell membrane and the additional 

hydrogen-bonding of the cationic guanidinium groups to anionic cell surface groups [25]. In 

other words, the nanorod’s motion becomes more restrained to the in-plane rotational mode 

as it becomes more tightly bound to the cell membrane with multiple interactions.  

Another intriguing observation shown in Figure 4.2b is that the correlation coefficient 

drops twice to about 0.3: the first time at 13-17 s and the second time at 26-27 s. A careful 

inspection of the DIC intensity traces in Figure 4.S8 reveals that these two drops correspond 

to two completely different rotational behaviors of the nanorod. In the first case, the 

significant changes in both bright and dark intensities suggest frenetic swings and tumbling 

moves of the nanorod with a large component of out-of-plane tilting. In the second case, the 

nearly constant bright intensity suggests out-of-plane tilting, where the nanorod has lost most 
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of its rotational freedom and is likely locked onto the membrane transiently by relatively 

strong interactions and possibly due to the deformation of the cell membrane, since the 

cationic Tat CPP modified gold nanorods could induce membrane deformation readily due to 

the disruption of the membrane [31].  

The observed fluctuations in correlation coefficients are most likely the consequences of 

the competition between the thermal motions of the nanorod and the forces from the cell 

membrane, and have been observed for all of the Tat CPP-modified nanorods that were 

imaged in our experiments. It is possible for a nanorod to show apparent tilting motion when 

it actually is undergoing unrestricted random rotations. To obtain semi-quantitative 

information about the occurrence and duration of the apparent tilting events during 

unrestricted random rotations, we ran a series of angular random walk simulations (Figure 

4.S9). The simulations show that the apparent tilting events occur less frequently and their 

durations become shorter as the rotational rate increases, which demonstrates well the 

intended application of this method - to study fast rotational dynamics. On the other hand, the 

tilting motion could also be due to the local cell membrane deformation, especially when the 

rotation is slowed down. From computer simulation results, it has been reported that the cell 

membrane could deform because of the embeded nanoparticles [30, 32]. Due to the interplay 

and elastic deformation of the membrane, the nanorod could be pushed to be tilted as 

perpendicular as possible to the cell membrane substrate, which also explained our 

observations. For the drop of the correlation coefficient happened at 26-27 s of the Tat CPP 
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modified gold nanorod, the rotation slowed down, which could also be due to the local 

deformation of the cell membrane [16]. It is possible that the nanorod caused the local 

membrane to deform, while the deformed membrane caused the nanorod to slow down its 

rotation and was oriented perpendiculally to the cell surface, which result in a small 

correlation coefficient reflecting a tilting motion. Considering that the Tat CPP is cationic, the 

Tat CPP modified gold nanoparticles could cause membrane defects [33, 34], which 

facilitates the membrane deformations. 

It is well known that negatively-charged transferrin enters the cell through 

receptor-mediated endocytosis.[26] The unfavorable electrostatic repulsion between the 

transferrin-modified nanorods and the predominantly negatively-charged cell membrane 

makes it more difficult for these nanorods to adsorb to the cell membrane.[19] The major 

forces that these nanorods must overcome are electrostatic repulsions in order to land on the 

cell membrane and achieve specific ligand-receptor binding or electrostatic interactions with 

cationic sites on the membrane. The distribution of the correlation coefficients is centered 

around 0.64 with a larger slope for the left side of the histogram (Figure 4.2d) for the 100 

transferrin-modified nanorods taken from the first 200 frames following initial contact with 

the membrane. The specific binding to membrane receptors provides strong forces to restrain 

the nanorods from swinging out of the membrane plane, which results in a higher proportion 

of in-plane rotational motions and larger correlation coefficients. The contributions from 

electrostatic repulsion are evident in many recorded events where the nanorods separate from 
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the membrane within seconds to minutes after their adsorption. A typical example is shown in 

Figure 4.S10. This transferrin-modified gold nanorod showed typical 3D wandering motions 

for ~5 s with correlation coefficients between 0.40 and 0.55, before it drifted away from the 

initial adsorption site and eventually left the membrane.  

The difference in the distributions of the correlation coefficients of Tat CPP- and 

transferrin- modified gold nanorods (in Figure 4.2a and 4.2d) is shown to be statistically 

significant with a Student’s t-test (p < 0.005). Moreover, the distribution of the correlation 

coefficient is also affected by the randomness of rotation and the noise in the signal, as 

demonstrated in Figure 4.S11.  

The histogram of the correlation coefficients calculated from the 200 frames after the 

first 30 s of observation (Figure 4.2f) shows that there is also an increasing trend in the 

correlation coefficient for the transferrin modified nanorods, although it is not as apparent as 

for the Tat CPP-modified nanorods, because the initial correlation coefficients are already 

high. Figure 4.2e (Movie 4.2) shows a time trace of the correlation coefficient for a 

transferrin-modified gold nanorod over a time span of 30 s after its first contact with the 

membrane. The corresponding DIC intensity traces over the same time span are shown in 

Figure 4.S12. The initial correlation coefficient of 0.72 indicates that the in-plane rotational 

mode is already dominant upon first contact and that the nanorod is most likely adsorbed to 

the membrane through its specific receptor binding. The correlation coefficient fluctuates 

between 0.5 and 0.8, except for three occasions where the value drops as low as 0.20, 
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illustrating the dynamic, stochastic nature of the interactions on the membrane, and possibly 

due to the local membrane deformation caused by the embeded nanoparticle. Each of the 

three occasions with low correlation coefficients shows typical seesaw motions, suggesting 

little in-plane rotation presumably because of strong binding to the membrane and possibly 

confinement from the local deformed membrane.  

 

Discussion 

The general trend observed for both Tat CPP- and transferrin-modified gold nanorods 

can be explained in the following three stages: (1) upon initial contact with the membrane, 

the nanorods perform 3D rotations with fewer restrictions on the rotation angle ranges and 

relatively equal contributions from in-plane and out-of-plane components; (2) as the 

interactions become stronger, the nanorods have less out-of-plane motion and a higher 

fraction of in-plane motion, with correspondingly larger correlation coefficients; (3) finally, 

the nanorods settle down onto the membrane with relatively strong, multi-point binding 

interactions, and they lose the active out-of-plane as well as the in-plane rotational motions, 

resulting in apparent out-of-plane tilting motions with small correlation coefficients near 0, 

which may be explained by the intrinsic fluctuations of the cell membrane, the fact that noise 

becomes a more significant factor when the nanorod shows little or no rotation on the 

membrane, and the local membrane deformation and contact area of each individual 

nanoparticle. 
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Another point for discussion is whether the present imaging technique has sufficient 

resolving power to overcome the noise from two main sources: the measurement noise and 

the thermal motion of nanoparticles. The measurement noise is kept consistently throughout 

our experiments at roughly 10%, which is the noise level used in most simulations. 

According to the Einstein-Smoluchowski relation, the rotational diffusion coefficient of a 

rod-shaped nanoparticle in water with a dimension of 75×25×25 nm is ~3500 rad2/s, and the 

average rotating angle per µs is ~4.8°. This type of free rotation is undoubtedly too fast for 

the present technique. However, the rotational motion of nanoparticles on the cell membrane 

is greatly restricted. According to a model by Fisher et al. [35], the rotational diffusion time 

of a sphere with a volume equivalent to a 75×25×25 nm gold nanorod partially imbeded in 

the lipid bi-layer to a depth of 2.5 nm is larger than 50 ms [16], which is more than 10 times 

of the integration time used in our experiments. Additional restraining factors, such as 

electrostatic interactions and receptor binding, may lead to even slower rotations. Therefore, 

the present method provides a reliable way to acquire rotational dynamics of nanoparticles on 

the membrane. 

 

Conclusion 

In summary, we have demonstrated that the SPORT technique combined with correlation 

analysis possesses unique capabilities for visualizing and understanding the rotational modes 

of bio-conjugated gold nanorods on live cell membranes. Distinctive rotational behaviors, 
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including rotational rates and modes of functional nanoparticles can be directly correlated 

with chemical and physical properties and the biological functions of surface modifiers, as 

well as the interactions between nanoparticles and cell membranes. Present and future studies 

of rotational dynamics of functional nanoparticles will provide more complete fundamental 

knowledge about complex membrane processes, such as the formation and function of 

membrane micro- and nanodomains and the internalization of nanoparticle-based drug 

delivery agents. This method may also be applied to study rotational dynamics involved in 

other biological processes, such as the motions of viruses on cell membranes at early stages 

of infection. 

    Tracking rotational and translational diffusion simultaneously is challenging due to the 

need for dynamic information on the three spatial coordinates (x, y, z) and the two orientation 

angles (elevation and azimuthal). Although the method presented here can identify the basic 

rotational modes for relatively fast rotational Brownian motions, additional information is 

needed to further remove the ambiguity of the determined rotational modes for other more 

complex rotational motions with limited ranges of the elevation and azimuthal angles. In 

addition, for slower rotational motions, a statistical analysis becomes unnecessary and 

imaging at video rate with higher angular resolution is preferable. 

 

Experimental Section 

Surface modification of gold nanorods: The cetyltrimethylammonium bromide 
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(CTAB)-stabilized gold nanorods (25 nm × 73 nm) were purchased from Nanopartz (Salt 

Lake City, UT).The manufacturer’s data show that the in batch size variation is smaller than 

10% CV, and the shape monodispersity is proved for more than 95% of the nanorods. 

200 µL of the original gold nanorod solution was centrifuged and resuspended in 

18.2-MΩ Milli-Q water to remove CTAB. A short NHS-PEG disulfide linker (Sigma-Aldrich, 

St. Louis, MO) is used for surface modification of gold nanorods by following a published 

protocol[36]. The NHS-PEG disulfide linker has both disulfide and succinimidyl 

functionalities for respective chemisorption onto gold and facile covalent coupling of 

functional molecules. The linker with 7 subunits in the PEG is very short (~ 1 nm) to make 

sure it would not affect the rotational modes of the gold nanorods on the cell membrane. 4 µL 

of 20 mM NHS-PEG-thiol in dimethyl sulfoxide (DMSO) is added to the gold nanorod 

solution and reacts for 3 h at room temperature. After that, the NHS-PEG conjugated gold 

nanorod solution is separated by centrifugation and resuspended in Milli-Q water. 

Preparation of the Tat CPP-modified gold nanorods uses 4 µL of 2 mg·mL-1 

trans-activating transcriptional activator (Tat) peptide solution (sequence: YGRKKRRQRRR, 

AnaSpec, San Jose, CA) in water that is added into 200 µL of NHS-PEG conjugated gold 

nanorod solution left to react for 2 h. The Tat CPP-modified gold nanorods are then washed 

with Milli-Q water.  

Preparation of transferrin-modified gold nanorods: 200 µL of the NHS-PEG conjugated 

gold nanorod solution is mixed with 20 µg of transferrin (Sigma Aldrich). After 2-h reaction, 
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the gold nanorod solution is centrifuged and resuspended in Milli-Q water.  

Preparation of neutravidin-modified gold nanorods: 200 µL of the NHS-PEG conjugated 

gold nanorod solution is mixed with 4 µL of 20 mM neutravidin biotin-binding protein 

(Thermo Scientific). After 1-h reaction, the gold nanorod solution is centrifuged and 

resuspended in Milli-Q water. 

The zeta potential (ζ) of nanoparticles refers to the electrostatic potential created as a 

result of the accumulation of electrons at the surface. The zeta potentials of the Tat CPP- and 

transferrin- modified gold nanorod colloidal solutions have been measured by Nano-ZS90 

Zetasizer (Malvern Instruments, United Kingdom) to be +22.3 mV and -11.2 mV, 

respectively. 

 

DIC microscopy and data analysis: An upright Nikon Eclipse 80i microscope with a pair of 

Nomarski prisms and two polarizers was used in this study. The microscope was equipped 

with a 100× 1.40 numerical aperture (NA) Plan Apo oil immersion objective and 1.4 NA oil 

immersion condenser. A 700-nm optical filter (Semrock, Rochester, NY) with a bandwidth of 

20 nm was inserted at the illumination side. The movies were taken with a Hamamatsu 

ORCA-flash2.8 scientific CMOS camera. In order to achieve the 200 fps temporal resolution, 

the image window is limited to 320×256 pixels when the movies are captured.  

These collected videos were analyzed using MATLAB and NIH ImageJ. The data 

analysis included tracking single gold nanorod probes in the recorded movies, extracting 
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bright and dark intensity values from individual DIC images, and calculating Pearson’s 

correlation coefficients. A small square of proper size was defined to enclose a target particle 

and the bright and dark DIC intensities of this particle were recorded as the highest and 

lowest intensity values in the square. Pearson’s correlation coefficient is defined as the 

covariance of the two variables divided by the product of their standard deviations. 

To track the lateral diffusion of the gold nanorods, the centers of the gold nanorod 

images were located and observed over time. Compared to the super-localization of 

fluorescent molecules or isotropic particles, it is much more difficult to localize gold 

nanorods in DIC microscopy due to the orientation-dependent, disproportionate bright and 

dark parts in a nanorod’s DIC image. The actual localization precision of gold nanorod in a 

given image frame varies depending on the instantaneous orientation of the nanorod because 

different orientations give rise to different bright and dark DIC intensities, and thus to 

different signal-to-noise ratios. The positions of the gold nanorods were determined by 

locating the centers of their round DIC images. The small pixel size of the Hamamatsu 

camera (3.63 µm × 3.63 µm) allows us to localize the gold nanorods to the precision of 

approximately 1-2 pixels or 45-90 nm. Under our experimental conditions, each pixel on the 

camera chip corresponds to a sample area of 45 nm × 45 nm. The actual localization 

precision in each image frame varies depending on the nanorod orientation with different 

orientations giving rise to different bright and dark DIC intensities and thus different 

signal-to-noise ratios. In the future we plan to develop more robust and accurate localization 
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methods, although these are not required for the present study. This will enable greater 

nanometer precision in spatial localization to accompany the high angular resolution. 

 

Cell culture and imaging: HeLa cell line was purchased from American Type Culture 

Collection (CCL-2, ATCC, Manassas, VA). HeLa cells were cultured on 22 mm × 22 mm 

poly-lysine coated glass coverslips in a six-well tissue culture plate. Minimum essential cell 

culture medium (ATCC) with 10% fetal bovine serum supplement was added to the plates. 

The cell culture was incubated at 37°C under 5% CO2. After the cell culture covered 70% of 

a coverslip, the coverslip was rinsed with 10 mM PBS buffer at pH 7.4 and then placed on a 

clean glass slide for observation. Two pieces of double-sided tape act as spacers between the 

glass slide and the coverslip to form the chamber. 30 µL of minimum essential cell culture 

medium without bovine serum albumin are added to the chamber to sustain the cells. The 

surface modified gold nanorod solutions are diluted with Milli-Q water to reach a 

concentration of 1.0×109 particles·mL-1. 20 µL of the diluted surface-modified gold nanorod 

solution is added to the chamber and with visual observations beginning immediately. 

Movies of single nanorod rotations are recorded immediately after a single nanorod is 

adsorbed onto the cell membrane. The region of interest is limited to 320 × 256 pixels in 

order to increase the recording speed to 200 frames per second. All of the movies were taken 

at this speed. Each 20 s movie contains 4000 frames, and about 1 s is required between 

movies. 
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Computer simulations of the DIC bright and dark intensities of rotating gold nanorods: 

Computer simulations are carried out to analyze the correlation coefficient of the bright and 

dark intensities of a gold nanorod randomly rotating in the 2D plane and swinging in the 3D 

space. In all simulations, one end of the gold nanorod has been permanently attached to the 

center of a hemisphere and the other end undergoing random movements on the surface of 

the hemisphere. Each simulation provides 4000 steps of random rotations in one of the three 

rotational modes. The relative DIC intensities (I) of the bright part and the dark part are 

calculated using the equations derived in our previous work [15]: 

φψ 42
bright sincos1+≈I ,     (3) 

φψ 42
dark coscos1−≈I .      (4) 

The elevation angle ψ and the azimuthal angle φ are defined in Figure 4.S1. To account 

for the relative errors of about 10% in the intensity measurement in the actual imaging 

experiments, a Gaussian noise of 10% has been added to the simulated DIC intensities 

displayed in Figure 4.1. Other simulated results are shown in the Supporting Material. 
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Figures 

 

 
Figure 4.1. Simulations and experimental data for the basic rotational modes for adsorption 
of particles onto cell membrane surfaces: in-plane rotation (a-d), out-of-plane tilting (e-h), 
and a special case of 3D wandering with no restriction on the rotation angles (i-l). Computer 
simulated traces of a single gold nanorod (a, e and i) are shown together with the 
corresponding normalized bright and dark DIC intensities (shown in blue and red, 
respectively in parts b, f and j). Examples of 100 consecutive images (left to right) captured 
at 200 frames/s for a single gold nanorod on live cell membranes (c, g and k) are shown 
together with the corresponding bright and dark DIC intensities (d, h and l). 
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Figure 4.2. Correlation coefficients of the bright and dark intensities of single gold nanorods 
upon first contact with cell membranes. (a) Histogram of the correlation coefficients 
calculated from the first 200 frames captured within 1 s for 133 Tat CPP-modified gold 
nanorods. (b) Time trace of the correlation coefficient during the first 35 s of contact for a Tat 
CPP-modified gold nanorod. The correlation coefficient increases from 0.54 to 0.85 in this 
case. (c) Histogram of the correlation coefficients calculated from 200 frames captured after 
the first 35 s of the landing of the Tat CPP-modified gold nanorods. (d) Histogram of the 
correlation coefficients for 100 transferrin-modified gold nanorods. (e) Representative time 
trace of the correlation coefficients during the first 30 s of contact for a transferrin-modified 
gold nanorod showing a dominant in-plane rotation component. (f) Histogram of the 
correlation coefficients calculated from 200 frames captured after the first 30 s of contact 
between the transferrin-modified gold nanorods and the membrane. 
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Additional Methods For Experiments On Synthetic Lipid Bilayers 

Preparation of synthetic lipid bilayers 

The synthetic phospholipid blend (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE) : 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) : 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at a ratio of 5:3:2) is dissolved in 

chloroform to reach a concentration of 25 mg/mL. The lipid mixture is dried under a stream 

of nitrogen followed by at least 3 h under vacuum at room temperature to remove the residual 
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solvent. The dry lipids have then been stored in a -20°C freezer until use. 

