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Abstract—Waterborne intruder detection includes many new
challenges not seen in land environments. One area of these
challenges is the detection of surface swimmers. Swimmers,
whose bodies are partially in air and partially submerged, have
significantly reduced target strength (TS) for radar and sonar
systems compared to intruders fully in air or fully submerged.
This reduced TS results in more frequent missed detections or,
if detection threshold is widened, increased nuisance alarms.
Depending on sea state, a swimmer is also able to blend in with
wave noise, making detection even more difficult. We present
a method for improved surface swimmer detection in marine
environments by fusing data from several sensor systems in
both air and water domains to isolate a swimmer’s signature
from uncorrelated events. This system, tested in Dec 2011 in St.
Petersburg FL, produced data indicating significantly improved
detection over using any single system. By widening detection
threshold of each sensor’s detection algorithm but fusing data
of each system together, more potential targets can be processed
without the risk of increasing nuisance alarms. This work holds
the potential to improve the security of several types of water-
dependent assets, like commercial harbors, Navy or Coast Guard
bases, and nuclear and other water-cooled power plans, and
offshore oil platforms.

I. INTRODUCTION

The goal of this paper is to analyze data from a test
performed in December 2011. The purpose of the test was
to configure multiple sensors in a marine environment with
the ability to detect and track surface swimmers with the
basic assumption that multi-sensor tracks may be used to
enhance swimmer detection and tracking. The assumption was
swimmer detection is difficult because of past knowledge from
security advisors, and that the swimmer’s profile occupies both
water and air simultaneously producing a smaller target for
above- and below-water sensors. The above-water sensor used
was an ICX/FLIR 1400 radar and the below-water sensors
were the Sonardyne multi-beam and the Biosonics single split-
beam sonar systems. Prior to testing it was not known how
these data sets were to be fused to improve the ability to
track surface swimmers. The test was completely exploratory
in nature, and prior to testing it was not known how well each
individual sensor can track surface swimmers.
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II. DATA COLLECTION

Testing was conducted in St. Petersburg, FL at SRI In-
ternational. The sensor systems utilized were the Sonardyne
Sentinel Multi-Beam Sonar System, ICX/FLIR 1400 Radar,
and Biosonics Split-Beam Sonar System. APL provided test
direction on-site regarding the water sensors. APL and Sandia
worked collaboratively to develop a useful test plan. APL pro-
vided a GPS system for tracking of the swimmers. Sonardyne
and ICX/FLIR equipment was brought and operated by their
respective employees. Biosonics was operated by test team
members from Sandia and APL. SRI provided all facilitation
services at their St. Petersburg, FL. waterside facility.

Tests were conducted as follows with all three sensors
running simultaneously and a simulated “asset” (floating dock)
with sensors set up nearby. Refer to Figure 1 to obtain a map
view of the designated runs.

e Track A: Perpendicular to seawall from asset, 75m
e Track B: Parallel to seawall across asset, 75m

e Track C_A: Farthest from seawall, 70m

e Track C_B: Second farthest from seawall, 70m

e Track C_C: Second nearest to seawall, 65m

e Track C_D: Nearest to seawall, 70m

Tracks in part C were on a diagonal line from the seawall,
because that direction allowed the longest test distance while
remaining in-harbor. Track length inconsistencies were due
to rough placement of swim route markers by boat. Each
track was swum by SRI swimmers between 5 and 30 times,
depending on time constraints during tests on each of the three
test days. Each “run” means one swimmer traveling the length
of the track in any direction.

