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3D in the MetaAtomic Sense
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| MetaAtoms Created With MPL




MPL At A Glance
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.= Composite 5 SRR Unit Cell Response
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~ Pattern Symmetry vs. Projection Symmetry
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Impact of NNN Coupling
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e - .
Creating Non-Planar Inclusions
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Dynamic
Membrane Projection Lithography:
What happens if we move

during deposition?
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<A More Practical Fabrication Approach
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Preliminary Self- Aligned Fabrication Results
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Designing 3D Antenna Geometries
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Impact of Perforation Position

Centered Perforation Generates Planar Trace
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%— .3Imetallic Trace: A Closer Look




3D Multi-loop Traces
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Simple geometrical variations lead to highly diverse 3D trace geometries




"= Dynamic MPL in a Cylindrical Cavity




T i‘~‘3me.talli¢: Trace: A Closer Look




Planar loop vs. 3D trace
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e Localized Current Distribution :
Farfield Magnetic Dipole
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“Far away from any localized current distribution, the magnetic induction is that
of a magnetic dipole.” Classical Electrodynamics, Jackson Ch. 5. p. 147



Conclusions

MPL is proving to be a manufacturable approach to
complex 3D electromagnetic structures.

Dynamic-MPL offers a unique fabrication approach to
realize highly non-planar 3D micro/nano antennas with and
without split gaps.

Localized current distributions create magnetic dipole
farfield magnetic field patterns, however the nearfield
behavior can be quite different depending on geometry.

Next step — full wave simulations to begin assessing the
radiative performance of these 3D traces as multifunctional
antennas

dbburck@sandia.gov
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" .w’  Single Evaporation MPL

1.) Pattern membrane with entire suite of unit cell features.
2.) Use patterned membrane to dissolve out substrate to create cavity.
3.) Perform single evaporation to decorate unit cell.




~ . Examples of Single Evaporation SAMPL
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3D Metallic Metamaterial Strategies
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X MPL Variants

Self Aligned Single Evaporation Dynamic Membrane
Membrane Projection Lithography Membrane Projection Lithography Projection Lithography
(SAMPL)
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" Dynamic Nano Stencil Lithography

Hole-Mask Lithography
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e Translating 3D metamaterials from
RF to IR: Achieving pn #1
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Magnetostatic Behavior : Biot-Savart Law
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" ..." Membrane Projection Lithography: MPL
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