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- Common Features Observed in Tests of
Joints and Jointed Structures

Under harmonic loading, joint
dissipation per cycle increases
approximately as a power of load
amplitude and that power generally
lies between 2.2 and 2.8.

Also under harmonic loading and
modest load amplitudes, the
effective stiffness decreases
slightly with amplitude of excitation.

Though dissipation per cycle
shows a strong dependence on
load amplitude, it has little rate
dependence.
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Energy Loss per Cycle for Simple Shear
Loading
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Stiffness (Ib/in)
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Energy Dissipation and Interface Stiffness

Depend on Many Factors

@ Load History
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g Mathematical Foundations of the Joint
Constitutive Model

The model is defined by a population density p(¢) of Jenkins elements of strength ¢.

Monotonic loading (backbone) force

Homogenize into a r K
A continuous model F :J'¢p(¢)d¢+u_[p(¢)d¢
—— Kivs — 0 !
jﬁ/\{(\,— _F Dissipation per cycle during oscillation
+2

D = UIO4[U0 — $lpp(p)dg

Invert and solve for p

_‘_Li 2 2
The selection/derivation of the (4)=- d’F 1 d°D
distribution function, p(¢), allows full = PY)= d¢2 - 46 d¢2

characterization of the system.

Segalman, D. J. and Starr, M.J., 2008. Inversion of Masing Models via Continuous Iwan Systems, International

Journal of Nonlinear Mechanics, 43, 74-80. .
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&8 Modeling of Individual Joints in a Finite
Element Analysis
Look for the simplest:

@ rate independent constitutive model,
@ which is capable of manifesting softening and dissipation behavior,
@ and that lends itself to mathematical analysis.

Bauschinger, Prandtl, Ishlinskii, Iwan Model (BPII) form:

U if |u—x(t,¢)| = ¢ and U (u—x(t,$)) > 0

f (1) = J.OOO p(@lu(t)—x(t,9)] d ¢ X(t.9) = {0 otherwise

The joint properties are characterized by (@), which has the following properties:

@ Nearly linear at low amplitude.

@ Physically reasonable model capable of representing any Masing
plasticity model.

@ Manifests micro- and macro-slip and power law energy dissipation.

Creation of a 4-parameter expression for O(@) fits experimental data.
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> - Deducing Model Parameters from Experiments

From laboratory testing:
D(Fo)z vk, where 2<a<3

The manifestation of power-law dissipation behavior requires:
p(¢) ~ R¢* where y=a-3

An assumption of small deformations provides an expression for tangent
stiffness at low loads:

F)=u) pldls  —> K, =] plplg

The Sandia 4-Parameter Model is populated with data as described above
and from the force required to initiate macroslip

p(#)=Rp*(H(@)— H(p — frx )+ S — Bay)

This model simplifies to Palmov’s model, a three parameter BPIl model:

F(t)= KTu(t)+TR¢Zx(t,¢)d¢
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~ Whole-Joint Constitutive Model is a Significant
il Departure From the Standard Damping Approach

e Standard approach for modeling energy dissipation in structural dynamics
models is through proportional/modal damping parameters. Main short-
coming - models are only useful for a limited operating range
(loads/boundary conditions) over which the calibration was performed.

» Relaxed whole-joint model uses RBE3 multi-point constraint equations to
define motion of joint2g nodes as an interpolated average of all the nodes
specified in the contact patches, (overlapping contact patches do not result in
model over constraint).

= Weighting functions are used to tailor the lateral interface stiffness and
resulting shear stress profiles.

Relaxed WhOIG'JOint AttaChment MethOd e Coincident node pair referenced via
joint2g. Independent D.O.F.

_ - = i > - = o associated with these nodes.
Independent D.O.F.s i o - =
o : - L ) "‘ — —e =

. o RBARs or RBE3 elements used to
tie nodes in pre-defined contact
patch zones to coincident node pair.

Kx=iwan element
Ky=iwan element
Kz, Krx, Kry, Krz=elastic springs

I ' Coincident Node Pair:
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_.7/ Linear and Nonlinear Models Calibrated for Low
Load Microslip Predict Much Different Responses

at Higher Input Levels

Stainless Steel
(monolith)

Acceleration predictions at interface joints: Ti-SS

3-leg hardware with shaker dynamics
Titanium

Linear model

—  Experiment
— Model
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Limitations Associated With Modeling Discrete
Joints in Built-up Structures

Parameterization is required for every joint in the
structure.

These models are still simple and fundamentally
one-dimensional.

Incorporation into a finite element model quickly
turns the problem intractable.

High fidelity models and nonlinearity hamper
convergence.
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Energy dissipation per leg, (in-lb)
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Energy Dissipation of Related Systems
- IS Significantly Different
. high fidelity unit 7 || e
% 2.4
Stainless Steel %
(monolith) a =2
TI_SS Unit Titanium il
* Force per leg, (Ib) “ * Power law coefficient, C *

@ The dissipation of the high-fidelity unit is very joint-like in nature.
@ That dissipation is much more than can be explained by the leg

joints alone.
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The elementary notion presented here relies on the following observations:

A Proposed Approach to Distributed Nonlinearities

« Even under loads sufficient to cause structures to manifest significant
nonlinearity, amplitude-dependent damping and apparent softening,
linear eigenmodes generally appear to be preserved.