The segmented approach of Track C in the end was an
effort to obtain sensor FOV at different ranges. It was noticed
the A and B tracks were too close to the sensors and the C
track was too far away. This was especially pronounced in the
afternoon, when the ports sound velocity profile (SVP) made
acoustic reflection at range impossible. In general, the port
has excellent thermal mixing most of the year. In winter the
water cools to approximately 70° F. On warm winter days the
surface waters warm up in the afternoon creating a thermal
layer on the surface and causing acoustic waves to bend away
from the surface at range.
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Fig. 1. Map of Test Run Tracks at SRI

III. MULTI-SENSOR SWIMMER TRACKING ALGORITHM

The data fusion problem for the set of sensors involves a
level 1 fusion. All sensor data is used to assess the swimmer
track from the track coordinates obtained from the sensor
directly. The work here does not attempt to discriminate
between NAR targets and real targets. The assumption is
all targets moving at swimmer velocities on the surface are
swimmers to be tracked.

Within this realm of tracking there are two distinct pieces
of information that can be used to assess a track. The first is
the logic that if more than one sensor is tracking a surface
target with the same target coordinates the target is most
likely a surface swimmer. This would be a heuristic rule
for multi-sensor tracking. The second piece of information
gathered from this testing is whether the multi-track data sets
be combined or fused together to create an improved track on
the target.

Certainly, many single sensor target tracking algorithms
have been developed to demonstrate tracking. The results are
well known; if one can increase the signal-to-noise ratio on
target a more accurate track will result. Similarly, if multi-
sensor tracking can be combined to produce a higher SNR the
results will be similar. Data sets can potentially be collected
to demonstrate these concepts.

The first method used was building a tracking state table.
The goal of the table was to understand how the tracking data
can be used to develop a data fusion tracking algorithm. Table
I shows the state table for the three sensor systems.

The table shows all possible track scenarios for each sensor
in the first three columns. In the case of no tracks, the
assumption was made that a track already existed but lost on
all sensor systems. In this case, a Kalman filter model could
be used to continue the track until a sensor resumes the track.
The state where only the Biosonics is tracking assumes the
Sonardyne and FLIR lost previous tracks and the Biosonics
maintains. The more expected tracks are where the FLIR and
Sonardyne track together or separately and initiate a “slew the
cue” to the Biosonics spotlight sonar system to begin a track.
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Fig. 2. Block Diagram of a Potential Multi-Target Swimmer Tracking
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Ideally, all three are tracking and indicating a strong track.

The point of constructing this table is to help build the
concepts for a robust data fusion algorithm with this data set.
The table indicates that FLIR and Sonardyne tracks initiate the
filter on rows 2, 3, and 4. Either the multi-beam sonar or the
wide FOV radar will locate a potential target. The situation
where both find the same target track then a hand-off to the
Biosonics narrow-beam is initiated is indicted in state row
8. State rows 6 and 7 are similar with one sensor losing its
track. The purpose of the diagram is to assist in the algorithm
creation and also to yield more information about the track
logic.

Next, figure 2 shows a generalized block diagram of a
potential data fusion algorithm for this sensor suite applied to
the swimmer tracking problem. The FLIR radar and the wide-
beam Sonardyne sonar systems are used to survey the port
area and look for potential swimmer tracks. Either system, or
ideally both systems, identify a track. At the highest level,
if both systems identify the same track then it is likely a
target of interest and the coordinate information is handed off
to the Biosonics system to initiate ‘slew to cue and observe
the potential track. With all three systems observing the same
track, a Kalman filter is run using the combined track positions
of all tracks. The attempt with this data is to show that a multi-
sensor track yields an improved track with reduced error over
a single sensor track. The potential advantages of the multi-
sensor track are two-fold. First, all three sensors are observing
the same track, reducing the possibility the target is a NAR
or FAR significantly since all measurements are independent.
Secondly, the multi-sensor track should yield a more accurate
track. From the table above, reduced sensor inputs can still
be used in conjunction with the Kalman filter. If only one
or two sensors are tracking at any one time the filter uses
that measurement with an increased covariance to track. If no
sensors are tracking, the filter uses the model to maintain the
track until sensor data becomes available.