To prepare the large unilamellar vesicles (LUVs), 0.5× phosphate buffered saline (PBS) 

at pH 7.4 is added to swell the lipids, and the concentration of the lipids in the PBS buffer 

reaches 1mg/mL. After incubation for 1 h at room temperature, with occasional vortexing, the 

lipids form a cloudy suspension. The suspension is extruded at least 21 times with a 

mini-extruder (Avanti Polar Lipids) assembled with a polycarbonate membrane having a pore 

diameter of 100 nm. The resulting clear LUVs suspensions is then stored at 4°C.  

The formation of planar bilayer is achieved by incubating the LUVs with freshly cleaned 

glass coverslips for 20 min.  The excess lipids were removed by washing with PBS buffer. 

Nanorods with Tat CPP or transferrin modifiers are added onto the membranes and rotational 

motions captured after 5-min incubation. 

Artificial membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) and 1% wt biotin-DOPE are prepared using the same method. After washing with 

PBS buffer, either neutravidin modified or bare gold nanorods are added onto the membranes. 

The neutravidin modified gold nanorods are incubated with the membranes for 30 min 

followed by extensively washing with PBS buffer. For the control experiment, bare gold 

nanorods have been added onto the membranes and movies were collected after 5 min 

incubation. 

For the preparation of the POPC membranes with different cholesterol content, the 

synthetic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti 
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Polar Lipids) supplemented with 10%, 20%, 30% and 40% (wt.) cholesterol (Avanti Polar 

Lipids) is dissolved in chloroform to reach a concentration of 25 mg/ml. The lipid mixture is 

dried under a stream of nitrogen followed by at least 3 h under vacuum at room temperature to 

remove the residual solvent. The dry lipids have then been stored in a -20°C freezer until use. 

The synthetic membranes are prepared in the same way as discussed above. 

Fluorescence recovery after photobleaching (FRAP) 

To prepare for the FRAP experiments, the lipids mixtures containing various 

concentrations of cholesterol were supplemented with 1% (wt.) Texas Red 

1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine, Triethylammonium Salt (Texas 

Red® DHPE) (Invitrogen).The lipid bi-layers were prepared as described above.  

A 532-nm 80-mW laser (B&W TEK Inc. Lasers, Newark, DE) was coupled with the 

Nikon 80i Eclipse upright microscope and the excitation light was directed through the 

epi-fluorescence pathway, focused to 8 µm in diameter by the 100× oil immersion objective. 

A neutral density filter that reduces the light intensity by 95% was inserted in the light path. 

After a short movie of the original fluorescence from the lipid bi-layers excited with the 

reduced light was recorded, the neutral density filter was flipped away from the light path to 

allow the strong laser to photobleach the small patch of the lipid membrane that is within the 

laser spot. After that, the neutral density filter was then flipped back for imaging fluorescence 

recovery. An external shutter was synchronized with the CCD shutter to reduce the 
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photobleaching during the recovery process and the integration time of each frame was 200 

ms. Fluorescent signalswere recorded by an Photometrics Evolve EMCCD camera (Tucson, 

AZ). The FRAP data were analyzed using the Hankel transform method1 by running a 

MATLAB code. 

 

Discussion Of Complex Rotational Patterns With Limited Ranges Of Rotation Angles  

A typical limitation for a nanorod on the cell membrane is that it is more difficult to 

stand up, that is, the angle ψ may be limited to a range from 0° to less than 90° in the 

hemisphere. This limitation effectively reduces the proportion of the out-of-plane tilting 

component. The simulation results shown in Figure 4.S5 quantify the influences of different 

ranges of the angle ψwhile keeping the in-plane rotation fully random. A decrease in the 

correlation coefficient is observed as the upper limit of the angle ψ increases resulting in 

more out-of-plane tilting. 

The restriction on the in-plane rotation angle leads to even more complicated situations, 

partly because the in-plane rotation generates more significant intensity changes than the 

out-of-plane tilting. The main challenge is depicted in Figure 4.S6. When the angle φ is 

limited to small values near one of the optical axes, either the bright or dark DIC intensity is 

weak and nearly buried in the grey background while the other intensity is close to its 

maximum. Noise becomes a dominant factor in the measurement of the weak intensity. The 

resulting correlation coefficient can decrease drastically in the presence of noise and some 
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out-of-plane tilting. This situation is nonetheless informative about the angle ψ . This is an 

inherent limitation of all orientation probes: the orientation-dependent signals become too 

small at certain positions, which results in low accuracy in the data analysis. This problem 

can be partially circumvented by the statistical analysis of a large number of data points if the 

nanorod does not reach these positions sufficiently often. This is generally true for the 

random and relatively fast rotational motions. Thus it is important to state that the statistical 

analysis presented here is intended for relatively fast rotational Brownian motions, and not 

for highly restrained slower motions (e.g., the rotational motions of cargos in kinesin gliding 

assays that we reported previously2), where the statistical analysis is unnecessary and 

imaging at slower rates with higher angular resolution is appropriate. 

 

Discussion Of Rotational Dynamics Of Gold Nanorods On The Synthetic Lipid Bilayers 

To elucidate how interactions between functionalized gold nanorods and lipid bilayers 

affect the rotational behavior, gold nanorods with different surface properties have been 

introduced onto the synthetic lipid bilayers having various compositions, and their rotational 

modes were evaluated using correlation analysis of the bright and dark DIC intensities.  

The negatively charged lipid bilayers were prepared from a synthetic phospholipid blend 

(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) : 

1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) : 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at a ratio of 5:3:2). The 
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positively-charged Tat CPP-modified gold nanorods adsorbed onto the synthetic membrane 

much more rapidly than the negatively-charged transferrin-modified gold nanorods. Using 

the same concentration of the gold nanorod solution (~109 nanoparticles/mL) and the same 

incubation time (5 min), the density of the Tat CPP-modified gold nanorods on the synthetic 

membranes was more than 20 times greater than the density of the transferrin-modified gold 

nanorods. Over 30 nanorods with each surface modifier have been recorded and analyzed. 

Due to the favored electrostatic interactions with the lipid bilayers, the Tat CPP-modified 

gold nanorods tend to lie flatter on the membranes and perform more in-plane rotations to 

exhibit large correlation coefficients centered around 0.7-0.8 (Figure 4.S7a). By contrast, the 

transferrin-modified gold nanorods were characterized by smaller correlation coefficients 

centered at 0.3-0.4 (Figure 4.S7b) and perform more random 3D wandering motions on the 

synthetic membranes, showing their reluctance to anchoring.  

We then evaluated the impact of specific binding on the rotational mode of nanorod 

probes. To circumvent the effects of electrostatic interactions, bilayers formed by zwitterionic 

POPC lipid (ζ = ~ -4.3 mV) mixed with 1% biotin-DOPE were used as the substrate. Gold 

nanorods modified with neutravidin were incubated with the lipid bilayers and washed to 

remove most of the nonspecific binding.  The correlation coefficients for these rotating 

nanorods are generally large (again centered at 0.7-0.8) (Figure 4.S7c), reflecting the strong 

binding interactions of the nanoprobes with the synthetic membranes. As a control, bare gold 

nanorods stabilized with positively-charged surfactant cetyltrimethylammonium bromide 
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(CTAB) were introduced onto the same biotin labeled POPC membrane. The correlation 

coefficients for the CTAB-stabilized gold nanorods are centered at 0.6-0.7 (Figure 4.S7d), 

which is smaller than the values for neutravidin-modified nanorods, but is still larger than 

that of the typical 3D wandering motion. This can be attributed to favorable electrostatic 

interactions between the positively-charged CTAB-modified nanorods (ζ = +20 mV) and the 

slightly negatively-charged POPC membranes.  

After assuming equal variance of the two samples, the statistical significance of the 

difference in the correlation coefficients between the neutravidin-modified nanorods and the 

CTAB stabilized bare nanorods is evaluated with Student’s t-test.The p value is smaller than 

0.05, indicating the correlation coefficients are significantly different. . 

The artificial membranes are simple in composition and their conformations should not 

have large curvatures or rigid structures, as manifested by the real cell membranes; thus, the 

nanorods interacting with flat membrane surfaces result in simpler rotational dynamics. The 

experiments on synthetic membranes clearly demonstrate the ability of the present method to 

identify different rotational modes of gold nanorods under the control of electrostatic 

interactions and specific binding interactions. These results show that when the surface 

charges of gold nanorods are favored by the membranes or when the functional molecules 

can provide specific binding interactions with the membranes, the gold nanorods are more 

likely to perform in-plane rotations when they have stronger interactions with the membranes. 

Note that the distribution of the correlation coefficient should be due to the randomness of the 
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rotation of the nanoparticles, and depends on probably the membrane deformation, contact 

area and number of ligands attached to the nanorods, as discussed in the main text for the live 

cell experiments.  

To test the effect of membrane viscosity on the rotational dynamics, the rotational 

behaviors of CTAB-capped gold nanorods on POPC lipid bilayers with various cholesterol 

concentrations have been recorded. Cholesterol plays a major role in moderating the 

membrane fluidity in animal cells and changing the cholesterol content in the membranes 

changes the membrane viscosity.3 The change of the viscosity of the POPC lipid bilayer 

could be reflected by the change of the lipid mobility, which is characterized by the lateral 

diffusion coefficient of the molecules in the lipid bilayer. According to the Saffman–Delbrück 

model4, the diffusion coefficient of a cylindrical inclusion in a lipid membrane is correlated 

with the viscosity of the membrane: 

2
ln

4
B sd

m

k T L
D

a
γ

πη
  = −    

, 

where ηm is the viscosity of the membrane, a is the radius of the cylindrical inclusion, γ 

(≈ 0.577) is the Euler-Mascheroni constant, and Lsd is the Saffman-Delbrück length, which is 

defined as: 

2
m

sd
f

h
L

η
η

= , 

where h is the thickness of the membrane and ηf is the viscosity of the bulk fluid. It has been 

reported that an increase in the cholesterol concentration reduces the lateral diffusion 
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coefficient of lipids in synthetic lipid bilayers.5, 6The influence of the concentration of 

cholesterol on the lateral diffusion coefficient of the POPC lipid bi-layers was tested by 

Fluorescence Recovery after Photobleaching (FRAP). The decrease of the diffusion 

coefficient with the increase of the cholesterol content is shown in Figure 4.S7e.  

The rotational behaviors of the CTAB-capped gold nanorods were recorded after 5-min 

incubation with the synthetic lipid bilayers. To semi-quantify the rotational rate of the gold 

nanorods, the autocorrelation of the DIC intensities is fitted with a stretched exponential 

function, and the mean relaxation time for decay is determined from the fitting as the 

characteristic rotation time 7. The characteristic times of 45 or more gold nanorods were 

calculated and averaged for each cholesterol concentration (from 0 to 40% wt.). The 

characteristic rotation time is plotted against the cholesterol levels in Figure 3.S7f. An 

increase in the characteristic rotation time is observed when the cholesterol concentration 

becomes higher. These results demonstrate that the present method affords sufficient 

sensitivity to report the apparent changes in membrane viscosity.  
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Figure 4.S1. Computer simulated bright and dark DIC intensities of a gold nanorod rotating 
with variouscombinations of the azimuthal angle φ and the elevation angle ψ.  
a. Definitions of the orientation angles φand ψof a nanorod in 3D space. These definitions 

are identical to the ones used in our previous work.
2
 

b. The angleψ is fixed at π/6 while the angle φ varies from -2π to 2π.  
c. The angle φ is fixed at π/6 while the angle ψ varies from -2π to 2π.  
d. The angle ψ is fixed at π/4 while the angle φ varies from -2π to 2π.  
e. The angle φ is fixed at π/4 while the angle ψ varies from -2π to 2π.  
f. The angle ψ is fixed at π/3 while the angle φ varies from -2π to 2π.  
g.The angle φ is fixed at π/3 while the angle ψ varies from -2π to 2π. 
In b, d, and f, the correlation coefficients are around 0.88. This slight deviation from perfect 
correlation originates from the sin4 and cos4 relations for the angle φ as explained in h. 
In c, e, and g, the correlation coefficients are -1, suggesting a perfect anti-correlation between 
the bright and dark intensities. 
h. Plots of the bright intensity vs. the dark intensity for c and d. The perfect correlation 
coefficients of +1 and -1 can only be achieved in Pearson’s correlation coefficient analysis 
when the two variables are on linear dependency, which is true for the anti-correlated case. 
For the correlated case, the two variables are not on linear dependency, and this results in a 
smaller correlation coefficient. 
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Figure 4.S2. Computer simulated DIC bright and dark intensities of a gold nanorod rotating 
in the in-plane rotation mode in the presence of various levels of noise.  
a-g. Simulated DIC intensities with 0%, 5%, 10%, 15%, 20%, 25% and 30% noise, 
respectively.  
h. Plot of the correlation coefficient versus the noise level.  
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Figure 4.S3. Computer simulated DIC bright and dark intensities of a gold nanorod rotating 
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in theout-of-plane tilting mode in the presence of various levels of noise.  
a-g. Simulated DIC intensities with 0%, 5%, 10%, 15%, 20%, 25% and 30% noise, 
respectively.  
h. Plot of the correlation coefficient versus the noise level.  
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Figure 4.S4. Computer simulated DIC bright and dark intensities of a gold nanorod rotating 
in the 3D wandering mode in the presence of various levels of noise.  
a-g. Simulated DIC intensities with 0%, 5%, 10%, 15%, 20%, 25% and 30% noise, 
respectively.  
h. Plot of the correlation coefficient versus the noise level.  
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Figure 4.S5. (a-g) Computer simulated moving traces of the free end of a gold nanorod with 
the other end attached atthe center of the hemisphere, and the corresponding simulated bright 
and dark DIC intensities. The upper limit of the elevation angle ψincreases from 0° to 90°. (h) 
Plot of the correlation coefficient versus the range of the angleψ. 
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Figure 4.S6. Computer simulated bright and dark DIC intensities of a gold nanorod rotating 
in constant directions to demonstrate the intensity patterns when the nanorod rotates around 
the optical axes. (a, b) In-plane rotation mode and the corresponding DIC intensity trace. 
Close to the optical axes where θ equals 90o, 180 o and 270 o (highlighted by the boxes in b), 
the amplitude of either the bright or dark intensity is very small while the other is near its 
maximum. The noise becomes a dominant factor in the measurement of the weak intensity 
and the resulting correlation coefficient can decrease drastically in the presence of noise and 
some out-of-plane tilting component. (c, d) Out-of-plane tilting mode with the rotation plane 
parallel to the bright axis and the corresponding DIC intensity trace.(e, f) Out-of-plane tilting 
mode with the rotation plane parallel to the dark axis and the corresponding DIC intensity 
trace. The correlation coefficients for (d) and (f) are 0. The inclusion of these last two special 
cases would result in unsatisfactorily resolved rotational modes.   
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Figure 4.S7. Histograms of correlation coefficients for single gold nanorods adsorbed on 
artificial lipid bilayers. Each correlation coefficient is calculated from 2000 frames (10 s) of 
a single movie. (a) Tat CPP-modified gold nanorods on negatively-charged lipid bilayers. (b) 
Transferrin-modified gold nanorods on negatively-charged lipid bilayers. (c) 
Neutravidin-modified gold nanorods on zwitterionic lipid bilayers with biotin labels. (d) Bare 
(CTAB-capped) gold nanorods on zwitterionic lipid bilayers with biotin labels. (e) The 
translational diffusion coefficient of POPC synthetic lipid bilayers with various cholesterol 
concentrations (from 0 to 40% wt.) derived from the FRAP experiment. Each data point 
represents the average of the diffusion coefficient calculated from 5 FRAP experiments.(f) 
The change of the rotation characteristic times of the bare gold nanorods on POPC synthetic 
lipid bilayers with various cholesterol concentrations (from 0 to 40% wt.). Each data point 
represents a characteristic rotation time from an average over observations on at least 45 gold 
nanorods. 
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Part 1: 0.0 - 15.0 s 
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 Part 2: 15.0 – 35.0 s 

 
Figure 4.S8. DIC intensity traces of the Tat CPP-modified gold nanorod (Movie 3.1) 
producing the correlation coefficient trace shown in Figure3.2b in the main text. The bright 
and dark intensities are shown in blue and red, respectively, with the average background 
intensities are shown in black. 
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Figure 4.S9. The occurrence and duration of the tilting eventsare related to the step size. 
(a-d)Simulated DIC intensities of angular random walks with step sizes of π/5, π/10, π/15 
and π/20 respectively.(e-g)Histograms of the durations of the tilting events in random walk 
simulations. Each histogram is generated with 20 simulation runs. 
The tilting events occur more frequently when the step size is smaller. More explicitly, no 
simpletilting eventsareidentified in angular random walk simulations with a step size of π/5. 
47 tilting eventsare observed in 20 simulations with a step size of π/10. 76 tilting eventsare 
observed in 20 simulations with a step size of π/15. 100 titling eventsare observed in 20 
simulations with a step sized of π/20. In addition, as the step size decreases, the durations of 
the tilting events become longer. The histograms of the durations show that when the step 
size becomes as small as π/20 (which corresponds to a rotation period of 200 ms), the 
duration of the cases begin to exceed 200 frames. 
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Figure 4.S10. Time traces of the correlation coefficient (a) and the corresponding DIC 
intensities (b) for a transferrin-modified gold nanorod for 5 s. The nanorod then drifted to a 
different location about 2 µm away from the initial adsorption spot, and eventually 
disappeared from the membrane. 
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Figure 4.S11. (a-e) Histograms of the correlation coefficient generated from simulated 
rotations without Gaussian noise. (f-j) Histograms of the correlation coefficient generated 
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from simulated rotations with 10% Gaussian noise. All the histograms are plotted from 200 
simulations and fitted with Gaussian functions. (k) Plot of the full width at half maximum 
(FWHM) of the Gaussian functions versus the upper limit of the elevation angle range. The 
blue curve is the data without noise, and the red one is the data with 10% noise. 
The peak width increases from 0.02-0.11 as the elevation angle range changes from 0-30° to 
0-90°. This is expected because a higher randomness should result in a larger distribution.  
There is not a big difference in the width of the fitted Gaussian peaks with and without noise 
when the elevation angle ranges is between 0-30° and 0-75°; however, an obvious difference 
can be observed for the case of 0-90°. 
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Part 1: 0.0 - 15.0 s 
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Part 2: 15.0 - 30.0 s 

 

 
Figure 4.S12. DIC intensity traces of the transferrin-modified gold nanorod that produced the 
correlation coefficient trace shown in Figure3.2e in the main text. The bright and dark 
intensities are shown in blue and red, respectively, and the average background intensities are 
shown in black. 
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Abstract 

Direct visualization of axonal transport in live neurons is essential to learn about the 

neuronal functions and the working mechanisms of microtubule-based motor proteins. In this 

paper, the high-speed single particle orientation and rotational tracking (SPORT) technique 

was developed for direct visualization of the rotational dynamics of cargos in both active 

directional transport and pausing stages of axonal transport with a temporal resolution of 2 

ms. Both long and short pauses were imaged, and the correlations between the pause duration, 

the rotational behavior of the cargo at the pause, and the moving direction after the pause 
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were established. Furthermore, the rotational dynamics leading to switching tracks were 

visualized in detail. These first-time observations of cargo’s rotational dynamics provide new 

insights on how kinesin and dynein motors take the cargo through the alternating stages of 

active directional transport and pause. 

