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Common Features Observed in Tests of 
Joints and Jointed Structures

1.

 

Under harmonic loading, joint 
dissipation per cycle increases 
approximately as a power of load 
amplitude and that power generally 
lies between 2.2 and 2.8.

2.

 

Also under harmonic loading and 
modest load amplitudes, the 
effective stiffness decreases 
slightly with amplitude of excitation.

3.

 

Though dissipation per cycle 
shows a strong dependence on 
load amplitude, it has little rate 
dependence.
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Slope of 2 is 
characteristic of 
linear system.

Slopes between 2 and 
3 are characteristic of 
jointed systems



Energy Dissipation and Interface Stiffness 
Depend on Many Factors
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Load History
Dissipation decreases, stiffness increases over 
first several thousand cycles.

Disassembly/reassembly returns structure to 
original state.
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Mathematical Foundations of the Joint 
Constitutive Model

Monotonic loading (backbone) force
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The selection/derivation of the 
distribution function, (), allows full 
characterization of the system.
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Homogenize into a 
continuous model

Invert and solve for 

The model is defined by a population density () of Jenkins elements of strength .

Segalman, D. J. and Starr, M.J., 2008. Inversion of Masing Models via Continuous Iwan

 

Systems, International 
Journal of Nonlinear Mechanics, 43, 74-80.



Modeling of Individual Joints in a Finite 
Element Analysis

rate independent constitutive model,
which is capable of manifesting softening and dissipation behavior,
and that lends itself to mathematical analysis.

Look for the simplest:

( ) The joint properties are characterized by         , which has the following properties: 

Bauschinger, Prandtl, Ishlinskii, Iwan Model (BPII) form:

0
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Nearly linear at low amplitude.
Physically reasonable model capable of representing any Masing 
plasticity model.
Manifests micro-

 

and macro-slip and power law energy dissipation.
Creation of a 4-parameter expression for           fits experimental data.



From laboratory testing:

Deducing Model Parameters from Experiments

        maxmax    SHHR

   00 FFD  where 32 

The Sandia 4-Parameter Model is populated with data as described above 
and from the force required to initiate macroslip 

   R where 3
The manifestation of power-law dissipation behavior requires:
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An assumption of small deformations provides an expression for tangent 
stiffness at low loads:

This model simplifies to Palmov’s

 

model, a three parameter BPII model:

     



0

,   dtxRtuKtF T



Standard approach for modeling energy dissipation in structural dynamics 
models is through proportional/modal damping parameters.  Main short-

 
coming -

 

models are only useful for a limited operating range 
(loads/boundary conditions) over which the calibration was performed.
Relaxed whole-joint model uses RBE3 multi-point constraint equations to 
define motion of joint2g nodes as an interpolated average of all

 

the nodes 
specified in the contact patches, (overlapping contact patches do not result in 
model over constraint).
Weighting functions are used to tailor the lateral interface stiffness and 
resulting shear stress profiles. 

Coincident node pair referenced via 
joint2g.  Independent D.O.F. 
associated with these nodes.

RBARs

 

or RBE3 elements used to 
tie nodes in pre-defined contact 
patch zones to coincident node pair. 

x
y

z

Independent D.O.F.s

Independent D.O.F.s

Dependent D.O.F.s

Relaxed Whole-Joint Attachment Method

Whole-Joint Constitutive Model is a Significant 
Departure From the Standard Damping Approach

Coincident Node Pair:
Kx=iwan element
Ky=iwan element
Kz, Krx, Kry, Krz=elastic springs



Linear and Nonlinear Models Calibrated for Low 
Load Microslip Predict Much Different Responses 

at Higher Input Levels 

Linear model Nonlinear (Iwan) model

Experiment
Model

Acceleration predictions at interface joints: Ti-SS 
3-leg hardware with shaker dynamics

Titanium

Stainless Steel 
(monolith)



Limitations Associated With Modeling Discrete 
Joints in Built-up Structures 

1.
 
Parameterization is required for every joint in the 
structure.

2.
 
These models are still simple and fundamentally 
one-dimensional.

3.
 
Incorporation into a finite element model quickly 
turns the problem intractable.

4.
 
High fidelity models and nonlinearity hamper 
convergence.



Energy Dissipation of Related Systems 
is Significantly Different 

The dissipation of the high-fidelity unit is very joint-like in nature.
That dissipation is much more than can be explained by the leg 
joints alone.

Ti-SS unit

=2.58

=2.23

high fidelity unit
SS-SS steady-state mock 3-leg
high fidelity unit
Ti-SS mock 3-leg

Titanium

Stainless Steel 
(monolith)



A Proposed Approach to Distributed Nonlinearities 

1.

 

Modal forces excite only corresponding modal responses.
2.

 

Modal coordinates evolve according to some simple nonlinear 
constitutive model.

3.

 

The nonlinear modal constitutive response resolves to linear in the 
limit of small loads.

The elementary notion presented here relies on the following observations:

•

 

Even under loads sufficient to cause structures to manifest significant 
nonlinearity, amplitude-dependent damping and apparent softening, 
linear eigenmodes

 

generally appear to be preserved. 

•

 

Coupling among the modes generally does not appear to become 
significant until very high loads. (Violation of this is most easily observed 
when modes appear to be complex.)

•

 

By segregating response modally, we may choose to treat only a subset 
of those modes (presumably those for which we have some data) in

 

a 
nonlinear manner and to treat the remainder more conventionally.