TABLE I
BAsIC DATA FUSION SENSOR TRACK STATE TABLE

FLIR Sonardyne | Biosonics || Action | Action Action Biosonics Comments Kalman Filter Action
Track | Track Track FLIR Sonardyne
0 0 0 None None None No sensor sees target Use model to predict
1 0 0 Initial FLIR Found Target: Expected Start of | Model with FLIR
track KF track
0 1 0 Initial track Sonardyne Found Target Initially: Not | Model with Sonar-
expected but possible dyne track
1 1 0 Initial | Initial track FLIR and Sonardyne found target: | Model with FLIR and
track begin KF Sonardyne track
0 0 1 Lost Lost track Stays locked FLIR and Sonardyne lost target after | Model with Biosonics
track after hand-off hand-off. Biosonics still tracking. track
1 0 1 Initial Hand-off to track FLIR found target. Handed off to | Model with FLIR and
track Biosonics track Biosonics track
0 1 1 Initial track | Hand-off to track Sonardyne found target. Handed off | Model with Sonar-
to Biosonics track dyne and Biosonics
track
1 1 1 Steady | Steady Hand-off to track FLIR and Sonardyne found target. | Model with all 3 sen-
track track Handed off to Biosonics track. sors track
0 0 0
IV. DISCUSSION OF SENSOR TRACK RUNS ’
There were three sets of data runs recorded for all tracks: e o 20 o
one set for the FLIR/ICX 1400 radar, one for the Sonardyne o " " -
Multi-beam Sonar, and one for the Biosonics spot-light sonar
system. An additional data set was recorded in conjunction 60 &0 0 &0
with the radar: an infrared FLIR camera system to observe . o : " o
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the radar tracks visually. This data was not processed as part W00 0 WD 0 0 D0 0w W0 00 2040 010

of this work but remains an image processing-based option to
increase sensor diversity.

As indicated the radar and the Sonardyne utilized vendor
tracking algorithms to identify targets of interest and provide
track data. In both cases the information lies in proprietary
vendor software and the final tracks must be extracted from the
vendor software. In most cases, this is not difficult but requires
working with the vendor to obtain the track information.

We were able to work with FLIR/ICX to obtain the track
information from the testing. The final data file included time
and data pairs for all potential tracks recorded. Since all data
was time correlated to UTC all tracks were aligned to the
correct time. Position tracks were given in latitude-longitude
coordinate pairs.

Unfortunately, the Sonardyne vendor data was not com-
pleted by the vendor in time to be incorporated into this
analysis. Sonardyne plans to complete processing and deliver
the data sets to Sandia in time to incorporate it into the
presentation of this paper in October 2012. The Sonardyne
data is discussed here but no results have been analyzed.

Finally, the Biosonics time and data pairs were extracted
from the echograms recorded during testing. As will be
discussed in detail, no tracker was available to track swimmer
targets during testing and instead the tracks were inferred from
echograms. This means they are not optimal tracks and did not
involve active control feedback where the beam is steered to
maintain optimal SNR and cross-hair track data. The tracks are
a whitened best fit from the echogram data recorded during
testing.
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Block Diagram of a Potential Multi-Target Swimmer Tracking

From all the data recorded in the test, 10 tracks were studied
because of the richness of data is each track set. These tracks
are shown in Figure 3. The reason these tracks were used is all
sensors identified tracks for these runs. Some of the runs are
short-range and some are longer range tracks, and all provided
useful track statistics to develop the Kalman filter.

V. SENSOR DATA ISSUES

One issue of concern through all tested sensors was a lack
of optimal algorithms developed to track surface swimmers.
As a result, the data presented is not necessarily the optimal
set needed to solve this problem. The measured mean errors
and covariance errors are likely higher and do not reflect the
best that can be done with this suite of sensors.



T
o
o
o
o

Fig. 4. Biosonics and GPS Track of swimmer demonstrating no Biosonics
tracking.