 

Introduction 

Axonal transport of proteins and materials inside the cytoplasm of the slender axon is 

essential to a neuron’s growth and function. For example, proteins manufactured by 

ribosomes need to be delivered anterogradely from the cell body and distributed along the 

axon, while extracellular materials internalized through endocytosis at the distant axon 

outposts are moved retrogradely towards the cell body for degradation. Dysfunction of 

axonal transport may lead to serious neuronal disorders such as the Alzheimer’s disease, 

which is related to the abnormal depolymerization of microtubules inside the axon.1 Besides 

its physiological significance, axonal transport is a model system for studying the 

mechanisms of intracellular transport by motor proteins in mammalian cells. The microtubule 

arrays located inside the axon have the same polarity with the minus end facing the cell body. 

The motor proteins kinesin and dynein transport cargos in the anterograde and retrograde 

directions, respectively, by “walking” on the microtubule arrays.2  

The underlying mechanism of axonal transport has been studied intensively for several 

decades.3-8 Cargos are moved between the cell body and the synapse via fast and slow axonal 
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transport. It has been found that membranous cargos are generally fast transport 

components,8 while cytoskeletal structures9-11 and non-membrane bound proteins6,12 are slow 

transport components. Both slow- and fast-transport cargos move at comparable speeds when 

they are actually moving, and the transport efficiency is determined mainly by the fraction of 

time they spend in moving.8 Cargos pause much more frequently and for longer durations in 

the slow transport than in the fast transport. The “Stop and Go” model suggests that the 

pauses are caused by the varying affinities between the cargo and motor proteins in slow 

axonal transport.5,13,14 When the coupling between the cargo and the motor proteins is 

deficient, the cargo can fall off the microtubule to pause the transport. Another hypothesis 

suggests that the pauses are a result of tug-of-war among motor proteins of opposing 

directionality.15-17  

Understanding the mechanism of axonal transport relies on our knowledge on how the 

two motor proteins of opposing directionality move a cargo. The tug-of-war model supports 

the idea that the two motor proteins compete with each other to move the cargo in their 

desired direction.16-19 On the contrary, the coordination model suggests that the two types of 

motor proteins are coordinated by certain molecular signals so that only one is activated 

while the other is deactivated during transport,20-25 and a coordination complex might exist to 

regulate the motors,26,27 although this coordination complex was proved unnecessary to 

explain the bidirectional cargo transport.17 It was also proposed that the two models coexist in 

the microtubule-based transport, while tug-of-war can be deemed as one mechanism of 



127 

 

 

 

“coordination”.15 In this model, multiple kinesin and dynein motors bind to the cargo at the 

same time, and communication and coordination are achieved through the engaging and 

disengaging of motor proteins under competing pulling forces; the moving direction of the 

cargo is directly decided by the number of motors that engage in the tug-of-war.28-30 Recently, 

Schuster et al. showed that the change in the transport direction is influenced by the binding 

and unbinding of dynein motors to the organelles,31 and Kunwar et al. used the theoretical 

“mean field” model to show that an additional level of regulation is necessary to combine 

with “tugs-of-war” to explain the in vivo transport data,32 while the “sharp maxima 

approximation” approach was also shown to be able to quantitatively describe the stochastic 

dynamics of the tug-of-war model.19 

Direct visualization of the transport events in living neurons has led to the current 

understanding of the mechanism of axonal transport. For example, the axonal transport of 

organelles has been visualized in real-time using fluorescence-based techniques9,12,33 Pseudo 

total internal reflection fluorescence (pseudo-TIRF) microscopy has been applied in tracking 

the axonal transport of nerve growth factor-modified quantum dots incorporated in 

endosomes.34 However, the mechanics of the pauses in the transit of cargos are still largely 

unknown, mainly because of the limitations of the molecular or nanoparticle probes used in 

the previous studies. No orientation or rotational information of the cargo at the pauses was 

disclosed. The cargo’s rotational dynamics at the pauses is the direct consequence of motor 

protein competition and regulation and thus is essential to fully understand axonal transport. 
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In all of the previous reports, the cargo itself or the labels on the cargo gave constant image 

contrasts at a seemingly fixed location during a pause. It was unclear whether the cargo was 

completely fixed in space with no motion at all or it was still rotating at various speeds.  

Recently, we introduced the single particle orientation and rotational tracking (SPORT) 

technique35-37 to follow the rotational motion of plasmonic gold nanorods38 under a 

differential interference contrast (DIC) microscope. Working in the principle of 

interferometry,39 a DIC microscope generates disproportionate bright and dark interference 

patterns for gold nanorods in different orientations. The relative bright and dark intensities 

are independent measures of the effective projections of the nanorods onto the two 

polarization axes, from which the gold nanorod’s 3D orientation can be resolved in each DIC 

image. By measuring the bright and dark DIC intensities of the gold nanorod continuously, it 

becomes possible to dynamically track the nanorod’s orientation and rotational patterns. 

Using the SPORT technique with an electron multiplying charge coupled device (EMCCD) 

running at a temporal resolution of 30 ms, we observed that a cargo tends to keep the same 

orientation relative to the microtubule tracks during the active transport in living cells.35 

In the current study, we acquired for the first time the orientation and rotational 

information of the cargo during both the moving (directional transport) and pausing stages of 

axonal transport at a high temporal resolution of 2 ms. This high temporal resolution was 

achieved by using a scientific complementary metal-oxide-semiconductor (CMOS) camera 

when limiting the region of interest to a narrow stripe that was aligned with the axon where 
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the transport events occurred. Such a high temporal resolution is necessary to resolve the 

motions of cargo in unprecedented detail and answer some of the outstanding questions on 

the mechanism of axonal transport. 

Rotational motion of endocytic vesicles reported by gold nanorods. The gold nanorods 

with an average size of 25 nm × 73 nm were used as orientation and rotational nanoprobes. 

Supplementary Figure 5.S1 shows a set of DIC images for a gold nanorod that was 

immobilized on a glass slide and rotated to different orientations with an interval of 10°. The 

gold nanorods were surface-modified with transferrin (a glycoprotein used as a drug delivery 

agent40) through a polyethylene glycol (PEG) linker to facilitate receptor-mediated 

endocytosis. After endocytosis, these nanorods were transported inside the endocytic vesicles 

by motor proteins along the cytoskeletal tracks. Some of the nanorod-containing vesicles 

were found to be transported in the axons anterogradely or retrogradely. 

For a gold nanorod to report the vesicle’s rotational motion accurately, the nanorod is 

required to be stationary with respect to the vesicle on the time scale of the transport events. 

This requirement is generally met when a single nanorod is contained within the lipid 

membranes of a small endocytic vesicle, which has a size comparable to the size of the 

nanorod, and is bound to the transferrin receptors imbedded in the lipid membrane. 

Supplementary Figure 5.S2 is a transmission electron micrograph showing gold 

nanorod-containing vesicles in a PC12 cell.  
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However, after the endocytic vesicle fuses with an early or late endosome, there is more 

room for the nanorod to rotate randomly, losing its ability to report the rotational motions of 

the vesicles. An example that the nanorods cannot be used as the orientation and rotational 

reporter is provided in Supplementary Movie 5.1. Apparently, the two nanorods in this 

movie were transported together inside the same endosome, and they were free to perform 

rotational and translational Brownian motions. 

The qualification of each individual nanorod as orientation and rotational reporter must 

be verified by checking whether the nanorod maintained a constant DIC image pattern during 

the undisrupted linear transport. This criterion is based on the fact that cytoplasmic 

microtubules in mammalian cells, including PC12 cells, are composed of 13 linear 

protofilaments,41 and that kinesin and dynein motor proteins pull the cargos along the linear 

protofilament tracks if there are no interruptions (e.g., obstacles, dissociation of motors from 

the tracks or degraded microtubules) to the transport.42,43 A constant DIC image pattern 

during the linear transport events suggests that the nanorod and its lipid vesicle maintain their 

orientation relative to one another and to the microtubule tracks as we have reported 

previously.35
 The restriction on the cargo’s rotational motion during the directional transport 

is believed to be caused by tension applied by multiple motor proteins bound to the cargo. All 

of the nanorods that were analyzed and discussed in the rest of the paper showed the linear 

directional transport without noticeable cargo rotations. 
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Paused nanocargos undergoing restricted rotations. During the axonal transport, the cargo 

can be in two stages: first, the directional (anterograde or retrograde) transport driven by the 

motor proteins kinesin and dynein and second, the pausing stage, in which the cargo shows 

little or no directional movement. The pause durations vary from tens of milliseconds to tens 

of seconds. The cargo undergoes different motions depending on the binding status of the 

motor proteins to the cargo and the microtubules.  

The first type of motion at the pausing stage is demonstrated in Supplementary Movie 

5.2, in which a nanorod paused for ~6.2 s before it reversed its moving direction. The 

corresponding bright and dark DIC intensities of the nanorod during the whole pause period 

are displayed in Figure 5.1A. The significant DIC intensity fluctuations indicate the fast 

rotational motion of the cargo during this long pause. To the best of our knowledge, this type 

of rotational motion has not been visualized in living cells by using any other imaging 

techniques.  

In order to better understand how the nanocargo’s rotational motion is affected by the 

motor proteins and other associate proteins, the unrestricted rotational Brownian motion was 

analyzed as shown in Figure 5.1B. This nanorod-containing cargo diffused freely in the axon 

of a differentiated PC12 cell, which had been treated with cochicine to destroy the 

microtubules (Supplementary Figure 5.S3).44
 Since the cargo could no longer attach to the 

intact microtubules, it performed random translational and rotational diffusion.  

The difference in these two rotational patterns is revealed by an analysis of the degree of 
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correlation for the bright and dark intensities. The correlated bright and dark intensity 

changes indicate the nanorod’s in-plane rotation, while the anti-correlated intensity changes 

correspond to the out-of-plane rotation (see Supplementary Figure 5.S4 for details). 

Pearson’s correlation coefficient (r) was thus used to analyze the DIC intensity traces with a 

maximum value of +1 for perfectly correlated cases, a minimum value of -1 for perfectly 

anti-correlated case, and the value 0 for uncorrelated cases.  

The correlation analysis showed that the rotational motion during the long pause (Figure 

5.1A) is distinctively different from the unrestricted rotational Brownian motion (Figure 

5.1B). The correlation coefficient for the time traces during the long pause was calculated to 

be 0.79. The average correlation coefficient for 26 recorded long pauses that lasted for at 

least 3 s was 0.70 ± 0.06 (Figure 5.1C). Such a large correlation coefficient suggests a high 

proportion of the in-plane rotational component. On the contrary, the correlation coefficient 

for this example of rotational Brownian motion was found to be 0.11 (close to 0, 

uncorrelated), suggesting the random 3D rotations with roughly equal proportions of the 

in-plane and out-of-plane rotational components. The average correlation coefficient for 29 

recorded time traces of unrestricted rotational Brownian motion (Figure 5.1D) was 0.26 ± 

0.09. The rotation dynamics can also be characterized using the power spectral density (PSD) 

function. By fitting the PSD of the intensity traces with the Lorentzian function 

(Supplementary Figure 5.S5),45 we found that the rotation characteristic time of the in-plane 

rotation at the pauses (8.7 – 14.3 ms) is longer than that of the random Brownian motion (2.1 
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± 0.3 ms), indicating the rotation at these long pauses is slower than the Brownian motion. 

The in-plane rotational motion of the cargo at the long pause leads to two new findings.  

First, the fast rotational motion provides direct evidence that the confinement of the 

rotational motions of the cargos caused by the binding of kinesin and dynein motors and 

possibly other associated proteins have been significantly weakened and the nanorod has 

gained more freedom to rotate randomly during the pauses of this type.  

Second, the mostly in-plane rotational motion suggests that the cargo was still tethered to 

the microtubule track. Otherwise, if the cargo was fully detached from the microtubule track, 

it would perform largely unrestricted rotational Brownian motion to generate uncorrelated 

bright and dark DIC intensity changing patterns (similar to Figure 5.1B) at a faster speed. 

The restraint could come from kinesin and dynein motors or other associated proteins such as 

dynactin.46,47 One possibility is that the motor proteins could be deactivated by regulatory 

molecules but still bound to both the cargo and microtubule. The other possibility is that 

dynactin, which provides extra docking sites on the cargos and link the cargos to cytoplasmic 

dynein and microtubule tracks,48-50 could also tether the cargos to the microtubules, 

independent of the molecular motors, and also restrict the rotational motions. In either way, 

the observation that the cargos performed restricted rotational motions show that they were 

still tethered to the microtubule tracks at the pauses.  

 

Pause duration and rotation and change of moving direction. Movie 4.3 provides a 
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complex example of cargo’s behaviors at the directional transport and pausing stages. The 

corresponding bright and dark DIC intensity curves and the nanorod’s lateral displacement 

are displayed in Figure 5.2. The nanorod-containing vesicle was transported for a distance of 

4 µm retrogradely by dynein motors at ~1.0 µm/s in the time window of 1-5 s, paused for 5 s, 

and then moved again in the opposite direction by kinesin motors at a lower velocity of ~0.3 

µm/s until the end of the recording. During both directional transport segments, the nanorod 

generated rather constant DIC intensities with noise expected from the DIC intensity 

measurements at the fast temporal resolution of 2 ms. The speed of cargo transport varied 

quite dramatically even in the same directional transport event as revealed by different slopes 

of the displacement curve. For example, the transport in Figure 5.2C is much faster than that 

in Figure 5.2D.  

When the cargo showed rotational motion during the 5-s pause, the bright and dark DIC 

intensities display a similar level of correlation (r = 0.68) as the example shown in Figure 

5.1A. In addition to this long pause, there were shorter pauses that lasted for tens to hundreds 

of milliseconds. Due to these short pauses and other random motions, the displacement curve 

is far from smooth, suggesting a number of probable factors, including the competition 

between kinesin and dynein motors and the steric hindrance, affect the transport process 

continuously and result in the stochastic nature of cargo transport.  

The short pauses were accompanied by different cargo movement. The pink boxes in 

Figures 5.2B and D highlight a 0.5-s pause with almost no changes in the DIC intensities, 
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suggesting that the cargo came to a full stop without apparent rotational motion. After the 

pause the cargo continued to move in the same direction. The blue arrows in Figure 5.2B 

point out another type of short pause characterized by fast reversal in the transport direction 

(back-and-forth movement). 

Many pauses of different durations were recorded. More examples are shown in 

Supplementary Figures 5.S6-5.S9. A statistical analysis was carried out to find the 

correlation between the pause duration, the rotational motion, and the subsequent transport 

direction.  

For the pauses that incorporated no rotational information, the time was generally short 

(Figure 5.3A), and 61 out of the 93 recorded pauses (65.6%) ended with the cargos moving 

in the same direction. During this type of pauses, the tension applied by motor proteins likely 

remained high and balanced to keep the cargos from rotating freely. The time required to 

resume active directional transport was generally short, and the cargos tended to maintain the 

original transport direction. 

For the pauses with rotation, the pause durations were generally longer with a second 

maximum at 5-6 s (Figure 5.3B). During this type of pauses, the tension exerted by the 

motors was weakened due to the uncoupling of some motors. It is plausible that the pauses 

caused by the extensive uncoupling and reattachment of motors required a longer time to 

return to the active directional transport stage.  

Another important finding is that the majority of the pauses with rotation (76%, 62 out of 
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81 cases) were followed by the cargo transport in the reversed direction. Such a significant 

bias in favor of the reversed transport direction after pause indicates that the bi-directional 

transport of cargos should be affected by some regulatory mechanisms, instead of working in 

a simple unregulated stochastic manner.32 The regulations could result in the change of single 

motor parameters, since the cargo transport is highly sensitive to the change of motor 

properties induced by regulatory mechanisms.17 Other than the regulatory mechanisms, the 

long pauses observed with high occurrence of rotational motions and reversals could also be 

possibly due to obstacles that impede the cargos from moving forward smoothly. The 

unbinding and binding of the motors when confronted with an obstacle could result in 

extended pauses and also involve the rotational motions of the cargos. Future work to 

correlate these new experimental observations with computational models of motor proteins 

may eventually lead to a fuller understanding of the complicated mechanisms.  

 

Cargo motions at track-switching. Track-switching is an important consequence of pause 

during axonal transport. Kinesin and dynein motors frequently encounter obstacles, such as 

other cargos, microtubule-associated proteins, and intersecting microtubules, which obstruct 

their way in the transport direction.42,51-56 The motors may pause until the track becomes 

available again to continue the transport, or they may overcome these obstacles by switching 

to other microtubules. Using SPORT, the cargo’s motions during the track-switching 

processes were elucidated in detail.  
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Figure 5.4 and Supplementary Movie 5.4 show the moving trace of a gold 

nanorod-containing vesicle that switched to another microtubule and reversed its moving 

direction after a pause. Three steps were visualized and identified for this track-switching 

process. The cargo was initially transported anterogradely by kinesin. Step 1 was a short 

pause with no apparent rotational motion. The nanorod moved to a new location of ~100 nm 

away from the original location in only 2-3 frames (4-6 ms) at ~2.5 s, and started the rotation 

and random translational movement within a 400 nm × 200 nm region in Step 2 until ~8.1 s. 

In Step 3, the cargo stopped the rotational motion for ~1 s before it finally started the 

retrograde transport along another microtubule that was 170 nm away from the original one. 

The correlation coefficients of the bright and dark DIC intensities in Steps 2 was 0.75, 

suggesting that the cargo was still tethered to the microtubule tracks and underwent the 

in-plane rotation.  

