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Micron-Scale Cubic Metamaterial Layers 
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Pattern Symmetry vs. Projection Symmetry 
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Composite Unit Cell Response 
Mimics Coupled Resonators 
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High Symmetry Inclusions Do Not  
Imply High Symmetry Membrane Patterns 
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What happens if we move 

during deposition? 
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A More Practical Fabrication Approach 



Preliminary Self- Aligned Fabrication Results 

Self-aligned process flow – trace dependent 

cavity shape 
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3D Metallic Trace: A Closer Look 
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3D Multi-loop Traces 

Simple geometrical variations lead to highly diverse 3D trace geometries 



Dynamic MPL in a Cylindrical Cavity 



3D Metallic Trace: A Closer Look 
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Localized Current Distribution : 
Farfield Magnetic Dipole 

“Far away from any localized current distribution, the magnetic induction is that  

of a magnetic dipole.” Classical Electrodynamics, Jackson Ch. 5. p. 147 



• MPL is proving to be a manufacturable approach to 

complex 3D electromagnetic structures. 

• Dynamic-MPL offers a unique fabrication approach to 

realize highly non-planar 3D micro/nano antennas with and 

without split gaps. 

• Localized current distributions create magnetic dipole 

farfield magnetic field patterns, however the nearfield 

behavior can be quite different depending on geometry. 

• Next step – full wave simulations to begin assessing the 

radiative performance of these 3D traces as multifunctional 

antennas 

Conclusions 
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1.) Pattern membrane with entire suite of unit cell features. 

2.) Use patterned membrane to dissolve out substrate to create cavity. 

3.) Perform single evaporation to decorate unit cell. 

Single Evaporation MPL 
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MPL Variants 
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Self-Aligned Process Flow 
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Dynamic Nano Stencil Lithography 
Hole-Mask Lithography 
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Magnetostatic Behavior : Biot-Savart Law 
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• Out-of-plane resonators 
• Planar lithography 
• Many patterns possible 
• Cavity geometry independent 
  of resonator pattern 
• Scalable 
• Layer-by-layer   3-D 
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