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Synthesis Route to Amorphous Carbon:
Pyrolysis of Organic Polymers

Organic Polymer = Pyrolysis =% Amorphous Carbon
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Visual History and

Properties of Pyrolyzed Resist
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Interferometric Lithography
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Sub-Micron 3D Resist Patterns
Via Interferometric Lithography
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Conversion of 3-D Resist Structure
3-D Carbon Structure
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Properties of 3-D Carbon
Scaffolds



Raman Spectroscopy of Pyrolyzed Resist
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Nearly Atomically Smooth Surface

émoothness of bare carbon —

no preferential nucleation sites Ultra small, uniform NP formation

| I EHT= 500kv WD= 3mm  SignalA=InLens  File Nar

Burckel et al, Small, 5, pp2792-2796 (2009).



Electrodeposition Conditions
Impact Nanoparticle Morphology
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Impact of Carbon Hydrophobicity
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Vertical vs. Horizontal Shrinkage
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Modification of Carbon Scaffold: PVD

Pt deposition occurs /£ Pt deposition occurs
even in non-line-of-sight v throughout entire thickness
ocations = e _ of scaffold : S
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Pt sputtered @ 1A/s



Interferometrlcally Patterned Carbon
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3-D Carbon Electrode
Application:
Non-Enzymatic Detection of
Glucose

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)



Why Is Glucose Oxidation Important?
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Electrodeposition of Pd Nanoparticles

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)



Electrode Response to Glucose Additions
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Linear scan voltammograms of Pd/Porous in 0.1 M NaOH + x M glucose. Pd deposition: 100s,
Scan rate: 20 mV/s.

Potential was cycled hundreds of times without noticeable
current decay — SEM images indicate no change in Pd particles.



Current and Potential Response
to Glucose Concentration

Both current and peak potential
respond to glucose concentration
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Plots of corresponding current and peak potential vs. glucose concentration. Pd
deposition: 100s, Scan rate: 20 mV/s (A) and typical amperometric response of a
Pd/Porous towards successive additions of glucose in 0.1 M NaOH with continuous
stirring. The inset figure shows the current-concentration relationship (B).

Xiao et al., Biosensors and Bioelectronics, 26, pp 3641-3646 (2011)



Electrode Response vs Ascorbic Acid

Typical ascorbic acid concentration in blood - ~0.1mM
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3-D Carbon Electrode
Application:
Surface Enhanced Raman
Scattering (SERS)
Sensor Platform

Xiao et al, Chem. Commun., 47, pp. 9858-9860 (2011).



PVD Ag Scaffold Modification
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Sputtering coats bottom side too!
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SERs Signals for 3 Organic Molecules
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Enhancement Factor: 4-aminothiophenol
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Conclusions

« Lithographically structured pyrolyzed carbon provides a path toward
leveraging inherent physical properties of elemental carbon in
technologically relevant applications.

« Lithographically patterned carbon structures can be modified either
electrochemically or through PVD to create a variety of sensor platforms.

» Demonstrated 10 mm detection limit for glucose with fast response times (~5s
95% response).

» Demonstrated SERS platform with spatially homogeneous enhancement factor of
~ 5x10°.
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3D Graphene From Nickel Foam
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Chen et al. Nature Materials, 10, pp 424-428 (2011) Cao etal. Small, 7, pp 3163-3168 (2011)




3-D Few-Layer
Graphene

Xiao et al, ACS Nano, 6, pp. 3573-3579 (2012).



Chemical Conversion to Graphene




SEM Images of Conversion Steps
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SEM Images of 3D Graphene




Confirmation 3D Graphene: XPS
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3D Graphene: Micro-Raman
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Faces of Carbon

* Highest elemental melting point
(sublimes at ~3900K)

* Forms ~ 10 million different compounds

* Resistant to acids, bases and all but the
strongest oxidizers

iologically compatible

sp3 bonds
Diamond

Amorphous

Hardest material

Good abrasive
Electrical insulator
Good thermal conductor
Optically transparent

Images from Wikipedia

2 gres
High Modulus
Tunable DC Conductor
Optically Opagque

sp? bonds
Graphite

One of the softest materials
Good lubricant

Electrical Conductor

Can act as thermal insulation
Optically opaque



Lithographically Patterned Carbon




Electrode Characterization —

Pd Catalytic MeOH Oxidation
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Electrode Response vs Pd Particle Size

_— Glassy Carbon

eposition
10s
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Cyclic voltammograms of Pd/Porous at variable Pd loading in 0.1 M
NaOH + 5 mM glucose. The dashed line is from Pd/GC for comparison.

Scan rate: 20 mV/s.
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