Apparently, the cargo “strode” from one microtubule to another and reversed the moving 

direction. Based on the distance between the two microtubule tracks, the rotational behavior 

of the gold nanorod and its positions during this process, the cargo possibly went through the 

following steps to switch the microtubule track and reverse the moving direction: First, the 

cargo encountered an obstacle and stopped proceeding. Second, Some motor proteins were 

then detached from the microtubule track to give enough freedom to the cargo to allow it to 

rotate and swing away from the original track; in the meantime, the detached motor proteins 

or newly recruited ones attempted to bind to other neighboring tracks. This was the time 
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when both rotational and translational movements were observed in Steps 2. The cargo was 

always tethered to the microtubules to result in the mostly in-plane rotational motion. Then, 

The rotational and translational movements stopped in Step 3 when enough kinesin and 

dynein motors and possibly other associated proteins were bound to the microtubules to 

prohibit the cargos from moving. At last, at the end of Step 3, the active retrograde transport 

was finally initiated by the dynein motors on a microtubule that was ~170 nm away from the 

original one.  

Additional examples of gold nanorods switching tracks can be found in Supplementary 

Figures 5.S10 and 5.S11. In both examples, the cargos showed rotational behavior during the 

pauses before switching tracks. This can be attributed to the requirement of cargo getting 

loose from the original microtubule and being attached to a different one. 

In summary, the SPORT technique with a temporal resolution of 2 ms has been 

developed and used to study the axonal transport of membranous cargos. The behaviors of 

gold nanorod-containing cargos in both active transport and pausing stages have been 

elucidated in unprecedented detail. During the active transport, multiple motor proteins bind 

to the cargo to provide a sufficient tension to maintain the cargo’s orientation. Between the 

active directional transport stages, the cargo experiences long and short pauses and undergoes 

different motions dependent upon the binding status of the kinesin and dynein motors 

together with other possible associated proteins such as dynactin to the cargo and the 



139 

 

 

 

microtubule. The pauses sometimes are followed by the cargo switching to a different 

microtubule track. These first-time observations on the rotational dynamics of the cargo by 

the SPORT technique reveal how motor proteins and other associated proteins take the cargo 

through the alternating stages of active directional transport and pause.  

As a future direction, the high-speed SPORT technique will provide new evidence for 

understanding the mechanism of the differential modulation of kinesin and dynein motor 

proteins by regulating factors, such as microtubule-associated protein tau.57-59 The 

combination of SPORT and fluorescence microscopy will be able to correlate the rotational 

dynamics of cargo with interactions between motor proteins and fluorescence-labeled 

microtubule-associated proteins.  

Cell culture. PC12 cells (CRL 1721.1, ATCC, Manassas, VA) were cultured on 22 mm × 22 

mm poly-l-lysine coated coverslips in six-well cell culturing plates. The complete cell culture 

medium was composed of F12K cell culturing medium (ATCC), 15% horse bovine serum 

(ATCC) and 2.5% Fetal Bovine Serum (ATCC) and was added to the plates. After the cells 

covered 70% of the coverslips, F12K medium supplemented with 200 ng/mL 2.5S neuron 

growth factor (NGF) (Bioproducts for Science, Madison, WI) was added to the plates. The 

cells were incubated in 37°C incubator with 5% CO2 for 48 h. The cell culturing medium was 

then changed to F12K medium supplemented with 200 ng/mL NGF and 0.05 mM foskolin 

(Catalog #344270, CalBiochem/EMD Biosciences). Rapid neurite extension was observed 
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within 20 min. The differentiated PC12 cells were left in the incubator for another 48 h 

before use to allow the growth of intact microtubules in the axons.  

Preparation of transferrin-modified gold nanorods. To facilitate their internalization into 

PC12 cells, the gold nanorods were modified with transferrin. Cetyltrimethylammonium 

bromide (CTAB)-capped (25 nm ×73 nm, 1.3×1011 particles/mL, Nanopartz) gold nanorods 

were used. An N-hydroxylsuccinimide-polyethylene glycol (NHS-PEG) disulfide linker 

(Sigma-Aldrich) was used by following a published protocol.60 The NHS-PEG disulfide linker 

has both disulfide and succinimidyl functionalities for respective chemisorption onto gold and 

facile covalent coupling of transferrin molecules. Briefly, excessive surfactant was first 

removed from 1.0 mL of gold nanorod solution by centrifugation at 3000 g for 10 min and the 

particles were resuspended in 1.0 mL of 2 mM borate buffer. A proper amount of fresh 

NHS-PEG disulfide solution (in dimethyl sulfoxide) was added to reach a final thiol 

concentration of 0.2 mM and reacted with gold nanorods for 2 h. The solution was then cleaned 

up by centrifugation and resuspended in 2 mM borate buffer. 2.0 µg of transferrin was added to 

the gold colloidal solution and allowed to react for 8 h. Before use, the colloidal gold nanorod 

probes were cleaned up by centrifugation and resuspended in 2 mM borate buffer. The 

concentrated gold colloidal solution was diluted to a final concentration of 4.3×109 

particles/mL for incubation with cells.  

Live cell imaging. 40 µL of diluted transferrin modified gold nanorod solution were added to 

the cell cultures and incubated for 45 min. The coverslip was rinsed with PBS buffer (10 mM, 
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pH 7.4) and then placed on a clean glass slide for observation. Two pieces of double-sided 

tape served as spacers between the glass slide and the coverslip to form a chamber. 30µL of 

fresh complete cell culturing medium was added to the chamber. An upright Nikon Eclipse 

80i microscope with a pair of Nomarski prisms and two polarizers was used for the imaging. 

The microscope was equipped with a 100× 1.40 numerical aperture (NA) Plan Apo oil 

immersion objective and a 1.4 NA oil immersion condenser. A 700-nm optical filter 

(Semrock, Rochester, NY) with a bandwidth of 20 nm was inserted at the illumination side. 

The movies were taken by a Hamamatsu ORCA-Flash2.8 CMOS camera at 500 frames/s. 

The collected videos were analyzed with MATLAB and NIH ImageJ.  

Microtubule destruction and fluorescence immunostaining. The cells were incubated with 

transferrin-modified gold nanorods for 45 min and then in the cell culturing medium 

containing 200 µg/mL colchicine for 1 h in the incubator (37°C, 5% CO2). The effect of 

colchicine on the microtubule network was confirmed by fixing both the treated and 

untreated cells with 4% paraldehyde in PBS solution and staining with the 1st antibody 

(mouse anti-alpha tubulin) and the 2nd antibody (Alexa 488 goat anti-mouse). The fluorescent 

images of the destroyed microtubules after treated with colchicine and the intact microtubules 

in the untreated cells were observed under the Nikon Eclipse 80i microscope. 

Transmission electron microscopy of gold nanorod-containing vesicles. The PC12 cells 

were plated on 22 mm × 22 mm coverslips in 3.5 cm petri-dishes and incubated with the 

complete cell culture medium until the cells reached over 90% confluency on the coverslips. 
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The transferrin modified gold nanorod solution were added into the petri-dishes to reach a 

final concentration of 3.7 × 1010 nanoparticles/mL and the cells were incubated with the 

nanoparticles for 50 min at 37oC in a cell incubator. After that, the cells were removed from 

the cell culturing medium and incubated with the fixative solution containing 2.0% 

glutaraldehyde and 2.0% paraformaldehyde for 15 min and kept in a 4oC fridge overnight. 

The cells were then post-fixed with 1% osmium tetroxide in pH 7.2 PBS buffer for 1.5 h, and 

dehydrated in ethanol solutions with increasing concentrations of ethanol (ethanol/water v/v: 

50%, 60% 70%, 80%, 90%, and 100%) for 15 min each and stained with 2% uranyl acetate 

in 70% ethanol solution at room temperature overnight. After that, the cells were washed 

three times with acetone and embedded in Epon resin. The embedded samples were removed 

from the coverslips and sectioned into 100 nm thick slices on a sliding ultramicrotome. The 

thin slices supported on the copper grids were examined with a JEOL 1200EX transmission 

electron microscope. 

Data analysis. A MATLAB script was written to track the location and the DIC intensities of 

the gold nanorods. The constant image patterns of the gold nanorod during the directional 

transport facilitate the precise localization of the gold nanorods when being transported. The 

nanorods were localized by looking for the center of the images. However, at the pauses 

when rotations occurred, the varying DIC image patterns reduced the localization precision. 

The actual localization precision in each image frame varies depending on the nanorod’s 

orientation at that moment as different orientations give rise to different bright and dark DIC 



143 

 

 

 

intensities and thus different signal-to-noise ratios. The small pixel size of the Hamamatsu 

CMOS camera (3.63 µm × 3.63 µm) allows the localization of gold nanorod to a precision of 

about 1-2 pixels or 45-90 nm. 

The rotation modes of the nano-cargo during the pauses were determined by calculating 

the Pearson’s correlation coefficient of the bright and dark part intensities of the DIC images. 

Pearson’s correlation coefficient is defined as the covariance of the two variables divided by 

the product of their standard deviations. It should be noted that the correlation coefficients 

were only calculated for the periods when the nanocargoes underwent rotational motions. 

When a nanocargo showed no apparent rotational motion, the noise would strongly affect the 

correlation analysis to result in mostly uncorrelated (close to 0) correlation coefficients.  
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Figures 

 

Figure 5.1. (A) Normalized DIC intensities of a gold nanorod-containing cargo at a long 
pause during the axonal transport. The bright and dark intensities are shown in blue and red, 
respectively. The x-axis (time) corresponds to the recording time of Movie 4.2. Before and 
after this pause, the cargo took on the directional transport. (B) Normalized DIC intensities of 
a gold nanorod-containing cargo freely diffusing in an axon where the microtubule arrays 
have been destroyed by colchicine. (C) Histogram of the correlation coefficients of the 
intensities of the gold nanorod-containing cargos at pauses. (D) Histogram of the correlation 
coefficients of the intensities of the gold nanorod-containing cargos freely diffusing in axons 
where the microtubule arrays have been destroyed by colchicine. 
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Figure 5.2. (A) DIC image of an axon of a differentiated PC 12 cell. A transferrin-modified 
gold nanorod is marked by the white arrow. The scale bar represents 10 µm. (B) Lateral 
displacement and normalized DIC intensities of a gold nanorod-containing cargo that was 
transported retrogradely, then paused, and finally was transported retrogradely again.  The 
long pause is identified in the yellow frame, and a short pause in the pink frame. The fast 
reversals are highlighted by the blue arrows. (C-F) 50 images taken from Supplementary 
Movie 4.3 at a time interval of 30 ms for each of the four regions highlighted in the green 
frames in (B), including (C) fast retrograde transport, (D) short pause without rotation, (E) 
long pause with rotation, and (F) fast reversal.  
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Figure 5.3. (A) Histograms of the pause durations for 93 pauses with no apparent rotational 
motion. (B) Histograms of the pause durations for 81 pauses with rotational motion.  
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Figure 5.4. (A) The 2D trajectory that starts at the origin. (B) The x and y trajectories and the 
normalized DIC intensity traces. The bright and dark intensities are shown in blue and red, 
respectively. The three steps are labeled with numbers. Another short pause with rotational 
motion is highlighted in the yellow frame. 
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Figure 5S1. DIC images of a 
plasmon resonance mode) at different orientations.  
stage and imaged at an interval of 10
each image. The periodic cha
of images.  
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DIC images of a 25 nm ×73 nmgold nanorod illuminated at 720 nm (longitudinal 
plasmon resonance mode) at different orientations.  The nanorod was placed on a rotating 
stage and imaged at an interval of 10°. The orientation angle of the nanorod is showed in 
each image. The periodic changes of DIC image patterns are clearly demonstrated in this set 

 

 

gold nanorod illuminated at 720 nm (longitudinal 
The nanorod was placed on a rotating 

. The orientation angle of the nanorod is showed in 
nges of DIC image patterns are clearly demonstrated in this set 



 

Figure 5.S2. The red arrow points out a nanorod that is wrapped around tightly by the lipid 

membrane of the endosome. The blue arrow points out three other nanorods that are al

contained inside small vesicles

boundaries as these vesicles are positioned close to each other.

 

152 

 

 

The red arrow points out a nanorod that is wrapped around tightly by the lipid 

. The blue arrow points out three other nanorods that are al

vesicles, although it is more difficult to identify individual vesicle 

boundaries as these vesicles are positioned close to each other. 

 

 
The red arrow points out a nanorod that is wrapped around tightly by the lipid 

. The blue arrow points out three other nanorods that are also 

, although it is more difficult to identify individual vesicle 
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Figure 5.S3. (A) The fluorescent image of the microtubule network in a healthy 

differentiated PC12 cell. (B)The fluorescent image of the destroyed microtubule network in a 

differentiated PC12 cell treated with colchicine. 

20 µm

A B
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Figure 5.S4. Two examples of computer simulated DIC intensity changing patterns of a gold 
nanorod. (A) Definitions of the elevation angle ψ and the azimuthal angleφ.(B) In-plane 
rotation of a nanorod lying flat on the surface (ψ = 0°). This is identical to the rotation of the 
real sample shown in Supplementary Figure 5.1. The correlation is evident as the bright and 
dark intensities move up and down together. The correlation coefficient for this case is close 
to +1. (C) Out-of-plane rotation in a vertical plane that is 45o to both x- and y-polarization 
directions (φ = 45°). The anti-correlation is evident as the two intensity values change in the 
opposite directions. The correlation coefficient for this case is -1. 

The relative DIC intensities of the bright part and the dark part were calculated using the 
simplified equations derived in ref. 33 (J. Am. Chem. Soc.132, 16417–16422, (2010)): 
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φψ 42
bright sincos1+≈I ,                          (S1) 

φψ 42
dark coscos1−≈I .                            (S2) 

It is worth noting that the noise in the actual imaging experiments, which gives typically 
10-15% relative errors in the DIC intensity measurement, provides a constant source of 
uncorrelation to the experimental correlation coefficients.  
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Figure 5.S5. Rotation characteristic time analysis using power spectral density followed by 
Lorentzian curve fitting. The power spectral density is the Fourier transform ofthe 
autocorrelation function according to the Wiener-Khintchine theorem. The single-side power 
spectral density spectra were plotted with the imbedded function in MATLAB. The spectra 
converted on the logarithm scale were fitted with the Lorentzian Function: 

0 2 2
0

2
4( )

A w
y y

x x wπ
= +

− +  ,               (S3)
 

where y0 is an offset from noise, A is a constant relative to the amplitude of the signal,x0 is the 
peak position of the Lorentizian curve, and wis the width of the Lorentzian curve, with the 
unit of Hz. The rotation characteristic time can be calculated as τ = 1/w.  

The rotation characteristic times of the rotation at the long pause (A) and of the random 
Brownian diffusion (B) shown in Figure 5.1A and 4.1Bare 10.5 ms and 2.2 ms respectively.  
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Figure 5.S6. A cargo showed rotational behavior at two pauses (0-1.7 s and 3.7-9.8 s) and 
maintained the same transport direction after both pauses. The displacement of 
transferrin-modified gold nanorods and their bright (blue) and dark (red) DIC intensities are 
plotted in this set of figures. The pauses are highlighted in the yellow frames. In these events, 
the cargoes were transported on the linear microtubules without much curvature, so the 
displacement from the original location of the cargo is plotted against the time.  
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Figure 5.S7. A cargo showed no significantrotational behavior during the pause (2.2-6.6 s), 
and then was transported in the same direction. The displacement of transferrin-modified 
gold nanorods and their bright (blue) and dark (red) DIC intensities are plotted in this set of 
figures.The pauses are highlighted in the yellow frames. In these events, the cargoes were 
transported on the linear microtubules without much curvature, so the displacement from the 
original location of the cargo is plotted against the time.  
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Figure 5.S8. A cargo showed no apparentrotational behavior during the pause (2.1-5.9 s), and 
then was transported in the opposite direction. The displacement of transferrin-modified gold 
nanorods and their bright (blue) and dark (red) DIC intensities are plotted in this set of 
figures.The pauses are highlighted in the yellow frames. In these events, the cargoes were 
transported on the linear microtubules without much curvature, so the displacement from the 
original location of the cargo is plotted against the time.  
 
 
  

-1000

-500

0

500

1000

1500

0 2 4 6 8 10
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

D
isp

la
ce

m
e

n
t

D
IC

 In
te

n
sity

Time (s)

pause



160 

 

 

 

 

 
Figure 5.S9. A cargo showed rotational behavior at the pause (0.7-1.8 s), and then was 
transported in the opposite direction. Later, the cargo paused again from 4.8 s to the end of 
the movie. During this second pause, the cargo showed significant translational and rotational 
motions. The displacement of transferrin-modified gold nanorods and their bright (blue) and 
dark (red) DIC intensities are plotted in this set of figures. The pauses are highlighted in the 
yellow frames. In these events, the cargoes were transported on the linear microtubules 
without much curvature, so the displacement from the original location of the cargo is plotted 
against the time.  
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Figure 5.S10. (A) The moving trace of the gold nanorod. The red arrows point towards the 
moving direction and the numbers indicate the sequence of these transport routes. (B)The 
traces of the gold nanorods along the x- and y-axes and DIC intensity traces.The bright and 
dark intensities are shown in blue and red, respectively.To clear show the movement of the 
cargoes from one microtubule to another, both x and y positions, instead of the displacement, 
are plotted against time in these figures. 

The gold nanorod paused from ~0.8-1.8s (highlighted by the blue frame, no apparent 
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rotational motion), transported from 1.8-10 s for a distance of ~2.8 µm with an average 
velocity of 300 nm/s, and reversed the transport direction at 10 s. Then it paused and showed 
mostly in-plane rotational motion (correlation coefficient r = 0.78) during the track-switching 
process (10.7-12.3 s) (highlighted in the yellow frame). The in-plane rotational motion of the 
cargo indicates a loosened attachment of the motor proteins to the microtubule track when the 
motors looked for another docking site. The pause where the track-switching occurred is 
highlighted by the yellow circle in the 2D trajectory. The two tracks are ~80 nm apart.  

During the directional transport stages, the gold nanorods did not show apparent 
rotational motion.  