This was very evident for the Biosonics narrow-beam sonar
sensor. Biosonics has developed a robust underwater scuba
diver tracker making use of the split-beam phase signal to
keep the target in the center of the beam crosshairs by XY-
motor gimbal adjustments. Unfortunately, for this testing the
algorithm thresholds could not be adapted to accommodate
swimmers. To compensate for this, the beam was manually
steered in the direction of the diver swim path prior to the run
with hope the diver would swim through the beam during the
run. Because of the nature of the narrow 6-degree beam, most
runs were either run to/from the sensor most of the runs could
be captured in the beam.

The issue resultant issue was that the target was not focused
into the center of the target but instead simply passed through
the beam. As depicted in Figure 4 below, the Biosonics tracks
(red with yellow centers) run diagonally through the GPS
target track (black circles). Early in the track they lie skewed
below the target track and at the end of the track they lie above
the target, instead of the beam angle steering along to follow
the progress of the target. This lack of tracking algorithm
corrupted the statistics for this sensor.

VI. MULTI-SENSOR DATA FUSION USING BAYES’
THEOREM

Although it isn’t yet possible to numerically analyze most of
the collected test data, there is information about the sensors
and the tracking scenario to begin building an algorithm using
this sensor suite for swimmer tracking using Bayes’ Theorem:

P(Z"|X)P(X)
P(Z")

X is the target state (position) and Z is the sensor measured
positions for multiple sensors. It is important to realize that
each sensor is measuring a target position in time as the target
moves along the path. The sensors’ ability to track a target has
a probability density function with a probability of detection
and a probability of nuisance alarm rate. It can be assumed

P(X|Z") =

TABLE II
ANALYZED COVARIANCE STATISTICS FROM TEST TRACK DATA

cov < 100 M 100 M < cov < 200 M
Biosonics Statistics 5.71 17.6
FLIR ICX Statistics 0.68 11.14

these functions and rates are different for each sensor system
since the measurements are independent of each other but
correlated by measuring the state of the track.

In our case, we know certain characteristics about each sen-
sor that can be applied here without actually knowing the true
probability density functions. The wide area radar system has
much higher detection capability than the Biosonics narrow-
beam sonar system. This can be determined by the track data
and knowing that radar has a wide coverage area compared to
the Biosonics system and overall improved sensor resolution.
Also, it can be inferred that the Biosonics has much lower
nuisance alarm rate (NAR) than the FLIR radar. Therefore,
by fusing the FLIR and the Biosonics tracks an advantage is
gained from the high detection probability of the radar with the
lower NAR of the Biosonics. This use of data fusion is range-
independent but takes advantage of both systems’ attributes.

To quantify this result would require more extensive testing
and data analysis. Each sensor would need to be characterized
for probability of detection and nuisance alarms. Afterwards an
analysis of fusing similar tracks from the three sensor systems
will numerically demonstrate the overall advantage of having
multiple sensors on target. At first pass, a the FLIR-Biosonics
combination indicates a clear advantage using Bayes’ Theorem
to combine sensor tracks.

VII. SENSOR STATISTICS OBTAINED FROM DATA TRACKS

Statistics were calculated from the tracks of interest to begin
to see how the tracks can be combined to create a more
accurate track of the swimmer target using multiple sensors.
The Sonardyne tracks remain unprocessed at time of writing,
so there were 3 track sets to work with: GPS, ICX/FLIR, and
Biosonics. The GPS was considered the ground truth data and,
though not without sensor noise, expected to be more accurate
than the other two sensors. This comparative accuracy was
especially pronounced at range as the FLIR and Biosonics
beams both widen.

Results of the covariance analysis are listed in Table II.
The calculations were made given point-to-point distance and
not broken down into XY coordinates. In general, covariance
results seemed correct because the near tracks had smaller
covariance numbers than more distant tracks. However, it did
appear that the numbers did not necessarily coincide with
theoretical predicted covariance. The ICX/FLIR covariance
for distances less than 100-M appeared to be correct; when
discussing with the vendor, they expect a covariance of 1 to
2 meters. Secondly, the Biosonics covariance appears high at
distances less than 100-M and moderate at distances greater
than 100-M.



