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Digital holography of particle fields @&:.
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Goal: Determine particle location, size and shape in a 3D field
= Record object wave + reference wave: |E, + E,|?

= Multiply intensity by complex conjugate of the reference
wave: |E,+E, |%ES (E 2+ E2)E +E?E + EE)
~— \r’ \r’
DC term virtual real
image image

= Numerically propagate to the original particle locations

= Measure particle properties from the “in-focus” images
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Digital holography of particle fields @&:.

Advantages:

= 3D information from a single image/view Potential diagnostic
= Simple optical configuration for high-speed

= Capture non-spherical particles shrapnel fields
Challenges:

= Qut of focus virtual image adds noise to reconstructed signal
= Large depth of focus due to relatively large pixel sizes

= Particle detection algorithms are not yet mature and uncertainties are
often unknown

Optical
propagation and

Numerical propagation to
digital recording

original object location
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Object Recorded hologram Reconstructed, in-focus image
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Project goals )

Simulate holograms with known particle size and position
2. Evaluate accuracy of particle detection techniques

= Focus on non-spherical, opaque particles
3. Propose improved techniques
Experimentally validate results
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Hologram simulation ) .

Goal: Simulate holograms of individual particles with known size

and position
—_— /
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Plane reference wave Object at origin Hologram

Diffraction equation: E(x,y;z)=E(x,y;0)®g(x,y,z)
" g(x,y,z2) is the diffraction kernel (Rayleigh-Sommerfeld, Fresnel, etc.)
1. Discrete solution: E(x,y;z)=3" {S{E(x,y;O)}S{g(x,y,z)}}
= Errors arise from discretization, signal windowing, periodicity of FFT

= Governing equation for coherent light propagation in digital
holography
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Hologram simulation ) .

2. Exact solution to (somewhat simpler) Fresnel equation

= Calculated from known solutions for an aperture combined
with Babinet’s principle
= E.g. disk, radius a: I(p;Z,)/1.=|1-jmexp{-jrp?/Z }L(u,v)-M(u,v)]l/Z,|?
= [, is the intensity at the hologram plane
= [ is the intensity of the reference wave
= Z,=Az/a?is non-dimensional distance
= p=(x+y)Y%/a; u=2/Z,;v=2p/Z,
* [(u,v) and M(u,v) are solutions to Lommel’s integral

= Note, the equation is fully non-dimensional

= Paper contains similar equations for the hologram of an
opaque rectangle

I ———————
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Hologram simulation

= Common noise sources added to simulated signal:
= Discretization into NxM pixels of size AxXAy
= Analog to digital conversion with n bits of accuracy
= Additional random noise modeled with a Gaussian distribution

= 60 different conditions simulated
= Non-dimensional parameters selected to span expected experimental

conditions
= 20 realizations of random noise simulated at each condition for 1200

total simulations
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Particle detection techniques

Goal: Use simulation results to estimate accuracy of particle

detection algorithms

= Begin by reconstructing intensity at multiple distances
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Hologram Reconstruction at Reconstruction at
Z=0.92, zZ=2,

= |n-focus objects are characterized by:
1. Local intensity minima

2. Local edge sharpness maxima
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Particle detection techniques ) .

Minimum intensity method:
1. Reconstruct 1000 planes between Z=0.9Z,t0 1.1 Z,
2. For each pixel, store the minimum intensity and its Z-location
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Minimum intensity in Z-direction Z-location of minimum intensity

3. Threshold to find objects
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Minimum intensity thresholded at 0.1
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Particle detection techniques ) .

Maximum edge sharpness method:
1. Reconstruct 1000 planes between Z=0.9Z,t0 1.1 Z,

2. Calculate spatial gradients within each reconstructed plane

= Tenengrad operator: T(x,y):[l(x,y)@)sx (x,y)}2 +[I(x,y)®5y (x,y)}2
= S,and S, are horizontal and vertical Sobel kernels

= 10000
-10 Apply Tenengrad -10 %000
- operator
S ofl (@ ))) > < 9 6000
s 4000
10 10 2000
-10 0 10

-10 0 10
Reconstruc’fi/gn atZ=2, Tenengrad o?/;veconstruction atZ=2,
3. For each pixel, store the maximum Tenengrad value and its
Z-location

4. Threshold to find objects
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Particle detection techniques ) .

Minimum intensity and maximum Tenengrad methods applied

to all 1200 simulated holograms
0.02 : :

0.01
0 2 4 6 8 10 0 2 4 6 8 10
Z, Z,
Depth uncertainty for minimum intensity method Depth uncertainty for maximum Tenengrad method
Challenges:

= Optimum threshold is not known a-priori
= Results are unstable with respect to Z-position
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Improved particle detection ) .

Idea: Search for simultaneous intensity minima and edge
sharpness maxima

1. Calculate minimum intensity and maximum Tenengrad maps

2. Threshold minimum intensity to find particle shape and
guantify edge sharpness using the Tenengrad map
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3. Repeat step 2 until a particle with a maximum edge
sharpness is located
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Improved particle detection
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Depth uncertainty for hybrid method

Advantages:

= |mproved Z accuracy

= No user defined thresholds

= Does not require spherical particles
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Experimental validation
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d =145 mm translation stage
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= Quasi-stationary particle field

= Polystyrene beads (d ~465um) in 10000 cSt
silicone oil

= Settling velocity = 0.9 um/s
= ProSilica GE4900 monochrome camera

= 4872 %3248 pixels
= Each pixel 7.4 um square
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Experimental validation ) £
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y [mm]

x [mm]

Typical experimental hologram

= Diffraction pattern of individual particles clearly visible

= Background variations due to imperfections in test cell and
optical configuration

-
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Experimental validation ) £
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= Reconstruction performed at 1000 planes between 150 to
220 mm
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Experimental validation ) &=
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100 different thresholds between 30500 and 32500 used to

automatically select the optimum value for each particle
= Detected particles with d < 200 um are rejected
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Experimental validation ) .
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= 87 particles detected in a volume which is (33.5%23.2X50mm)

- 0.0022 particles/mm3
= Actual particle density is 0.0029 particles/mm?3
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Experimental validation ) .

= Experiments repeated with the particle field displaced -2 mm
in the z-direction

= Hungarian particle matching algorithm minimizes sum of paired
distances (MATLAB® implementation by Jean-Yves Tinevez)
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Summary ) e,

= Digital holography of particle fields has many advantages:
= Simple optical configuration
= 3D particle position from a single view
= Capture non-spherical particle morphologies

= Significant advancements of this work:

= Non-dimensional simulation methods to estimate accuracy and
precision

= |Improved particle detection algorithms which requires minimal a-
priori knowledge of particle shape or optimal threshold

= Experimental methods involving quasi-stationary particles to verify 3D
positional accuracy

I ———————
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