During the track-switching for all the three examples, the gold nanorods paused while 
showing rotational motion, indicating that the cargoes confronted with road blocks and 
loosened their attachment with the microtubule track in order to move to another track. 
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Figure 5.S11. This gold nanorod-containing cargo was first transported for a distance of ~1.6 
µm at 250 nm/s (Route 1) and paused from 7.0-14.6 s. The pause was highlighted in the blue 
circle in A and the blue frame in B. The nanorod showed very little rotational motion in the 
first 6.5 s of the pause. At the end of this pause, the nanorod showed rotational motion 
(13.5-14.6 s) and then reversed its transport direction. After being transported for a distance 
of ~700 nm (Route 2), the nanorod paused again from 15.3-16.5 s with very little rotational 
motion (highlighted in the green circle and frame). The nanorod was then transported in the 
opposite direction rapidly for a distance of ~400 nm (Route 3) and paused again from 
16.6-17.3 s with rotational motion (highlighted in the yellow circle and frame). After the 
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pause, the nanorod reversed its transport direction and then moved along another intersecting 
microtubule track (Route 4). From the last segment of Route 4(towards the top left corner), it 
was clear that the cargo moved on a new microtubule track, but it was unclear at which point, 
the green or yellow circle, the cargo switched track. 
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Abstract 

We introduce a precise three-dimensional (3D) localization method of spherical gold 

nanoparticle probes using model-based correlation coefficient mapping. To accomplish this, a 

stack of sample images at different z-positions are acquired and a 3D intensity profile of the 

probe serving as the model is used to map out the positions of nanoparticles in the sample. By 

using this model-based correlation imaging method, precise localization can be achieved in 

imaging techniques with complicated point spread functions (PSF) such as differential 

interference contrast (DIC) microscopy. We demonstrated the localization precision of 4-7 

nm laterally and 16 nm axially for 40-nm gold nanospheres at an imaging rate of 10 frames 
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per second. The 3D super-localization method was applied to tracking gold nanospheres 

during live endocytosis events.  

 

Introduction 

Many biological activities involve motions at the nanoscale, e.g., DNA polymerization,1 

motor protein stepping,2,3 and self-rotation of ATP synthase.4 Precisely locating and tracking 

optical probes are of vital importance in understanding these biological processes. Single 

fluorescent molecules and nanoparticles have been widely applied in these studies. For 

example, 8-nm steps of motor proteins have been resolved in live cells by tracking individual 

fluorescent particles.2,5 Ultrafine membrane compartments with a size ranging from 30-230 

nm, which limits membrane protein diffusion, were revealed by single fluorescent molecule 

tracking.6 The localization precision of single molecules in such complex samples was 

typically 10-20 nm laterally and ~50 nm in the axial direction.7-11 It is worthwhile to point 

out that the localization precision of individual fluorescent molecules is directly relevant to 

the optical resolution in imaging photo-switchable dyes as these single-molecule fluorescence 

events are temporally separated by being alternatively switched “on” and “off”. The small 

fractions of fluorophores that are turned “on” in each imaging cycle allow the localization of 

each fluorophore with nanometer accuracy. This stochastic photoactivation and optical 

reconstruction approach has been recently used to break the diffraction limit of far-field 

optical microscope in both 2D and 3D.9,12-14 
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 The major disadvantages of fluorescence-based imaging including photo-instability of 

fluorescent labels, e.g., photobleaching15,16 and blinking,16,17 and the interference to the 

natural cellular processes are caused by fluorescent labels.8,18 An alternative approach is to 

use plasmonic gold nanoparticle probes, which display large optical cross-sections near their 

surface plasmon resonance (SPR) frequencies, excellent photo- and chemical-stability, and 

good biocompatibility.19-22 In addition, they can be engineered into different sizes and shapes 

and their controllable surface chemistry allows them to be modified with a variety of 

chemically and biologically active molecules.  

 Gold nanoparticles have been imaged and tracked in live cells with a variety of 

techniques including bright-field microscopy,23,24 dark-field microscopy,25,26 photothermal 

interference contrast technique,27-29 differential interference contrast (DIC) microscopy,30,31 

confocal Raman microscopy,32 and dynamic surface-enhanced Raman spectroscopy.33 

Among these techniques, DIC microscopy exhibits excellent detectability of small gold 

nanoparticles, thus the potential of serving as a powerful tool in single particle tracking 

studies. We recently used DIC microscope to track the endocytosis process of gold 

nanoparticles31 and visualized the rotational motion of gold nanorods in live cells and on cell 

membranes.34,35 

 DIC microscope works on the principle of two-beam interferometry to gain information 

about the optical density of the sample. The interference nature makes it sensitive to see 

small features that display different refractive indices from its environment while insensitive 
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to scattered light from surrounding cellular components. The result is that it enables the user 

to image both the nanoprobes and live cells with superior quality. A variety of cellular 

organelles that are invisible in other conventional microscopy such as bright-field 

microscopy becomes observable under a DIC microscope.36 The excellent detectability of 

nanoparticles and wide-field configuration gives excellent temporal resolution that are 

unparalleled by detection techniques based on raster scanning. Compared to scattering-based 

dark-field microscopy,25,26,37,38 imaging nanoparticles under the DIC microscope is less 

affected by other strong light scatterers, such as large vesicles and the edge of the nucleus, in 

the sample media.39 

 More importantly, DIC microscopy allows for the use of the full numerical aperture 

(NA) of the microscope objective and condenser, resulting in the highest possible lateral and 

axial resolutions.40,41 The optical resolutions, defined as the full width at half maximum 

(FWHM) of the intensity distribution of a point spread function (PSF), are:42 

 NA
FWHM Lateral

λ
×= 51.0

  (1) 

laterally, and  

 
22

88.0

NAnn
FWHMAxial

−−

×
=

λ

  (2) 

axially, where λ is the illumination wavelength, n is the refractive index of the immersion oil, 

and NA is the numerical aperture of the objective. In dark-field microscopy, the illumination 

is provided by a center-blocked, high-NA condenser (usually NA 1.2-1.4). The objective NA 
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must be restricted (smaller than the condenser NA) to reject transmitted illumination beam, 

resulting in lower spatial resolution. Taking an oil-immersion (n = 1.519) objective with the 

NA restricted to 1.0 as an example, and assuming the illumination wavelength to be 545 nm, 

the lateral resolution in dark field microscopy is 278 nm, as compared to 199 nm in DIC 

microscopy (NA 1.4 for both condenser and objective). The axial resolution in dark field 

microscopy is 1277 nm, nearly 2.5 times the DIC axial resolution of 516 nm. Therefore, the 

image spot of a nanoparticle appears expanded both laterally and axially in dark-field 

microscopy when compared to the image spot in DIC microscopy (Supplementary Figure 

6.1). In this sense, using DIC microscopy will yield much better precision in locating the 

centroids of the diffraction limited image spots of nanoparticle probes, especially in the axial 

direction.  

 Due to DIC microscopy’s reliance on the principle of interference, nanoparticles show a 

half-bright and half-dark image superimposed on a gray background, which complicates the 

particle localization because simple Gaussian fitting of the image profile does not apply to 

the more complicated DIC PSF. To solve this problem, Gelles et al. developed a localization 

method by evaluating the cross correlation of the sample image with the kernel portion of a 

model particle image.43 They demonstrated 1-2 nm precision laterally in tracking 190-nm 

plastic beads driven by kinesin motors under a DIC microscope. To the best of our 

knowledge, precisely tracking gold nanoparticles in 3D space to a few nanometer precision 
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has not been demonstrated although there is an increasing demand to achieve this in the 3D 

matrix of biological samples.  

In the present study, we systematically investigated the 3D PSF of gold nanoparticles in 

DIC microscopy and introduced an algorithm to locate gold nanoparticles in 3D space. The 

localization precision of 4-7 nm laterally and 16 nm axially for 40-nm gold nanospheres was 

achieved with an imaging rate of 10 frames per second and a vertical step size of 40 nm. The 

temporal resolution of 3D localization was in the range of seconds, which was the time 

needed to record a stack of z-slices through the sample volume. We also demonstrated the 

application of this method in the tracking of gold nanoparticles in live cells during the 

endocytosis events.  

 

Experimental Section  

Sample slides. 40-nm gold nanoparticle colloid solutions were purchased from 

BBInternational (Cardiff, UK). Positively-charged amino silane-coated glass coverslips were 

prepared by modifying 22 mm × 22 mm No. 1.5 coverslips (Corning) with 1% 

3-aminopropyl triethoxy-silane (Sigma-Aldrich) ethanol solution. The colloid solutions were 

first diluted with 18.2-MΩ pure water to proper concentrations. Then the diluted solution was 

sonicated for 15 mins at room temperature. After sonication, 6 µL of the gold nanoparticle 

solution was added onto the modified coverslip and the particles (citrate-capped, negatively 

charged) adsorb to the coverslip surface through electrostatic interactions. 
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Imaging system. An upright Nikon Eclipse 80i microscope was used in our investigations. 

The DIC mode used a pair of Nomarski prisms, a 100× Plan Apo/1.40 oil-immersion 

objective, and an NA 1.40 oil condenser, while the dark-field mode used a 100× Plan Fluor 

NA 0.7-1.3 oil objective and an NA 1.20-1.43 oil dark-field condenser. A high transmission 

540-nm optical filter (Semrock, Rochester, NY) with a bandwidth of 20 nm was inserted at 

the illumination side. Before imaging, in order to differentiate gold nanoparticles from 

sub-cellular organelles, a high transmission 720-nm optical filter (Semrock, Rochester, NY) 

with a bandwidth of 13 nm was used because gold nanospheres that were visible at 540 nm 

would become nearly invisible at 720 nm as we have demonstrated previously.44 The images 

and movies were taken by either a CoolSnap ES CCD camera (Photometrics, CA) or a 

Hamamatsu ORCA-Flash2.8 CMOS camera. An optimal combination of image contrast, 

spatial resolution and temporal resolution was achieved with the imaging rate of 10 frames 

per second, which was used in all of our imaging experiments unless noted. 

3D Imaging. A motorized rotary stage from Sigma Koki (model no. SGSP-60YAM) was 

coupled to the fine-adjustment knob on the microscope. The motor was controlled by 

Intelligent Driver, CSG-602R (Sigma Koki). The camera and stage were synchronized by 

adjusting the scanning speed and imaging rate. At the imaging rate of 10 frames per second, 

the distance between two successive images was 40 nm. MATLAB and NIH ImageJ were 

used to analyze and process the collected images and videos. The 3D images were rendered 

in Visage Imaging Amira (Berlin, Germany).  
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Surface modification of gold nanoparticles. To facilitate their internalization into A549 

cells, the gold nanoparticles were modified with either transferrin45 or a cell penetrating 

peptide (CPP) from the HIV-1 protein Tat30,46,47 (sequence: YGRKKRRQRRR, AnaSpec, 

San Jose, CA). A NHS-PEG disulfide linker (Sigma-Aldrich) was used by following a 

published protocol.48 The NHS-PEG disulfide linker has both disulfide and succinimidyl 

functionalities for respective chemisorption onto gold and facile covalent coupling of 

transferrin molecules. Briefly, a proper amount of fresh NHS-PEG disulfide solution (in 

dimethyl sulfoxide) was added to reach a final thiol concentration of 0.2 mM and reacted 

with gold nanoparticles for 2 h. The solution was then cleaned up by centrifugation and 

resuspended in 2 mM borate buffer. 2.0 µg of transferrin (or 2.0 µg of Tat CPP) was added to 

the gold colloidal solution and reacted for 8 h. Before use, the colloidal gold nanoparticles 

were cleaned up by centrifugation and resuspended in 2 mM borate buffer. The concentrated 

gold colloidal solution was diluted to a final concentration of 4.3×109 particles/mL for 

incubation with cells.  

Cell cultures and imaging. For the localization of gold nanoparticles inside fixed cells, 

HeLa cells (ATCC, Manassas, VA) were cultured on 22 mm × 22 mm poly-L-lysine coated 

glass coverslips in petri dishes. 1.5 mL of minimum essential cell culture medium (ATCC) 

with 10% fetal bovine serum supplement was added to the plates. The cell culture was 

incubated at 37°C under 5% CO2. After the cell culture covered 70% of a coverslip, 30 µL of 

TAT CPP-modified gold nanoparticle solution was added into the petri dish and incubated 
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with the cells for an hour. The gold nanoparticles were naturally internalized by the HeLa 

cells. The coverslip was then rinsed with 10 mM phosphate buffered saline (PBS) at pH 7.4 

and then the cells were fixed with 4% paraldehyde in the same PBS buffer. After that, the cell 

coverslip was placed on a clean glass slide for observation. Two pieces of double-sided tape 

served as spacers between the glass slide and coverslip to form a chamber.  

 For the localization of gold nanoparticles during the endocytosis process, A549 human 

lung cancer cells (ATCC, CCL-185) were cultured on 22 mm × 22 mm poly-L-lysine coated 

glass coverslips in petri dishes. Minimum essential cell culture medium (ATCC) with 10% 

fetal bovine serum supplement was added to the plates. The cell culture was incubated at 

37°C under 5% CO2. After the cell culture covered 70% of a coverslip, the cell coverslip was 

taken out for imaging and a chamber was made using two pieces of double-sided tape. 20 µL 

of transferrin-modified gold nanoparticle solution was added into the chamber. The 

back-and-forth vertical scans and movie recording started immediately.  

 

Results and discussion  

Complexity of 3D DIC point spread function. The 2D amplitude PSF of a DIC microscope 

adopts the form of:44,49 

 ),(),()1(),( yxxkeRyxxkeRyxh ii ∆+−∆−−= − θθ
    (3) 

where (x, y) is a point in the image plane, R is the amplitude ratio of the 2 illumination 

beams, k(x, y) is the amplitude PSF for transmission optics under coherent illumination, 2θ is 
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the additional phase bias, and the shear distance 2∆x is assumed to be along the x direction 

without losing generality. In the image plane, the intensity distribution of a DIC image is the 

square modulus of the convolution of the DIC PSF and the object amplitude and phase 

distribution.  

 The 3D DIC PSF has been modeled by Preza and coworker using eq 3 and the defocused 

PSF for transmission optics.49,50 Their work shows that under ideal conditions, i.e., the two 

illumination beams are of equal intensity and the phase bias 2θ is π/2, the 3D PSF is 

anti-symmetric, i.e., it has a 2-fold rotation-reflection axis. However, due to non-ideal 

experimental parameters, the actual 3D DIC PSF is more complicated. To demonstrate this, 

we collected the 3D intensity profile of a 40-nm gold nanosphere immobilized on a piece of 

glass coverslip with a z-step size of 40 nm. Figure 6.1A shows the 3D intensity profile, 

where the “hot” part shows the bright DIC intensities and the “cold” part shows the dark DIC 

intensities. Interestingly, the 3D PSF is elongated due to the lower resolution in the 

z-direction than in the x-, y-directions. Figures 6.1B and C show the ortho-slices of the 3D 

intensity profile in the x-y and x-z planes, respectively. The dark part of the DIC image 

shows two minima in the focal plane, and apparently not following the ideal anti-symmetric 

pattern. In addition, the 3D DIC intensity profile is not symmetric along the z-direction with 

respect to the focal plane, and the bright and dark portions have different 

maximum/minimum at different z-positions. 
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Model-based correlation imaging. To precisely locate 40-nm gold nanoparticle probes in 

biological samples, an experimental 3D DIC intensity profile of a nanoprobe is used as the 

model to map the nanoparticle probes in a stack of z-sectioned sample images. In practice, 

the sample containing the model nanoparticle and other nanoparticle probes are scanned 

vertically until a z-stack of images of a volume of interest is collected. The 3D model is 

cropped and then overlaid with a portion of the volume of interest. A correlation score is 

calculated to evaluate how likely the overlaid volume contains a nanoprobe. The model is 

then moved pixel by pixel, line by line and frame by frame to cover the whole volume of 

interest. The correlation scores are calculated at each position and used to construct a 3D 

correlation map. The correlation scores can be defined through a variety of ways51 and herein 

Pearson’s correlation coefficient was used. The correlation coefficient p between a 3D model 

and the sub-volume that the model overlays is defined as:  

- -

1 -

1 [ ( ) ( )] [ ( ) ( )]
( , - )

1

m
model model sub volume sub volume

i model sub volume

I i I avg I i I avg
p model sub volume

m σ σ=

− −
=

− ∑ ,(4) 

where the summation is over all the pixels in the 3D model or the sub-volume, and m is the 

total number of pixels in the model; I is intensity; avg and σ denote the average and standard 

deviation of all intensities in the model or the sub-volume, respectively. From the 3D 

correlation map, the position of a nanoparticle can be precisely located. The center of a 

nanoparticle can be computed by weighting all the coordinates that the particle covers with 

their corresponding p values:  
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where X can denote any Cartesian coordinates, x, y, or z, and a threshold is usually applied to 

cut off the noise contribution. The summation is over all the pixels that a particle covers. 

Through this weighting procedure, all intensities in the 3D profile are considered and a 

sub-pixel precision can be obtained.  

 Figures 6.1D-H show the localization of a 40-nm gold nanosphere using this 

model-based correlation imaging technique. In the localization, one stationary particle is 

selected as the reference in order to eliminate the error caused by the drifting of the sample 

relative to the microscope optics. That is, the position of the target particle relative to the 

reference particle is recorded. Figure 6.1E shows the 3D correlation map of the 40-nm gold 

nanoparticle and its surrounding area. High correlation scores close to its center are clearly 

identifiable (hot part). Similar to the 3D PSF, the 3D correlation coefficient map is also 

elongated along the z-direction. By setting a proper display threshold, the correlation scores 

appear as a spheroid shaped volume. Figures 6.1F and G show the ortho-slices of the 3D 

map in the x-y and x-z planes, respectively. It is interesting to note that the central high 

correlation portion is flanked by two regions with low correlation scores (cold parts). The 

negative correlation scores mean anti-correlation, which is originated from the overlap of the 

bright part of the model and the dark part of the sample, or vice versa.  
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 The centroid of the particle is determined by weighting the coordinates with the 

correlation scores using eq 5. In practice, a threshold is set to remove the interference from 

noise. Since the position is acquired from the whole image volume, high lateral and axial 

precisions are achieved. Figure 6.1H shows 42 repeated measurements of the position of 

particle a with respect to particle b. The standard deviations of the relative x, y and z 

positions of particle a are 4.4 nm, 6.5 nm and 16.0 nm, respectively. The axial localization 

precision is ~3 times of that in the x or y direction, consistent with the fluorescence-based 

methods.  

The signal to noise ratio of DIC images plays an important role in localization precision. 

In the current study, DIC images of fixed 40-nm gold nanospheres were captured at 10 

frames per second, which gave a signal-to-noise ratio of ~20. Here the signal is defined as the 

intensity difference between the bright part and dark part for an in-focus 40-nm gold 

nanoparticle, and the noise is simply the standard deviation of the non-signal background. 