Ideally, these numbers could be compared to a theoretical
covariance number. However, for the sensors specified the
number are difficult to determine since the errors for both
the sonar and radar increase linearly as beam-width extends
outward. It is difficult to make a fair comparison although the
covariance determined here rivals the theoretical covariance
depending on where the calculation is made. Example at 100-
M the theoretical covariance is expected to be 7 and the
computed is 5.71. This makes some intuitive sense because
the number comes from all data at distances less than 100-M.

VIII. FUSED DATA KALMAN FILTER TRACK COMPARED
WITH SINGLE SENSOR KALMAN FILTER

Results here support the theory of Kalman filtering and data
fusion. A Kalman filter selects an optimum track between the
sensor measurement and a model of the swimmer assuming
sensor noise and model noise. All noise is considered to be
band-limited Gaussian white noise for the sensor and the state
of the system model. The filter makes the best estimate using
least squares criteria. It also uses Bayes’ theorem to support
the concept that each new sensor measurement is independent
of the all previous, but correlated in with the state information
of the swimmers velocity and position.

It has been demonstrated that by fusing sensor data sets
having Gaussian distribution noise properties the variance
properties can be combined to produce a reduced variance.
Using Bayes’ theorem the fused sensor variance becomes the
parallel combination of the individual sensor variances, or:

oﬁused = (1/03671507”1 + l/gfensovﬂ + l/o'fensor3)71

The result is an improvement in the measurement by fusing
the data and allowing filtering to do a better job.

This information was applied to the a swimmer-tracking
Kalman filter simulation using the noise covariance as mea-
sured from testing and applying the principles discussed. The
results show that as the swimmer moves further from the
sensor systems which increases the measurement covariance,
data fusion-based Kalman filtering allows for more accurate
tracking.

The figure below shows a simulated Kalman filter track for
one run. We used the high covariance, 17.6, for the measure-
ment to show the filter improvements. From the simulation
the RMS error between the real track and the filter predicted
track can be compared. Results of all simulations are shown
in Table III.

IX. CONCLUSIONS

A multi-sensor swimmer tracking system was investigated
to better understand a data fusion problem with potential real-
world applications. One radar system and two sonar systems
were used to track surface swimmers simultaneously. This
proof of concept investigation used real data and real sensors.
There were two important results: (1) it was found that is
it always useful to put more sensors on target to improve
detection, this may not accommodate tracking purposes, and
(2) multi-sensor tracking using this sensor suite can begin to
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Fig. 5. Simulated Kalman Filter Track of a 0.5 m/s Swimmer with Noisy
Sensor Data

TABLE III
RMS ERROR RESULTS OF SINGLE SENSOR VERSUS FUSED DATA RUNS.
(REGULAR FONT CALCULATED, PROJECTED RESULTS ITALICS)

<100 M RMS > 100 M and | > 200 M RMS
Track error <200 M Track Error
RMS Track error

Single 1.2m 1.9m 2.2m

Sensor

Fused 1.2m 1.2m N/A

two

Sensors

Projected | 1.2m 1.2m 1.25m

3 Sensors

Fused

improve tracking accuracy at ranges over 100-M using data
fusion and Kalman filter. Inside of the 100-M the data shows
that any single sensor can track swimmer targets accurately.

To continue work in this effort, more testing and de-
velopment must be performed to improve the statistics and
results. All systems must first have fully-developed tracking
algorithms prior to testing. In addition, the results presented
here may be more useful if tests were performed at ranges
of 150 to 350-M, or out to the detection envelope. This
extended range is where data fusion may demonstrate the most
usefulness. Finally, once each sensor has a fully developed
tracking algorithm a complete swimmer detection and NAR
test should be executed. This will fully characterize the sensor
system over the port ranges allowing quantification of Bayes’
theorem for placing more sensors on target.
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