« Coupling among the modes generally does not appear to become
significant until very high loads. (Violation of this is most easily observed
when modes appear to be complex.)

* By segregating response modally, we may choose to treat only a subset
of those modes (presumably those for which we have some data) in a
nonlinear manner and to treat the remainder more conventionally.

Assumptions propagated into a nonlinear modeling approach:

—

Modal forces excite only corresponding modal responses.

2. Modal coordinates evolve according to some simple nonlinear
constitutive model.

3. The nonlinear modal constitutive response resolves to linear in the

limit of small loads. @ Sandia
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;Strategy to Model Such Damping and to Incorporate
- Into Structural Dynamics in a Tractable Manner

@ Assumption

The joint cumulative forces project onto only the first H
eigen modes.

@ Assumption

When projected onto those eigen-modes, the joint forces
have the following doiagonal form

O (AK +F’)= j diag({p, (¢)})B(t.$)dg

where . :
. o where a(ak—ﬁk)>oand‘0!k—ﬂk‘=¢
B (1,0) =1 .
0 otherwise

and ¢, is the K™ modal coordinate
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-, Implementation in Transient Analysis

MU + Cu + Ku =
F* + Mo diag({p,(4)})5(t.9)dg

— _/
V

lwan joint force in modal coordinates

Steps . - .

1. Project physical nodal to get ¢ = @ MU

2. Evaluate [§ vector

3. Evaluate modal force vector ¢

4. Project back to physical space F* = M ® ¢
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Deducing Modal Parameters for Distributed

Damping

v |k

VLUV LR

@ At each mode, the generalized joint stiffness is assumed small

compared to that of the underlying structure
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. lIsolation of Modal Acceleration Signals from

= Experiment

Acceleration: Mode 1
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Dissipation/Cycle (Nm)
=

Deduce Energy Dissipation as a Function
of Net Modal Force

Energy Dissipation/Cycle: Mode 1

Power-Law Fit: D=1.32526-010 x 34722

From Experiment
------- Power-Law Fit
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Some Signals are Not As Clean

&)

Sandia
National
Laboratories



Some Signals are Not As Clean

Acceleration: Mode 6
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Variability in Experimental Data is Manifest in
Power-Law Dissipation Fits

Power Law Fits: Mode 1

— Hit Number 1
Hit Number 2
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— Hit Number 4
— Hit Number 5
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Joint displacement is expressed in terms of force

- Dissipation vs Net Force From Experimental
el Data
> D
D=C,F? T
F u=F/o’
@ Experiment yields dissipation vs net force

Dissipation vs joint displacement provides two joint parameters: R, ¥

Set macro-slip above experimental levels of joint displacement

¢ =2max u
t
Set B so that K; = K,: B =2

&)
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Extraction of Palmov Constitutive Parameters from
University of lllinois Benchmark Structure
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A Simplified Subsystem Test Case

@ A very coarse mesh of a
generalized multi-
component flanged system
was created.

@ A nonlinear transient
analysis was performed.
The model was excited
using discrete lwan
interfaces at low force
input level.

@ Distributed lwan
parameters were deduced
from these low-level
numerical tests.

Interfaces
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‘;*pbroximate Modal Acceleration Time Histories Were
Extracted and Fit With Convex Envelopes

It

@ Model parameters were determined from these envelopes for the first
20 modes.

e ——
—————————

@ This distributed lwan formulation was used to perform a nonlinear

transient simulation of the subsystem in Salinas. S
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__ Istributed Formulation Matches Time Histories of

Important Modes Well
qug 1.1
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@ Distributed formulation onIXf roughly matches time histories of some modes,
but these are generally less important modes
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- ' Fitting a 3-Parameter Palmov Model

Recall the Palmov model, a three parameter BPIl model:
F(t)=Ku(t)+ [Rg*x(t,¢)dg
0

From monochromatic resonance data we can deduce the stiffness of all of the
retained modes:
Kri= o;

Also determined from those resonance experiments is energy dissipation per
cycle as a function of force amplitude. In harmonic motion energy dissipation
in terms of modal force is

D~Cy*" where C; = R,
' S e cr
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Modal Palmov Parameters From Ring-Down
Experiments

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

K 0.18016 0.18017 1.4771 1.4779 3.0388

X -0.506 -0.5 -0.52957 -0.5 -0.4489
R, 8.91x 106 | 8.75x 106 | 9.19x 104+ | 9.35x 104+ | 2.88 x 103
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Comparison at calibration acceleration level

Accel. Tower Accel. Cyl. #1

Accel. Cyl. #2

Force input

Interfaces

Response on tower
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Istributed Formulation is Accurate Across a Wide

Range of Input Levels

Comparison at 5X calibration acceleration level
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