Correspondingly, the temporal resolution of 3D super-localization was in the range of 

seconds for taking stacks of z-slices at 40-nm steps through the sample volume. It is expected 

that the precision can be improved if the temporal resolution requirement is relaxed.  For 

example, when the frame rate was halved to 5 frames per second, the x, y, and z localization 

precisions were improved to 3.1 nm, 3.8 nm and 12.9 nm, respectively. 

 It is worthwhile to note that the model-based mapping algorithm requires that the gold 

nanospheres are uniform in shape and size; otherwise, the 3D model generated from one 



178 

 

 

 

particle may not fit accurately with other particles. The 40-nm gold nanoparticles used in the 

present study were sufficiently uniform to meet this requirement.  

 

3D localization of gold nanoparticles in fixed cells. Gold nanoparticles have been reported 

to serve as carriers in targeted drug delivery,52,53 gene regulation54 and photothermal 

therapies.55  It is important to follow their distribution, trajectory and final fate after they 

enter the host cell. To demonstrate the capability of the 3D correlation imaging, we further 

applied this 3D correlation mapping method in locating and tracking 40-nm gold nanospheres 

in cells. We first demonstrated super-localization of 40-nm gold nanoparticles in fixed HeLa 

cells.  

The cells were incubated with Tat CPP-modified 40-nm gold nanoparticles for an hour to 

allow natural internalization to occur. The cells were then fixed using 4% glutaraldehyde for 

20 min. Z-sections of the HeLa cells with gold nanoparticles were recorded (Supplementary 

Movie 6.1). Figure 6.2A shows the 3D distribution of mapped particles in a thin layer from 

the glass slide surface to ~2 µm above and their corresponding positions to a z-sectioned DIC 

image. It should be noted that the viewing angle is from above and gold nanoparticles below 

the cell image are covered up and invisible. Gold nanospheres are displayed as elongated, 

golden iso-surfaces in the figure. All of the visible gold nanoparticles are in cell plasma and 

outside of the nucleus, with a few residing at locations very close to the nucleus membrane. 

This is consistent with the literature reports that gold nanoparticles larger than 20 nm will not 
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go through the nucleus membrane.30 Figure 6.2B shows the same cell viewed from the side. 

In the lower left corner, there are a group of gold nanoparticles in the same plane. Those are 

adsorbed particles on the glass coverslip. 

 One thing to note is that the automated localization procedure can also pick up other 

spherical sub-cellular organelles that have a 3D DIC intensity profile similar to that of the 

gold nanoparticle model. In order to discriminate single gold nanoparticle probes from these 

spherical structures, as well as nanoparticle aggregates, with high confidence, we also imaged 

the cell at 720 nm at which single gold nanoparticles could be “switched off” to manually 

exclude those cellular structures and larger aggregates.31  

 

3D localization of gold nanoparticles in live cells. The applicability of the 3D correlation 

mapping algorithm to single particle tracking in live cells was further demonstrated by 

tracking 40-nm transferrin-modified gold nanoparticles continuously during their 

internalization by live A549 cells. Transferrin and transferrin-modified gold nanospheres are 

known to be internalized by cells mainly through clathrin-mediated endocytosis.57,58 When 

incubated with cells, the negatively-charged nanoparticles can be adsorbed on the cell 

membrane through non-specific adsorption and/or specific receptor binding and perform 

active translational diffusion on the cell membrane. The particles then either dissociate from 

the cell surface or are temporarily fixed at one location presumably by specific interactions 

with transferrin receptors before the internalization occurs. The endocytosis process usually 
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takes several minutes, after which the nanoparticles restore active translational motion, 

including intracellular transport and random diffusion, inside the cell.  

 In our tracking experiment, some of the negatively-charged gold nanoparticles were 

firmly adsorbed on the positively-charged poly-L-lysine-modified coverslip surface through 

electrostatic attraction. One such particle was chosen as the reference (Figure 6.3A) to 

eliminate the effect of sample drifting during the repeated vertical scans. The relative 3D 

position of the particles of interest (Figure 6.3B) was tracked continuously by repeatedly 

scanning between the coverslip surface and the top cell surface. 

The tracking started when the particle stopped active translational diffusion on cell 

membrane and stayed at a relatively fixed position, allowing its location to be measured with 

sufficient accuracy. The 3D moving trace of the gold nanoparticle (Figure 6.3C) shows 

clearly that the particle moved significantly before it finally entered the cells. The movement 

in the z-direction was as large as several hundred nanometers between data points, much 

larger than the cell membrane thickness (5~10 nm). The big position changes in the 

z-direction are possibly due to the movement of the cell membrane or the change of the cell 

surface morphology. At the end of the endocytosis, the nanoparticle went into the cells and 

diffused away from the original entry spot.  

 

Achievable temporal resolution. Temporal resolution is an important consideration in 

tracking dynamic biological events. The temporal resolution for a recorded sequence of 
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nanoparticle movement is simply the time spent on one vertical scan through the sample of 

interest. In the endocytosis study, the whole depth of the cell (~6.4 µm) was scanned with a 

step size of 40 nm and an image exposure time of 100 ms. This yields a temporal resolution 

of 16 s for each particle position in order to achieve a sub-20 nm spatial resolution. This 

temporal resolution may not be sufficient for fast dynamics, such as the Brownian motion or 

intracellular transport on the cytoskeleton tracks. However, it is generally adequate for 

localizing nanoparticles with restricted movement when they are imbedded in viscous media 

such as cell membranes or bound to relatively stationary organelles. Because this method has 

minimal intrusion to biological systems and no photobleaching, it is ideal for long-term 

high-precision tracking of nanoprobes in living systems.  

The temporal resolution of this method can be improved to ~1 s without sacrificing 

localization precision. Note that a large fraction of time was spent in scanning through the 

non-signal regions (area contains no probe or target of interest). If we reduce the scanning 

depth to ~400 nm, which is sufficient to cover the image volume of a visible nanoparticle, we 

can achieve a temporal resolution of 1 data point per second under the same experimental 

conditions (100 ms exposure time and 40 nm vertical step size). This temporal resolution is 

comparable to most commercially available confocal fluorescence microscopes with a 

temporal resolution on the order of 1 frame per second for collecting 2D images.  
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Limitations of the Technique. Just like other localization techniques, the 3D mapping 

technique also has its limitations. First, because this technique requires a high consistency of 

the geometry of the nanoparticles, it cannot be applied on gold nanoparticles when they form 

aggregates. Second, this technique also requires that the distances between each two 

nanoparticles are satisfactory. When the distances between the nanoparticles are within the 

diffraction limit, the individual images of the nanoparticles cannot be distinguished. 

However, that is an intrinsic limitation for far field light microscopy techniques. Even if the 

distances between the nanoparticles are larger than the diffraction limit, the mapping could 

still be affected when the distance between the nanoparticles is smaller than the size of the 

model image that is used to map the images of interest. When the model image is moved 

pixel by pixel and frame by frame to cover one nanoparticle of interest, to some degree it will 

cover part of another nanoparticle. The centroid generated from the weighting may not be 

precise in this case. 

 

Conclusions  

 In summary, a 3D model-based correlation mapping method was developed to locate 

gold nanoparticles through vertical scans of the sample volume of interest. This localization 

method provides sub-20-nm axial precision. Using this method, 40-nm gold nanoparticles in 

a fixed HeLa cell were detected and their positions were mapped in the 3D cellular 

environment. Dynamic tracking of gold nanoparticles on the live cell membrane during the 
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endocytosis process was also demonstrated. Although with limitations, this 3D localization 

method allows long-term single particle tracking with high precision, and thus has a high 

potential in studying biological processes where precise localization is essential in learning 

the mechanisms.  
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Figures 

 

Figure 6.1. Model-based 3D correlation imaging for 3D super localization of gold 

nanoparticles. (A) 3D intensity profile of a 40-nm spherical gold nanoparticle immobilized 

on glass surface (shown in (D)) imaged with a 100× objective. The model is comprised of a 

bright portion shown in orange and a dark portion shown in blue. The 3D intensity profile 

was built from 65 equally spaced 2D DIC images along the optical axis. The pixel size was 

36.3 nm, and the z-step was 40 nm. Ortho-slices of the image volume were shown in (B) and 

(C). (E) Model-based 3D correlation map of a 40-nm gold nanoparticle and its surrounding 

area. Ortho-slices of the correlation map were shown in (F) and (G).  (H) Variations on the 
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measured distance between two 40-nm gold particles from 42 sets of z-scans. The distance, 

rather than the absolute positions, was determined in order to eliminate the sample drifting in 

high precision microscopy. A correlation coefficient threshold of 0.6 (the shaded iso-surface 

in (E)) was used in the calculation. 

  



 

 

Figure 6.2.3D localization of 40

positions of mapped particles are presented as spheroid iso

3D correlation map. The cross section shows the DIC cell image at the corresponding

position. (B) The same volume is viewed from a different angle to show that mapped 

particles are vertically distributed inside the cell. More slices of the cell image with vertically 

distributed gold nanoparticles were shown in Supplementary Figure 
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3D localization of 40-nm gold nanoparticles inside a fixed HeLa cell. (A) The 

positions of mapped particles are presented as spheroid iso-correlation surfaces of 0.6 in the 

3D correlation map. The cross section shows the DIC cell image at the corresponding

position. (B) The same volume is viewed from a different angle to show that mapped 

particles are vertically distributed inside the cell. More slices of the cell image with vertically 

distributed gold nanoparticles were shown in Supplementary Figure 6.2. 

 

nm gold nanoparticles inside a fixed HeLa cell. (A) The 

correlation surfaces of 0.6 in the 

3D correlation map. The cross section shows the DIC cell image at the corresponding 

position. (B) The same volume is viewed from a different angle to show that mapped 

particles are vertically distributed inside the cell. More slices of the cell image with vertically 



189 

 

 

 

 

Figure 6.3. The 3D trajectory of a gold nanoparticle on the membrane of an A549 cell. (A) 

The reference particle adsorbed on the coverslip. (B) The particle of interest on the cell 

membrane. The correlation map of the particle of interest is shown in the square box 

appended to the image. The reference particle and the particle of interest are imaged at 

different focal planes. (C) The moving trace of the nanoparticle. The initial position of the 
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particle was (0, 0, 0). Larger z coordinates indicate the particle was closer to the cell surface 

and farther away from the coverslip.  
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Supplementary Figures 

 

 

 

Figure 6.S1. Z-profiles of single gold nanoparticles under (A) bright-field (NA 1.4 for both 

objectiveand condenser), (B) dark-field (objective NA ~1.0, condenser NA 1.2-1.4), and (C) 

DIC microscope(NA 1.4 for both objective and condenser), respectively. 
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Figure 6.S2. A-E.Slices of the volume of the cell images with 40-nm gold nanoparticles 

distributed at different axial positions.F. Side view of the distribution of the gold 

nanoparticles. 
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Abstract 

Super-localization of single molecules and nanoparticles has become an essential 

procedure to bring new insights into nanoscale structures and dynamics of biological systems. 

In the present study, super-localization is combined with the newly introduced differential 

interference contrast (DIC) microscopy-based single particle orientation and rotational 

tracking (SPORT). The new technique overcomes the difficulty in localization of the 

anti-symmetric DIC point spread function by using a dual-modality microscope configuration 

for simultaneous rotational tracking and localization of single gold nanorods with 

nanometer-scale precision. The new imaging setup has been applied to study the steric 

hindrance induced by relatively large cargos in the microtubule gliding assay and to track 
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nanocargos in the crowded cellular environment. This technique has great potential in the 

study of biological processes where both localization and rotational information are required. 

 

 

Introduction 

Localization of single molecules and particles in optical microscopy with a precision of 

one to three orders of magnitude smaller than the diffraction limit of light is often referred to 

as super-localization. Nanometer-scale localization precision has been demonstrated for 

single fluorophores1-8 and non-fluorescent particles.9-11 In single molecule or particle tracking 

experiments, super-localization has brought new insights into various biological questions, 

e.g., the stepping mechanisms of motor proteins kinesin and myosin.10-13 In 

single-molecule-based super-resolution fluorescence microscopy, such as stochastic optical 

reconstruction microscopy (STORM)14-15 and photoactivated localization microscopy 

(PALM),16-18 the localization precision determines the spatial resolution as individual 

molecules are separated temporally. 

In most super-localization analyses the centroids of single molecules/particles are found 

by fitting their images to the point spread function (PSF) of the optical imaging system, 

which is usually approximated as a 2D Gaussian function. Beyond these relatively simple 

cases, however, there are more complicated situations where the PSF does not resemble the 

Gaussian profile. For example, special cares are required to minimize the localization errors 

when the intensity distribution of an emitting molecule is significantly affected by the 
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emission dipole’s 3D orientation.3-4 In differential interference contrast (DIC) microscopy, 

the anti-symmetric PSF, which is composed of apposed bright and dark parts over a grey 

background, cannot be fitted with a simple mathematical function; therefore, the correlation 

mapping algorithm has been implemented to provide nanometer-scale localization for 

spherical particles in 2D10 and 3D.9 

While tracking precise trajectories of single molecules and particles has become more 

attainable, a thorough understanding of a biological process frequently requires additional 

information such as the orientation and rotational motion of target molecules. Current 

techniques for acquiring orientation and rotational information of nano-objects are based on 

optical anisotropy of the probes. The polarized fluorescence19-20 or dark-field scattering 

imaging21 techniques converts the orientation information to image intensity, which is 

determined by the angle between the transition dipole of the probe and the polarization 

direction of the illumination beam. Most of these methods are not directly compatible with 

superlocalization microscopy. For example, in defocused imaging, it is challenging to locate 

the center of the defocused image patterns; therefore, switching back and forth between 

focused and defocused imaging22 or taking focused and defocused images simultaneously 

using a dual-wavelength setup23 is necessary to obtain the accurate centroid and orientation. 

More recently, Ohmachi et al.developed a simultaneous 3D orientation and position tracking 

technique forhighly fluorescent quantum rods by splitting fluorescence signals to four 

polarization channels.24 
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We have recently developed the single particle orientation and rotational tracking 

(SPORT) technique25-26 to visualize the motions of single rod-shaped plasmonic gold 

nanoparticles in DIC microscopy. The SPORT technique is especially useful in biological 

studies with gold nanorods as the probes because of their low cytotoxicity, large optical cross 

section resulted from surface plasmon resonance (SPR), and excellent photo-stability. 

However, the SPORT technique faces similar challenges of super-localization as other 

rotational tracking techniques, as well as the difficulties originated from the anti-symmetric 

PSF of DIC microscopy. 

In this study, we demonstrate a novel dual-modality approach for SPORT, which allows 

for the simultaneous rotational tracking and localization of single gold nanorods with 

nanometer-scale precision in engineered environments and in live cells. This is realized by 

inserting an additional arm into the optical path of the DIC microscope for imaging at two 

modes simultaneously. In the additional optical arm, gold nanorod probes form modified 

bright-field images, allowing their positions to be determined with nanometer-scale precision. 

At the same time, the original DIC scheme allows for the rotational tracking of gold nanorods, 

thus keeping all the essential traits of the SPORT technique. Using this set-up, the 

localization precision of less than 10 nm has been achieved for gold nanorods with an 

average size of 25 nm × 73 nm at a temporal resolution of 74 ms. The usefulness of the novel 

particle tracking strategy is demonstrated by tracing gold nanorod cargos in the in vitro 

microtubule gliding assays and in live cells under the influence of steric hindrance.  
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DIC/Bright-field dual-modality microscopy 

The dual-modality setup is modified from a Nikon Eclipse 80i DIC microscope equipped 

with two Nomarski prisms (Figure 7.1A) for taking images in DIC and bright-field modes 

simultaneously. The first Nomarski prism splits the illumination white light to two beams that 

are mutually orthogonally polarized and laterally shifted by a small shear distance d. These 

two beams result in two intermediate bright-field images behind the microscope objective 

and tube lens. The presence of the second Nomarski prism shifts the two intermediate images 

back by the same shear distance d. In the dual-modality imaging, instead of intercepting the 

images behind the tube lens, the intermediate images are collimated again and divided by a 

560-nm long pass dichroic mirror into two channels. Proper band pass filters are inserted into 

the two light paths to select a wavelength of 700 nm for DIC imaging and 540 nm for 

bright-field imaging. These two wavelengths correspond to the longitudinal and transverse 

SPR modes of the gold nanorods (25 nm × 73 nm), respectively. 

In the 700-nm DIC channel, the second polarizer projects the two intermediate 

bright-field images to the same polarization plane and interference occurs, yielding typical 

bright/dark DIC images on a gray background (Figure 7.1B). This channel tracks the 3D 

orientation of the nanorod’s longitudinal SPR mode.  

In the 540-nm bright-field channel, the two mutually shifted intermediate images are 

projected onto the camera without interference in the absence of the second polarizer, 

forming an overlaid bright-field image for the gold nanorod’s transverse SPR mode. A gold 
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nanorod shows as two partially overlapped dark lobes, mutually shifted by the shear distance 

d, on a bright background (Figure 7.1C). The presence of two Nomarski prisms in this 

modified bright-field microscopy imaging results in a new PSF that can be approximated as a 

double-peak Gaussian profile; therefore, the centroid of a single particle can be located by 

non-linear least squares fitting of the two dark lobes with the following double-peak 

Gaussian function: 
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where Ib is the background intensity, which is determined by the exposure time and the 

camera gain; A1 and A2are the amplitudes of the two Gaussians; x0 and y0 are the coordinates 

of the centroid of the first Gaussian; d is the shear distance assuming the shear is along the 

northwest-southeast direction (Figure 7.1C); σx1, σy1andσx2, σy2are the standard deviations of 

the x and y components, respectively, for the two Gaussian peaks (Figure 7.1D).  

The shear distance d is an intrinsic property of the Nomarski prisms and the focusing 

optics, and also depends on the illumination wavelength. Two pairs of Nomarski prisms with 

different shear distances were tested by taking images of a gold nanorod and a 200-nm 

polystyrene particle at different orientations (Supplementary Figure 7.1). The shear 

distances of these Nomarski prisms were measured by fitting the modified bright-field 

images of the polystyrene particle with Equation 7.1. The shear distances of these two sets of 

Nomarski prisms at the wavelength of 540 nm were found to be 290 ± 3 nm and 189 ± 3 nm, 
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respectively. The Nomarski prisms with a larger shear distance generate more accurate results 

in double-peak Gaussian fitting because they separate the two peaks farther apart. 