Assumptions propagated into a nonlinear modeling approach:



Strategy to Model Such Damping and to Incorporate 
into Structural Dynamics in a Tractable Manner

Assumption
The joint cumulative forces project onto only the first H 

eigen modes.
Assumption 
When projected onto those eigen-modes, the joint forces 

have  the following diagonal form

where 
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Implementation in Transient Analysis 

Mu Cu Ku   

   
0

diag ( , )X
kF M t d    



 

Steps
1.

 
Project physical nodal to get

2.
 

Evaluate       vector
3.

 
Evaluate modal force vector

4.
 

Project back to physical space    

T Mu   



JF M  

Iwan

 

joint force in modal coordinates



Deducing Modal Parameters for Distributed 
Damping

At each mode, the generalized joint stiffness is assumed small 
compared to that of the underlying structure



Isolation of Modal Acceleration Signals from 
Experiment

Acceleration: Mode 1



Deduce Energy Dissipation as a Function 
of Net Modal Force

Energy Dissipation/Cycle: Mode 1



Some Signals are Not As Clean

Acceleration: Mode 5



Some Signals are Not As Clean

Acceleration: Mode 6



Variability in Experimental Data is Manifest in 
Power-Law Dissipation Fits

Power Law Fits: Mode 1



Dissipation vs Net Force From Experimental 
Data

Experiment yields dissipation vs

 

net force
Joint displacement is expressed in terms of force
Dissipation vs

 

joint displacement provides two joint parameters: 

2
0

pC C 

,R 
Set macro-slip above experimental levels of joint displacement

Set β

 

so that KT

 

≈

 

K0

 

: β

 

=2 
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t
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Extraction of Palmov Constitutive Parameters from 
University of Illinois Benchmark Structure



A very coarse mesh of a 
generalized multi- 
component flanged system 
was created.

A nonlinear transient 
analysis was performed. 
The model was excited 
using discrete Iwan 
interfaces at low force 
input level. 

Distributed Iwan 
parameters were deduced 
from these low-level 
numerical tests.

Interfaces

A Simplified Subsystem Test Case 



Approximate Modal Acceleration Time Histories Were 
Extracted and Fit With Convex Envelopes

Mode 9: Mode 11:

Model parameters were determined from these envelopes for the first 
20 modes.

This distributed Iwan formulation was used to perform a nonlinear 
transient simulation of the subsystem in Salinas.



Distributed Formulation Matches Time Histories of 
Important Modes Well

Distributed formulation only roughly matches time histories of some modes, 
but these are generally less important modes

Mode 8 Mode 11

Mode 14 Mode 17



Fitting a 3-Parameter Palmov Model

From monochromatic resonance data we can deduce the stiffness of

 

all of the 
retained modes:

2
, iiTK 

3 i
iCD 

Also determined from those resonance experiments is energy dissipation per 
cycle as a function of force amplitude. In harmonic motion energy dissipation 
in terms of modal force is

where   iiiT

i
i iK

RC
 

  32
4

3
,

Recall the Palmov

 

model, a three parameter BPII model:
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Modal Palmov Parameters From Ring-Down 
Experiments

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

KT,i 0.18016 0.18017 1.4771 1.4779 3.0388

χi -0.506 -0.5 -0.52957 -0.5 -0.4489

Ri 8.91 x 10-6 8.75 x 10-6 9.19 x 10-4 9.35 x 10-4 2.88 x 10-3



Physical Accelerations From the Discrete and 
Distributed Formulations Agree Well

Force input

Interfaces

Accel. Cyl. #1

Accel. Cyl. #2

Accel. Tower Response on cylinder 1

Response on cylinder 2

Numerical 
experiment 
response

Distributed 
Iwan 
prediction

Response on tower

Comparison at calibration acceleration level



The Distributed Formulation is Accurate Across a Wide 
Range of Input Levels

Force input

Interfaces

Accel. Cyl. #1

Accel. Cyl. #2

Accel. Tower

Numerical 
experiment 
response

Distributed 
Iwan 
prediction

Comparison at 5X calibration acceleration level
Response on cylinder 1

Response on cylinder 2Response on tower


	Slide Number 1
	Common Features Observed in Tests of Joints and Jointed Structures
	Energy Loss per Cycle for Simple Shear Loading
	Energy Dissipation and Interface Stiffness Depend on Many Factors
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Strategy to Model Such Damping and to Incorporate into Structural Dynamics in a Tractable Manner
	Implementation in Transient Analysis 
	Deducing Modal Parameters for Distributed Damping
	Isolation of Modal Acceleration Signals from Experiment
	Deduce Energy Dissipation as a Function of Net Modal Force
	Some Signals are Not As Clean
	Slide Number 19
	Variability in Experimental Data is Manifest in Power-Law Dissipation Fits
	Dissipation vs Net Force From Experimental Data
	Slide Number 22
	Slide Number 23
	Approximate Modal Acceleration Time Histories Were Extracted and Fit With Convex Envelopes
	Distributed Formulation Matches Time Histories of Important Modes Well
	Fitting a 3-Parameter Palmov Model
	Modal Palmov Parameters From Ring-Down Experiments
	Physical Accelerations From the Discrete and Distributed Formulations Agree Well
	The Distributed Formulation is Accurate Across a Wide Range of Input Levels

