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Overview

• Operational Availability (AO) is conceptually 
simple.  
– It is the portion of time that a system is either operating 

or capable of operating.

• Estimating AO, however, is not so simple

• Several equations can be developed or found in 
literature that can be used to estimate AO

– Not all of the equations are mathematically equivalent

– Some equations apply to specific usage scenarios

– Equations are often incorrectly used interchangeably



Ao Defined

• Operational Availability indicates the percentage of time that a system or 
group of systems within a unit are operationally capable of performing an 
assigned mission. AO can be expressed as (uptime/(uptime + downtime)). 
(DoD RAM-C para 1.2)

• An alternative form of the AO equation is often used 

MTBDE = Mean Time Between Downing Events 
MDT = Mean Down Time

• The specific acronyms used in the alternate equation vary based on chosen 
terminology (MTBF, MTBCF, MTBOMF, MRT, MTTR) but the equation is valid 
as long as the first term is the average time between events causing the 
system to go down, and the second term is the average down time.  MTBDE 
is the most general term since it can include any downing event including 
required scheduled maintenance downtime.



Ao Example

• A system operates for 100 hours as shown in the above timeline
• Uptime = 10+26+20+10+14=80
• Downtime = 4+10+2+4=20 hours
• Ao = uptime/(uptime+downtime)=80/(80+20)=0.80

• Using the alternate method
• MTBDE = 80/4=20
• MDT=20/4=5
• Ao = 20/(20+5)=0.80
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Equation Comparison

• Over a specified period of time, when MTBDE and MDT 
are calculated based on observed data, the alternative 
equation is exactly equivalent to the general equation



Steady State Availability

• Often, various mean time between failure and mean repair 
time measures are calculated for a system through 
analysis
– If the analysis focuses specifically on failures that cause system 

downtime, then the terms Mean Time Between Operational Mission 
Failures (MTBOMF) or Mean Time Between Critical Failures 
(MTBCF) are often used

– The corresponding average downtime for these failures is the MDT

• These calculated values are long term, steady state 
averages 
– Using them in the alternate Ao equation results in the steady state 

average for availability

– This is the availability that would be observed if the systems 
were to run continuously for a long period of time



Instantaneous Availability

• The instantaneous availability of a system is described as 
the probability that the system is “up” at a specific time (t)

• If the system starts in an “up” condition, its instantaneous 
availability begins at 1.0 and approaches the steady state 
availability after a few failure/repair cycles

• For systems that operate continuously, once the system 
passes an initial start-up period, the instantaneous 
availability equals its steady state availability

• In many analysis cases, the period of interest is such that the 
startup transient is negligible and is ignored



Availability During Mission Time

• Often in military applications, the availability of a system over 
a limited deployed period (specified mission) is desired. 

• If the system starts in an “up” state, and the mission length is 
small relative to the MTBDE, then transients are important

• As a general rule, the availability will start approaching the 
steady state availability after a time period of approximately 
four times the average time to failure (Reliability Hotwire, 
Issue 79, September 2007)



Two State Markov Analysis

• Consider a two state model in which a system is either “up” 
represented by a 1, or “down” represented by 0

• The system moves from state 1 to state 0 at a rate  and from 
state 0 to 1 with rate 

•  = 1/MTBDE and  = 1/MDT

• The instantaneous availability can be calculated as a function 
of time.  It is the probability of being in state 1 at time t. 
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Two State Markov (continued)

• The average availability, or uptime availability, is the uptime 
percentage through time t and can be calculated as 

• The limit of Ao(t) as t approaches infinity is  



Markov Example

• Consider a system with MTBDE = 75 and MDT =18.75

• The system will be deployed for 280 hours

– Its instantaneous availability is plotted below

– This system has a steady state availability of 75/(75+18.75)=0.8
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• The system instantaneous availability settles very quickly to 0.8

– The instantaneous availability at t=50 is 0.81



Markov Example

• The cumulative availability includes affects up to that time and 
approaches steady state slower

• If this system were to be deployed for 50 hours, the expected 
availability over the period from 0-50 would be about 0.86

– The steady state approximation result (0.80) is significantly off
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• Using the developed Ao equation, Ao(280)=0.8107

– At this mission length 280, Ao is approaching the steady state 
value but is still off by 0.01



Simulation to Solve Ao

• The two-state Markov analysis is a close 
approximation of a deployed system on a 
short mission

• One significant difference is in the repair 
distribution. 
– The Markov analysis assumes an exponential distribution for 

the time to repair, while in practice, a lognormal distribution 
is typically used

• Simulation allows for estimating the Ao
without the need for the simplifying 
assumption



Simulation of Example

Failure Distribution:  Exponential(75)
Repair Distribution:  Exponential(18.75)

• Replicating Known Solution case

• Results from 1000 trials
• Ao(280) = 0.8097 +/- .0041 (1 SEM)
• Known solution of 0.8107 is in range of simulation result (.8056 - .8138)
• Individual trials still reflect wide range of Ao results               
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Simulation of Example

Failure Distribution:  Exponential(75), 
Repair Distribution:  Lognormal(18.75. 18.75)

• Simulation using lognormal repair (exact solution unknown)

• Results from 1000 trials
• Ao(280) = 0.8141 +/- .0039 (1 SEM)
• Result is very close to known solution for exponential repair case of 0.8107
• Graph – Transient region very similar to exponential case
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Conclusions

• The steady-state availability equation yields an Ao that can be 
significantly different than what is actually observed during a 
short mission
– Don’t blindly apply Ao equations!

• As a good guideline, systems are not approaching steady state 
behavior until they have operated through four failure cycles
– If the mission length is less than 4*MTBDE, be careful! 

• If applied to short missions that start in an operable state, 
steady-state Ao can be too small
– You can end up under-selling the performance of the system.


