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Digital holography of particle fields

Goal: Determine particle location, size and shape in a 3D field

 Record object wave + reference wave: |Eo + Er|
2

 Multiply intensity by complex conjugate of the reference 
wave:  |Eo + Er|
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 Numerically propagate to the original particle locations

 Measure particle properties from the “in-focus” images
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Digital holography of particle fields

Advantages:

 3D information from a single image/view

 Simple optical configuration

 Capture non-spherical particles

Challenges:

 Out of focus virtual image adds noise to reconstructed signal

 Large depth of focus due to relatively large pixel sizes

 Particle detection algorithms are not yet mature and uncertainties are 
often unknown
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Project goals

1. Simulate holograms with known particle size and position

2. Evaluate accuracy of particle detection techniques
 Focus on non-spherical, opaque particles

3. Propose improved techniques

4. Experimentally validate results
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Hologram simulation

Goal: Simulate holograms of individual particles with known size 
and position

Diffraction equation: 
 g(x,y,z) is the diffraction kernel (Rayleigh-Sommerfeld, Fresnel, etc.)

1. Discrete solution: 
 Errors arise from discretization, signal windowing, periodicity of FFT

 Governing equation for coherent light propagation in digital 
holography
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Hologram simulation

2. Exact solution to (somewhat simpler) Fresnel equation

 Calculated from known solutions for an aperture combined 
with Babinet’s principle
 E.g. disk, radius a: I0(;Za)/Ir=|1-jexp{-j2/Za}[L(u,v)-M(u,v)]/Za|2

 I0 is the intensity at the hologram plane

 Ir is the intensity of the reference wave

 Za = z/a2 is non-dimensional distance

  = (x2+y2)1/2/a; u = 2/Za; v = 2/Za

 L(u,v) and M(u,v) are solutions to Lommel’s integral

 Note, the equation is fully non-dimensional

 Paper contains similar equations for the hologram of an 
opaque rectangle
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Hologram simulation

 Common noise sources added to simulated signal:
 Discretization into N×M pixels of size x×y

 Analog to digital conversion with n bits of accuracy

 Additional random noise modeled with a Gaussian distribution

 60 different conditions simulated
 Non-dimensional parameters selected to span expected experimental 

conditions

 20 realizations of random noise simulated at each condition for 1200 
total simulations
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Particle detection techniques

Goal: Use simulation results to estimate accuracy of particle 
detection algorithms

 Begin by reconstructing intensity at multiple distances

 In-focus objects are characterized by:
1. Local intensity minima

2. Local edge sharpness maxima
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Particle detection techniques

Minimum intensity method:

1. Reconstruct 1000 planes between Z = 0.9Z0 to 1.1 Z0

2. For each pixel, store the minimum intensity and its Z-location

3. Threshold to find objects
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Particle detection techniques

Maximum edge sharpness method:

1. Reconstruct 1000 planes between Z = 0.9Z0 to 1.1 Z0

2. Calculate spatial gradients within each reconstructed plane
 Tenengrad operator:

 Sx and Sy are horizontal and vertical Sobel kernels

3. For each pixel, store the maximum Tenengrad value and its 
Z-location

4. Threshold to find objects
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Particle detection techniques

Minimum intensity and maximum Tenengrad methods applied 
to all 1200 simulated holograms

Challenges:

 Optimum threshold is not known a-priori

 Results are unstable with respect to Z-position
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Minimum intensity thresholded at 0.1 Maximum Tenengrad in the Z-direction

Improved particle detection

Idea: Search for simultaneous intensity minima and edge 
sharpness maxima

1. Calculate minimum intensity and maximum Tenengrad maps

2. Threshold minimum intensity to find particle shape and 
quantify edge sharpness using the Tenengrad map

3. Repeat step 2 until a particle with a maximum edge 
sharpness is located
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Improved particle detection

Advantages:

 Improved Z accuracy

 No user defined thresholds

 Does not require spherical particles
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Experimental validation

 Quasi-stationary particle field
 Polystyrene beads (                    ) in 10000 cSt

silicone oil

 Settling velocity ≈ 0.9 m/s

 ProSilica GE4900 monochrome camera
 4872 ×3248 pixels

 Each pixel 7.4 m square
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Experimental validation

 Diffraction pattern of individual particles clearly visible

 Background variations due to imperfections in test cell and 
optical configuration
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Experimental validation

 Reconstruction performed at 1000 planes between 150 to 
220 mm
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Experimental validation

 100 different thresholds between 30500 and 32500 used to 
automatically select the optimum value for each particle
 Detected particles with d < 200 m are rejected
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Experimental validation

 87 particles detected in a volume which is (33.5×23.2×50mm) 
 0.0022 particles/mm3

 Actual particle density is 0.0029 particles/mm3
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Experimental validation

 Experiments repeated with the particle field displaced -2 mm 
in the z-direction
 Hungarian particle matching algorithm minimizes sum of paired 

distances (MATLAB® implementation by Jean-Yves Tinevez)
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Summary

 Digital holography of particle fields has many advantages:
 Simple optical configuration

 3D particle position from a single view

 Capture non-spherical particle morphologies

 Significant advancements of this work:
 Non-dimensional simulation methods to estimate accuracy and

precision

 Improved particle detection algorithms which requires minimal a-
priori knowledge of particle shape or optimal threshold

 Experimental methods involving quasi-stationary particles to verify 3D 
positional accuracy
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Questions?