The relative intensity of the two dark lobes (the ratio of A1 to A2) is dependent on the 

orientation of the gold nanorod and the bias retardation, which is intentionally introduced as a 

phase shift between the two wavefronts passing through the specimen by adjusting the 

polarizer and quarter-wave plate settings to increaseDIC image contrast.27 Supplementary 

Figure 7.2 shows an example of the DIC and modified bright-field images of the same gold 

nanorod at three different orientations using the pair of Nomarski prisms with the larger shear 

distance.  

In the rest of discussion in this paper, this modified bright-field microscopy imaging 

mode will be referred to as the double-Gaussian method for super-localization of gold 

nanorods. 

 

Alternative configuration 

In the Nomarski DIC mode, the second polarizer is set at 90° with respect to the first 

polarizer so that final DIC images are generated with equal contributions from two 

orthogonally polarized light beams passing through the sample. When the second polarizer is 

removed from the light path, we obtain the modified bright-field images with two dark lobes, 

as described in the previous section. When the second polarizer is set at 45° with respect to 

the first polarizer, one of the two orthogonally polarized beams is blocked, leaving only one 
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dark spot in the final image of a gold nanorod. This alternative approach for localizing gold 

nanorods will be referred to as the single-Gaussian method. 

The images of a gold nanorod and a 200-nm polystyrene particle during a 360° rotation 

under each of these different polarizer settings are shown in Supplementary Figure 7.3A. 

With the second polarizer setting of 45°, the remaining dark spot can be non-linear least 

squares fitted with a 2D Gaussian function to locate the particle (Supplementary Figures 

7.3B-C), and the intensity changes with respect to the orientation of the nanorod’s short axis 

as the observation wavelength corresponds to the transverse SPR mode of gold nanorod 

(Supplementary Figure 7.4). The two 45o polarization configurations result in slightly 

different signal intensities once again due to the intentionally introduced bias retardation.27 

The comparison of the double- and single-Gaussian methods is done by measuring the 

distances between the two particles at different orientations as shown in Supplementary 

Figure 7.3A. The two sets of measured distances are virtually identical. Therefore, the 

single-Gaussian method will be used exclusively in the rest of our discussions because of its 

mathematical simplicity. 

 The localization precision of the single-Gaussian method is obtained by recovering the 

positions of gold nanorods in a stepping experiment on a high-precision piezoelectric stage 

(Supplementary Figure 7.5). The measured step sizes by localizing the particles are 

consistent with the designated values. The localization precision from non-linear least 

squares fitting is determined to be 2-5 nm at a temporal resolution of 74 ms, similar to those 
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obtained for 40-nm gold nanospheres.9 

 

Dual-modality imaging in microtubule gliding assays 

The microtubule gliding assays have shown great potential to serve as transport system 

for shuttling and sorting nanocargos in engineered environments.28-31 In these assays, motor 

proteins, such as kinesin, are pre-coated on a substrate and propel microtubule fragments. A 

microtubule can rotate along its longitudinal axis when it glides on the substrate, depending 

on the number of protofilaments it is composed of. We have previously demonstrated that the 

gold nanorods with an average size of 10 nm × 35 nm attached on the gliding/rotating 

non-13-protofilament microtubules displayed periodic bright and dark DIC image patterns, 

while the nanorods attached on the 13-protofilament microtubules displayed nearly constant 

DIC intensities.26 The measurements by fluorescence interference contrast microscopy have 

shown that full-length kinesin motors elevate gliding microtubules by only 17 ± 2 nm over 

the surface.32 Small cargos such as 20 nm quantum dots33 or 10 nm × 35 nm gold nanorods26 

do not impede the self-rotation of microtubules; however, larger cargos such as micro-beads 

do obstruct the self-rotation, but have a minimal effect on the forward speed of the 

microtubule carrier.33 

In order to utilize molecular motors as nanoengines to transport cargos in engineered 

systems, it is important to understand how the transport system responds to the steric 

hindrance created by relatively large cargos in the gliding assay. In the current study, we 
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carry out similar microtubule gliding experiments with larger gold nanorods with an average 

size of 25 nm × 73 nm. The short axis of these nanorods is the same as the outer diameter (25 

nm) of the microtubules. The orientation and location of gold nanorods are obtained 

simultaneously at a temporal resolution of 74 ms using the single-Gaussian method.  

In our experiments, the gold nanorods are surface-modified with neutravidin and the 

microtubules are made from a mixture of unlabeled tubulin and biotinylated tubulin at a ratio 

of 93 to 7. The number of biotin-neutravidin bindings between a nanorod and a microtubule 

is a key factor that affects the nanorod’s motions during the transport. When a nanorod’s long 

axis is aligned parallel to a microtubule, the contact area of the two rod-shaped objects is 

maximized to allow an average of 4 biotin-neutravidin bindings. When a nanorod’s long axis 

is perpendicular to a microtubule, the contact area is minimized to result in as few as 1 

binding. (See Supplementary Information for detailed calculations.)  

The parallel geometry does not create significant steric hindrance, and the nanorods in 

this geometry will behavior similarly as in the previous reports.26, 33 The perpendicular 

geometry with a single binding will likely result in a loosely-bound nanorod and give rise to 

“blinking” (fast switching between bright and dark DIC image patterns). Such anexample is 

given in Supplementary Figure 7.6 (Movie 7.1). The current temporal resolution of 74 ms is 

likely too slow to fully resolve this type of fast, random rotation. 

The more common and interesting case, which will be elucidated in greater detail here, is 

when a nanorod and a microtubule are aligned at an angle (neither perpendicular nor parallel) 
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with multiple bindings (likely 2-4 bindings under our experimental conditions). In this case, a 

nanorod is more strongly bound to a microtubule, and its motion is no longer determined 

predominately by the thermal noise as the steric hindrance created from the 

nanorod/microtubule geometry and the obstacles present in the course of transport becomes 

an important factor. Figure 7.2 (Movie 7.2) shows an example where a gold nanorod travels 

nearly half a circle with a distance of ~24 µm on a gliding microtubule. The nanorod shows a 

mainly bright image while travelling southwest, then a mainly dark image after turning ~90° 

toward northwest, and finally a mainly bright image again after making another turn toward 

northeast. The relatively stable DIC intensities on the time scale of seconds suggest that the 

nanorod was rather firmly attached to the microtubule through multiple biotin-neutravidin 

bindings. However, the recorded DIC intensity traces still show significant fluctuations, 

indicating that the nanorod changes its orientation 

orientation intermittently from time to time due to the steric hindrance. These rotational 

motions are often accompanied by the movement of the nanorod to new positions found in 

the x and y trajectories.  

Two interesting segments of this transport event are explained in detail as follows. In the 

first segment (14-22 s, Figure 7.2C, Supplementary Figure 7.7A), the microtubule glides at 

a nearly constant speed of 0.35 µm/s, which is evident from the constant slopes observed in 

both the x and y trajectories. The x trajectory is smoother than the y trajectory, which can be 

explained by the fact that the microtubule moves in the x direction and it is much more likely 
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for the nanorod to swing from side to side (y) than to move back and forth (x). Interestingly, 

the gold nanorod changes its orientation drastically when the microtubule changes its gliding 

direction at 15-16 s or when the trajectory shows a sudden “jump” (a distance of ~70 nm in 

the y trajectory) at ~18.5 s. The moving directions of the gold nanorod before and after the 

drastic orientation changes are guided by the pink dashed lines on the y trajectory. The 

nanorod changes its orientation possibly because they are shunted by road blocks, such as 

other microtubules,aggregates of kinesin molecules or un-polymerized tubulin 

monomers.34-35 The microtubule and nanorod is caused to rotate in order to evade the steric 

hindrance, which results in the sudden changes in the nanorod’s orientation and position. In 

the second segment (44-52 s, Figure 7.2D, Supplementary Figure 7.7B), the microtubule 

moves mainly in the y direction, which results in a rather smooth y trajectory. The rotations 

of the gold nanorod are accompanied by a shift of the trace at 47.5 s and a change in the 

moving direction at 50.0 s.  

 

Super-localization and rotational tracking of endocytosed gold nanorods in live cell 

The cytoskeleton in a live mammalian cell is composed of interweaving microtubules 

and actin filaments.36-37 Cargos are transported by molecular motors including kinesin, 

dynein and myosin along the microtubule and actin filament tracks.34  How the cargos are 

transported in the complex cytoskeleton system and in a crowding environment is intriguing 

because it is closely related with the cooperation and cross-talk among the motor proteins and 
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the intracellular transport mechanism, but requires further understandings. The transport of a 

cargo in a complex cytoskeleton environment has been studied using bright-field microscopy 

with pigment granules as the cargos38 and fluorescent microscopy with fluorescence-labeled 

organelles.39 The directed transport of cargos is affected in the region where space is limited 

by the crowded cytoskeleton such as the cortex of the cell.39-40 We previously reported that 

nanocargos tend to keep their orientation during the directed transport along the microtubule 

tracks using the SPORT technique.26, 41 In this study, we visualized the fluctuation of the 

cargo’s orientation caused by the steric hindrance of the surrounding environment.  

We imaged the transport of the endocytosed transferrin-modified gold nanorods in live 

PC12 cells using the new imaging setup. The DIC images of the nanorods show that the 

rotation of the gold nanorods was common when they are transported in the cortical area 

where the cytoskeleton is rather crowded. One example is shown in Figure 7.3 (Movie 6.3). 

The gold nanorod in this example was transported by a distance of ~2 µm in the x direction. 

The nanorod wiggled from side to side of the microtubule track during the transport, reflected 

by the 80-170 nm lateral displacements in the y direction, e.g., at 11 s, 20 s, and 36 s (Figure 

7.3B). The lateral displacements are comparable to the diameter of early endosomes. It is 

interesting to note that at the moments of the wiggling motion, the DIC intensities also 

indicate a wiggling motion by displaying non-correlated bright/dark intensity changes 

(Supplementary Figure 7.8). The correlation of DIC intensity with the lateral displacement 

and the slow rotation pattern show that the rotation of the nanorod is not caused by rotational 
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diffusion of the vesicle.42 

The correlated wiggling motion and the orientation changes of the gold nanorod indicate 

that the transport of the cargo is far from a smooth process. An important factor could be the 

steric hindrance caused by the crowded environment since there are interweaving actin 

filaments and microtubules around the cortical area of the cells. The cargo has to evade the 

obstruction from the interweaving microtubules and actin filaments in order to move forward. 

Note that the overall transport velocity is around 0.05 µm/s, much smaller than the directed 

transport rate on microtubule tracks43 and actin filaments,11-12 which also provides the 

evidence that the transport is hindered.  

Conclusions 

In summary, a novel dual-modality imaging technique has been developed to 

super-localize a single gold nanorod while providing its orientation and rotational 

information. The super-localization of the gold nanorod was achieved by curve fitting the 

modified bright-field images generated by one of the two beams laterally shifted by the 

Nomarski prism in a DIC microscope. The orientation and rotational information is derived 

from the DIC images of the gold nanorods. The new single particle tracking technique is a 

significant improvement over the existing non-fluorescent particle tracking techniques. Due 

to the advantages of this technique, it can be applied in the study of many biological 

processes which require both precise localization and the orientation and rotational 
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information of the nanoprobes. 

It should be noted that the temporal resolution is currently limited by the achievable 

signal to noise ratio (SNR) in the modified bright-field channel. Unlike the dark background 

on fluorescence images, the high background on bright-field images leads to greatly reduced 

SNR; therefore, the temporal resolution of 74 ms is required to achieve the reported 

nanometer-scale localization precision with a 100W halogen lamp. By switching to a more 

intense laser light source or allowing lower localization precision, a higher temporal 

resolution can be achieved. 

The usefulness of this technique has been demonstrated by dynamic tracking of single 

gold nanorod cargos in microtubule gliding assays and in live cells. The new imaging 

technique makes it possible in future studies to acquire critical knowledge in order to realize 

the transport of larger and heavier cargos in micro transport systems using molecular motors. 

On the other hand, the hustle of the cargo by the obstacles is an important observation 

associated with intracellular transport where steric hindrance exists in the crowded cellular 

environment. Further studies will lead to our understanding on how competing kinesin and 

dynein motors work together to overcome constant obstacles in intracellular transport. 

Sample preparation 

The cetyltrimethylammonium bromide (CTAB)-capped 25 nm × 73 nm gold nanorods 

(Nanopartz) were washed and resuspended in 18.2 Ω Milli-Q water before surface 
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modification. To change the surface charge from positive to negative, the gold nanorods were 

modified with transferrin through a polyethylene glycol (PEG)-thiol linker. The detailed 

procedures of nanorod surface modifications and polystyrene beads sample preparations can 

be found in the Supporting Information. 

 

Precision and accuracy measurement on the piezo-stage 

A 3D piezoelectric stage was installed on an inverted Zeiss Axiovert 100 TV microscope. 

The microscope was equipped with two Nomarski prisms, two polarizers, a condenser and a 

100× oil immersion objective. Gold nanorods dispersed in Milli-Q water were immobilized 

on a clean coverslip, and the sample slide was stepped in either the x or y direction by the 

piezoelectric stage with sub-nanometer precision. The DIC images were captured at 700 nm 

and the bright field images were captured at 540 nm. Three particles at different orientations 

were captured, which show completely dark, completely bright, and half dark/half bright DIC 

images, respectively. The averaged signal-to-noise ratio of the bright-field images of the three 

nanorods is better than 10. The step size for each movement was 40 nm. At each position, 50 

frames of images were taken at a temporal resolution of 74 ms. The coordinates of each gold 

nanorod in each frame was determined using the single-peak 2D Gaussian fitting of the 

bright-field images, and 50 x or y coordinates were plotted as one step. The precision of the 

single particle tracking was calculated as the standard deviation of the x or y coordinates in 

each step, and the accuracy of the step measurements was determined as the standard 
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deviation of the step sizes calculated as the difference between the averaged x or y 

coordinates for each two steps. 

 

Microtubule gliding assays 

The protocol was modified from the procedures reported in our previous publication.25 

Detailed procedures of the extraction of full-length kinesin, surface modification of gold 

nanorods with neutravidin, and preparation of biotinylated 12-protofilament microtubules can 

be found in the Supporting Information. A chamber was formed by placing a clean glass 

coverslip on top of a clean glass slide with two pieces of double-sided tape serving as spacers. 

BRB80 solution containing 0.5 mg/mL casein (Sigma, St. Louis, MO) was flowed into the 

chamber, and the chamber was kept at room temperature for 5 min. BRB80 solution 

containing 0.2 mg/mL casein, 0.2 mM MgATP, and kinesin was then introduced into the 

chamber to replace the previous solution. After 5 min, BRB80 solution containing 0.2 mg/mL 

casein, 0.2 mM MgATP, 10 µM Taxol, and microtubules was introduced into the chamber 

and kept at room temperature for 5 min. After that, BRB80 solution containing 0.2 mg/mL 

casein, 0.2 mM MgATP, 10 µM Taxol, and neutravidin-modified gold nanorods was flowed 

into the chamber and incubated at room temperature for 7 min. Finally, the chamber was 

filled with BRB80 solution containing 0.2 mg/mL casein, 1 mM MgATP, and 10 µM Taxol 

with an oxygen scavenging system [50 µg/mL glucose oxidase (Sigma), 4 µg/mL catalase 

(Sigma), 1% (w/v) glucose (Sigma), and 0.1% (v/v) mercaptoethanol (Fluka)]. Between the 
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steps, the chamber was washed twice with BRB80 solution containing 0.2 mg/mL casein and 

0.2 mM MgATP. The motions of the gold nanorods attached with the microtubules were then 

imaged under our dual-modality microscope. 

 

Cell cultures and live cell imaging 

PC 12 cells (CRL 1721.1, ATCC, Manassas, VA) were cultured on 22 mm × 22 mm 

poly-l-lysine coated coverslips in six-well cell culturing plates. Complete cell culturing 

medium composed of F12K cell culturing medium (ATCC), 15% horse bovine serum (ATCC) 

and 2.5% Fetus Bovine Serum (ATCC) was added to the plates. After the cell culture covered 

70% of a coverslip, 40 µL of transferrin modified gold nanorod solution was added to each of 

the plate and incubated for 1 hour. After that, the cell coverslip was placed on a clean glass 

slide for imaging. Two pieces of double-sided tape act as spacers between the glass slide and 

the coverslip to form the chamber. 30 µL of F12K cell culture medium was added to the 

chamber to sustain the cells. 

 

Dual mode imaging and data analysis 

Movies of gliding assays and live cell experiments were taken under the dual-mode 

microscope modified from an upright Nikon 80i microscope. All movies were taken at the 

temporal resolution of 74 ms. The images and movies were all processed in ImageJ and 

Matlab. The 2D Gaussian fitting and single particle tracking (including position and 
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orientation) were all done automatically by running the programs written in MATLAB.  
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Figures 

 

 

Figure 7.1. The dual-modality single particle localization and rotational tracking technique. 
(A) Schematic diagram of the dual
polystyrene bead captured under the modified microscope. 
bright-field image. (D)Fitting of the image in (C) with a 2D inverse double
function. The blue dots are the intensities at each coordinate. The scale bars in (B) and (C) 
represent 1 µm.  
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Fitting of the image in (C) with a 2D inverse double-peak Gaussian 

function. The blue dots are the intensities at each coordinate. The scale bars in (B) and (C) 



 

Figure 7.2. Motions of a gold nanorod attached to a gliding microtubule. 
trace of the gold nanorod over a time span of 59.2 s. The positions of the gold nanorod are 
determined by using the single
under the dual-modality microscope. The bright and dark intensities are shown in blue and 
red, respectively, and the average background intensities are shown in black. The green (C) 
and orange (D) boxes highlight two interesting segments where the tra
being changed and significant rotational motions are observed. 
displacements and the corresponding DIC intensity traces of the gold nanorod from the two 
highlighted segments. The transition points with significant rot
highlighted in the blue rectangles. The trajectories of the gold nanorod before and after the 
rotations are highlighted by the pink dashed lines. The calculated azimuthal and polar angles 
of the gold nanorods during these two segments
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Motions of a gold nanorod attached to a gliding microtubule. 
trace of the gold nanorod over a time span of 59.2 s. The positions of the gold nanorod are 
determined by using the single-Gaussian method. (B) The DIC intensity traces of the nan

modality microscope. The bright and dark intensities are shown in blue and 
red, respectively, and the average background intensities are shown in black. The green (C) 
and orange (D) boxes highlight two interesting segments where the transport direction is 
being changed and significant rotational motions are observed. (C, D)
displacements and the corresponding DIC intensity traces of the gold nanorod from the two 
highlighted segments. The transition points with significant rotational behaviors are 
highlighted in the blue rectangles. The trajectories of the gold nanorod before and after the 
rotations are highlighted by the pink dashed lines. The calculated azimuthal and polar angles 
of the gold nanorods during these two segments are shown in Supplementary Figure 

 

Motions of a gold nanorod attached to a gliding microtubule. (A) The moving 
trace of the gold nanorod over a time span of 59.2 s. The positions of the gold nanorod are 

The DIC intensity traces of the nanorod 
modality microscope. The bright and dark intensities are shown in blue and 

red, respectively, and the average background intensities are shown in black. The green (C) 
nsport direction is 

(C, D) The x and y 
displacements and the corresponding DIC intensity traces of the gold nanorod from the two 

ational behaviors are 
highlighted in the blue rectangles. The trajectories of the gold nanorod before and after the 
rotations are highlighted by the pink dashed lines. The calculated azimuthal and polar angles 

Supplementary Figure 7.7. 
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Figure 7.3. Lateral displacement and DIC intensities of a gold nanorod transported in a live 
cell. (A) The moving trace of the gold nanorod. (B) The x and y displacements and the DIC 
intensity traces. The lateral shifts are guided by the horizontal dashed lines. The nanorod’s 
coordinate is set to (0, 0) at time 0. 
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Additional Experimental Methods 

 

Sample preparation: positively-charged gold nanorods.  

25 nm × 73 nm gold nanorods were purchased from Nanopartz (Salt Lake City, UT). The 

gold nanorods were stabilized in cetyltrimethylammonium bromide (CTAB) solution. Before 

used in our experiments,thecolloidal gold nanorod solutionwas centrifuged and resuspended 

in Millli-Q water twice to remove most of the CTAB.After that, 10 µL of gold nanorod 

solution was added on to a pre-cleaned glass slide and covered with a clean glass coverslip. 

To prevent evaporation, the coverslip was then sealed with nail polisher. The gold nanorods 

carry positive charges. Due to the electric static interaction with the negatively charged glass 

surface of the coverslip, the gold nanorods were adsorbed to the coverslip in a short period of 

time.  
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Sample preparation: negatively-charged gold nanorods and polystyrene beads. 

The 200-nm negatively-charged polystyrene beads were purchased from Duke Scientific 

(Palo Alto, CA) and diluted to the same concentration as the gold nanorods. 

The gold nanorods were then surface-modified with transferrin through a polyethylene 

glycol (PEG)linker by following the procedure described below:1mL of the gold nanorod 

solution was reacted with 20-mM N-hydroxylsuccinimide (NHS)-polyethylene glycol 

(PEG)-thiol (M.W. 119.26, Sigma-Aldrich # 671630,  St. Louis, MO) for 1.5 h. After that, 

the gold nanorod solution was centrifuged and resuspended in 18.2 Ω Millli-Q water again to 

remove excess NHS-PEG-thiol. After that, 20 µL of 2mg/mL transferrin in dimethyl 

sulfoxide (DMSO)was added to the gold nanorod solution and react for 3 h. The gold 

nanorods were then centrifuged and resuspended in Millli-Q water to the concentration of 

~1.0×1011 nanoparticles/mL. 

The gold nanorod and the polystyrene bead solutions were then mixed at 1:1 ratio and 

diluted by a factor of 10 in Milli-Q water. 10 µL of the mixture was added onto a clean glass 

substrate and covered by a 3-aminopropyltriethoxysilane modified glass coverslip. The 

nanoparticles were adsorbed onto the glass coverslip due to electrostatic interactions. The 

coverslip was then sealed with nail polisher to prevent evaporation. 

 

Localization precision measurement using DIC/bright-field dual-modality imaging and 
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simplified DIC/bright-field dual-modality imaging 

The sample slide of the mixture of gold nanorods (25 nm × 73 nm) and polystyrene 

beads (200 nm) was fixed on the rotation stage. When the second polarizer is polarized at 45° 

in either of the two configurations shown in Supplementary Figure 7.3A, it blocks one of 

the intermediate images, giving only one dark spot in the bright-field image. The bright-field 

image can be then non-linear least squares fitted with a single-peak, 2D Gaussian function: 

 � � �������	
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,      

where Ibis the background intensity; A is the amplitudes of the two Gaussians; x0 and y0 are 

the coordinates of the centroid; σxand σyare the standard deviations of the x and y components 

of the Gaussians.  The centroid of the 2D Gaussian (xo, yo) is the location of the nanorod. 

The localization of the gold nanorod and the polystyrene bead was carried out both without 

the 2nd polarizer in the bright-field arm and with the 2nd polarizer placed at 135owith respect 

to the 1st polarizer. The sample slide was rotated by 360o with 15o steps. At each orientation, 

10 images were acquired and the particles in each image were localized and their positions 

were averaged. 

  

Single Particle Tracking in Microtubule Gliding Assay. 

Extraction of the full-length kinesin motor proteins. 

BL21 (DE3) Escherichia coli with the full-length His-tagged kinesin plasmid were kindly 

provided by Dr. Will Hancock atPennsylvania State University. The kinesin motor proteins 
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was extracted and purified on a Ni column according to the protocol published elsewhere.1  

 

Preparation of biotin-conjugated microtubules. 

The tubulin proteins, GTP and Taxol were purchased from Cytoskeleton (Denver, CO). 

The protocol of the preparation of 12-protofilament microtubules was reported in our 

previous publication.2 Generally, 10 µL of BRB80 buffer supplemented with 9 µM tubulin 

mixture of unlabeled tubulin, Rhodamine labeled tubulin and biotinylated tubulin (86:7:7), 4 

mM MgCl2, 0.5 mM GTP, and 10 µM Taxol in 10 µL of BRB80 buffer was incubated at 37oC 

for 3 h; microtubules were then diluted and stabilized in 100 µL of BRB80 buffer 

supplemented with 10 µM Taxol. The microtubule solution was then pipette up and down to 

shorten the microtubules to the proper length. 

 

Neutravidin conjugationof gold nanorods. 

1 mL of 25 nm × 73 nm gold nanorod solution was centrifuged and resuspended in 

Millli-Q water twice to remove most of the CTAB. The gold nanorod solution was then 

reacted with 20 mM NHS-PEG-Thiol (M.W. 119.26, Sigma-Aldrich # 671630, St. Louis, MO) 

for 1.5 hrs. After that, the gold nanorod was centrifuged and resuspended in Millli-Q water 

again to remove excess NHS-PEG-Thiol. After that, 40 µL of 1mg/mL Neutravidin in pH 7.4 

PBS (Phosphate Buffer Saline) buffer was added to the gold nanorod solution and let react 

for 3 hrs. The gold nanorods were then centrifuged and resuspended in Millli-Q water and 
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ready to use. 

 

Calculation of the number of neutravidin-biotin ligands between the gold nanorods and 

the microtubules. 

The labeling stoichiometry of biotin-tubulin was determined to be approximately one 

biotin per tubulin heterodimer by the manufacturer (Cytoskeleton). The percentage of the 

biotin-tagged tubulin in the tubulin mixture is 7%. The size of the tubulin heterodimer is 8 nm3. 

Assuming the nanorod binds to the microtubule by 2 tubulin units in the transverse direction of 

each protofilament and bind to the microtubule via 3 protofilaments, for the AuNR with a 

length of 73 nm, the number of binding sites when it's parallel with the microtubule is 73 nm /8 

nm ×2×3× 7% ≈ 4.When the nanorod is perpendicular to the microtubule, the number of 

binding sites would be 25 nm /8 nm ×2×3× 7% ≈ 1. 

 

 

 

 

 

 

 

 

 

 



 

Figures 

 
Supplementary Figure 7.1. 
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 Bright-field images of a gold nanorod and a 200

 

field images of a gold nanorod and a 200-nm polystyrene 
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bead captured by the dual-modality microscope equipped with (A) a pair of Nomarski 
prismsthat generates a larger shear distance or (B) a pair of Nomarski prisms that generates a 
smaller shear distance. The second polarizeris removed from the light path for the 
double-Gaussian method. The sample was rotated for 360° with 15° steps.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 7.2. 
fitting of a 25 nm × 73 nm gold nanorod at three different orientations, where the DIC
patterns (left) are bright (A), grey (B),and dark (C), respectively.
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 DIC and bright-field images and the 2D double
fitting of a 25 nm × 73 nm gold nanorod at three different orientations, where the DIC
patterns (left) are bright (A), grey (B),and dark (C), respectively. 

 

 

field images and the 2D double-peak Gaussian 
fitting of a 25 nm × 73 nm gold nanorod at three different orientations, where the DIC 



 

Supplementary Figure 7.3
methods. 
(A) The bright-fieldand DIC imagesof a gold nanorod and a 200
different orientations. From top to bottom: the double
second polarizer, two single-
the Nomarski DIC configuration with the second polarizer at 90° with respect to the first 
polarizer. The sample slide was rotated from 0
polarization configurations do not result in the same contrast d
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3. Comparison of the double-Gaussian and single

fieldand DIC imagesof a gold nanorod and a 200-nm polystyrene particle at 
different orientations. From top to bottom: the double-Gaussian configuration without the 

-Gaussian configurations withthe second polarizer s
the Nomarski DIC configuration with the second polarizer at 90° with respect to the first 
polarizer. The sample slide was rotated from 0-360° at an interval of 15
polarization configurations do not result in the same contrast due to the intentionally 

Gaussian and single-Gaussian 

nm polystyrene particle at 
Gaussian configuration without the 

Gaussian configurations withthe second polarizer set at 45°, and 
the Nomarski DIC configuration with the second polarizer at 90° with respect to the first 

360° at an interval of 15o. The two 45o 
ue to the intentionally 
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introduced bias retardation. Under our microscope settings, Configuration 1 is preferred for 
its offering of higher contrast. (B) The bright-field image without a polarizer and its 
double-peak Gaussian fitting. (C) The bright-field image with a polarizer set at 45° and its 
single-peak Gaussian fitting.  

The distances between the two particles measured at all orientation angles using the 
double-Gaussian (the “No 2nd Polarizer” row) and the single-Gaussian (the “45°Config. 1” 
row) methods are 1595 ± 10 nm and 1590 ± 10 nm, respectively. The difference between the 
two sets of measured distances is showed to be statistically insignificant at the 95% 
confidence level by Student’s t-test. The standard deviation of the distances measured at the 
same orientation is 3-6 nm for both the double-Gaussian and single-Gaussian methods. 
 
  



229 

 

 

 

Supplementary Figure 7.4.(A) The contrast of the modified bright field images of the gold 
nanorod captured with the analyzer at two 45oconfigurations (black – Config. 1; red – Config. 
2). (B) Normalized DICintensities of the gold nanorod at different orientations. 

Note that the contrast of the modified bright field images when the analyzer is placed at 
45o is generally larger than that when the analyzer is placed at 135o.The reason accounting 
for such phenomenon is that the ordinary (o) beam and extraordinary (e) beam generated by 
the Nomarski prism own a bias because of the quarter wave plate (QWP). For a de 
Sénarmont type Nomarski DIC microscope, the QWP introduced the phase retardation of the 
beams. The fast axis of the QWP is aligned at 90o to the transmission axis of the analyzer. In 
practice, the QWP is also orientated at an orientation in order to get the best DIC contrast. 
According to the Nikon manufacturer’s website, the bias retardation introduced by the QWP 
causes a change in path length, also causes the unevenness of the o beam and e beam. The 
same thing happens for the older types of the DIC microscopes when one Nomarski prism is 
translated laterally with respect to the other. Detailed discussion of how the QWP and 
polarizer settings affect the imaging of the de Sénarmont type Nomarski DIC microscope can 
be found in our recent paper.4 
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Supplementary Figure 7.5. Super-localization of three gold nanorods on a piezo-electric 
translational stagetaking 40 nm steps in the x or y direction. The three nanorods are in 
different orientations because their DIC images show different contrasts.(A-C)A nanorod 
shows a nearly completely dark DIC image.(D-F)A nanorod shows a mostly bright DIC 
image; (G-I)A nanorod shows a half bright/half dark DIC image. 
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Supplementary Figure 7.6. An example of a loosely-bound gold nanorodtransporting with a 
microtubule and exhibiting fast, random DIC intensity fluctuations.(A)The trajectory of the 
gold nanorod. (B) The corresponding bright (blue) and dark (red) DIC intensities. 
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Supplementary Figure 7.7. Simulations of the DIC intensities of a gold nanorod performing 
out-of-plane wiggling motion with the rotation axis parallel with the imaging plane and 
perpendicular with the long axis of the nanorod. The nanorod maintains the same azimuthal 
angle in the simulation. The change of the elevation angle of the nanorod is defined as π /10 
per frame, and the wiggling direction is randomized. (A) The schematic illustration of a gold 
nanorod oriented with the elevation angle ψ and the azimuthal angle φ. (B) Simulated DIC 
intensities of a gold nanorod performing wiggling motion with an azimuthal angle of π/3. (C) 
Simulated DIC intensities of a gold nanorod performing wiggling motion with an azimuthal 
angle of π/6.  

The DIC intensities are simulated using the equations: 
Ibright≈ 1 + cos2 ψsin4φ,  
Idark≈ 1 - cos2 ψcos4φ. 
The wiggling motion is reflected by the DIC intensity pattern that either the bright or the 

dark intensity fluctuates significantly while the other intensity changes only slightly. These 
simulated DIC intensity traces are similar to the experimental traces reported in Figure 7.3 in 
the main text. 

A full discussion on the nanorod’s rotational modes can be found in our recent paper.
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CHAPTER 8  

GENERAL CONCLUSIONS AND OUTLOOK 

8.1 General Conclusions 

Equipped with new technical advances and data analysis methods, the 

DIC-microscopy-based SPORT technique has been applied in biophysical studies to reveal 

biological processes with unprecedented details. 

1) The rotation rate of single gold nanorods is semi-quantified as the characteristic rotation 

time by fitting the autocorrelation of noisy DIC intensities with the stretched exponential 

decay function. With this information, we have studied the rotational dynamics of several 

surface-modified gold nanorods from the first contact with the cell membranes to the point 

when the nanorods are imbedded and fixed in the cell membranes. The correlations between 

the rotational dynamics of surface modified gold nanorods and the properties of the surface 

modifiers are being established. 

2) A method to extract rotational mode from the vast DIC intensities of single gold 

nanorods has been developed by calculating the correlation coefficient of the bright and dark 

DIC intensities. The gold nanorods are modified with either Tat cell penetrating peptide (CPP) 

or transferrin. Because of the distinctive properties of the two modifiers, surface-modified 

gold nanords exhibite different rotational modes at first contact with the live cell membrane. 
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The calibration of the rotational modes of gold nanorods with various surface modifications 

have been carried out on synthetic lipid bilayers with different compositions. 

3) The temporal resolution of the SPORT technique with DIC microscopy has been 

improved to 500 frames/s to image fast transport dynamics. Transferrin modified gold 

nanorods (25 nm µ 73 nm) are endocytosed by differentiated PC 12 cells and incorporated in 

the endosomes during the imaging. The orientation of gold nanorod-containing cargos during 

the directional intracellular transport is kept generally constant relative to the microtubules 

track, indicating the tight wrapping of nanoparticles by the endosome vesicles. The rotational 

motions of cargos during short and long pauses have been captured and analyzed. The 

correlation analysis of the bright and dark DIC intensities of the nanorods performing 

rotational motions during the pauses compared with free rotational diffusion indicates that the 

cargos are still tethered to the microtubule tracks during the pauses. The rotational motion 

and the transport directions following a pause are also correlated with the pause duration, 

indicating that some regulatory mechanisms exist in the cargo transport by kinesin and 

dynein motors. 

4) In order to raise the single particle tracking precision with DIC microscopy, a 3D 

correlation mapping method has been developed to localize gold nanospheres. The optimized 

experimental conditions allow the 3D localization of 40-nm gold nanoparticles with a 

precision of 4-7 nm laterally and 16 nm axially. The technique has been applied in localizing 
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the 3D position of a single transferrin-modified 40-nm gold nanosphere during the uptake 

process by a lung cancer cell. 

5) The complicated orientation-dependent DIC PSF makes it difficult to localize gold 

nanorods with high accuracy under a DIC microscope. A dual-mode microscope that 

combines bright-field and DIC imaging techniques has been devised to simultaneously 

super-localize gold nanorods while obtaining their orientation and rotational information 

simultaneously. This technique has been applied to study steric hindrance affecting the 

transport of relateive large cargos by motor proteins. 

 

8.2 Outlook 

The SPORT techniques are emerging promising tools in biophysical studies to disclose 

many biological functions in unprecedented detail. A number of key improvements are still 

necessary in order to fully realize the potential of SPORT. First, dynamic tracking in the axial 

direction remains challenging and the axial localization precision is still more than an order 

of magnitude worse than the lateral precision. As such, it is necessary to develop new SPORT 

techniques that provide accurate measurements of both 3D position and orientation of 

rotational probes. Second, the temporal resolution of SPORT is usually much worse than the 

conventional SPT, as a larger number of photons need to be collected in order to resolve the 

orientation. Faster image rates and innovative data analysis methods are desirable to elucidate 

fast rotational motions encountered in live biological systems. The current state-of-the-art 
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SPORT techniques are mainly applicable to study rotational probes that are restrained by 

certain factors, such as being tethered to membrane receptors or encapsulated inside small 

compartments. 

Most of the current biophysical studies using SPORT are technical demonstrations or 

reports of direct observations of rotational motions. Future SPORT studies should be focused 

on elucidating the underlying mechanisms that govern the observed rotational motions. The 

arguably most important topic of SPORT is nanoparticle-based drug delivery. Functionalized 

nanoparticles can be fashioned as model systems to allow the studies on the detailed 

mechanisms of membrane diffusion/interactions, internalization, targeted delivery to the 

diseased organ, controlled drug release, and nanotoxicity. 

Finally, live rotational motions captured by SPORT provide a significant new 

dimensionality to the computational efforts. As the translational freedom does not necessarily 

correlate directly with the rotational freedom, the new dimension in experimental and 

simulated data will provide a more accurate interpretation of the influences of individual 

factors.  

 

 




