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Motivation and Goals

« High fidelity solutions of transport phenomena for
large-scale problems with complex physics

— Semiconductor simulations
— CFD/MHD
* Fully implicit Newton-Krylov solution approach

— robust technique (promising for complex physics
and chemistry)

— but depends on efficiency of sparse linear solver

— choice of preconditioner critical: robustness,
efficiency, scalability

— large-scale problems: multigrid
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Semiconductor Drift-Diffusion Model

(with G. Hennigan, R. Hoekstra, J. Castro, D. Fixel, R.
Pawlowski, E. Phipps, L. Musson, T. Smith, Shadid, Lin)

Electric _ v .eVy =g(p—n+C)

potential 5
V-, —qR=q5; Jo = —qnun Vi + D, Vn
-V -J, —qR—qZZZ Jp = —qpppVp — qD,Vp
* 1. electric potential » C: doping profile
* n: electron concentration * R: generation-recombination
« p: hole concentration term

Defect species: each additional species adds an additional
transport-reaction equation
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Drift-Diffusion Solution Approach

 Discretization: stabilized FEM or FVM on unstructured
meshes

* Fully-implicit solution approach: Newton-Krylov solver
— Pro: robustness; better for complex physics
— Con: huge sparse linear systems to solve
* Need efficient solution of large sparse linear systems
* Preconditioning critical for scalability and efficiency

— Linear system is solved for each Newton step: need to
reduce iteration count; need iteration count to scale well

— Need time/iteration to scale well
» Using solvers in SNL Trilinos library
« Currently MPIl-only; one MPI process per core
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Need to Reduce Iteration Count

» 1-level preconditioners (e.g. additive Schwarz) do not
scale due to lack of global coupling

 For 2D drift-diffusion GMRES iteration count
scales by sqrt(DOF)

* Need methods with global coupling such as

multilevel/multigrid

BG/P Weak Scaling 31,000 DOF/core
Charon Steady BJT GMRES

3500 | NN R Tk IBM Blue Gene/P
§3°°°"" » 306k nodes; each with
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Trilinos ML Library: Algebraic Multigrid Preconditioners

(R. Tuminaro, J. Hu, C. Siefert, M. Sala, M. Gee, C. Tong)

« Aggressive coarsening with graph partitioner and pre-specified # of levels
 Large difference in size between levels
» Graph partitioner: serial for all levels, parallel for final level

° Aggregates tO produce a coarser Level 2 (36 nodes) Level I (9 nodes) Level 0 (3) nodes
operator
» Create graph where vertices are _I

block nonzeros in matrix A,

« Edge between vertices i and j
added if block B,(i,j) contains

nonzeros » Petrov-Galerkin smoothed aggregation
« Decompose graph into for nonsymmetric matrices
aggregates « Separate restriction smoothing
» Restriction/prolongation operator » Local damping parameters
* A1 = R AP P =(I—wD AP,

R; = PT(I — AD 'w")
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Coarsening Schemes
 (Aggressive) coarsening with graph partitioner and coarse matrix
repartitioning (Zoltan RCB)
« METIS for all levels
« Keep coarsening until matrix is below threshold size
* More “mesh nodes” on cores; better quality aggregates
» Uncoupled aggregation, coarse matrix repartitioning (Zoltan RCB)

* Uncoupled: stencil is nearest neighbor, aggregates cannot span
processes

» Keep coarsening until matrix is below threshold size

« Smaller difference in size between levels, e.g. ~9 for FEM 2D
drift-diffusion

 Better quality aggregates
 Multigrid cycle
 VV-cycle: fewer solves at coarser levels (e.g. 7-lev, 1 KLU apply)

» W-cycle: more solves at coarser levels (e.g. for 7-levels, apply
KLU 32 times)

AR, U-S- DEPARTMENT OF // VW | 'bgﬂ’ﬂ m ﬁg?lgll?m
N .
P ENERGY %’vNAst'ﬂ Laboratories




Multigrid Cycles: V-cycle and W-cycle

3-level V
O presmooth

[ ] postsmooth

1 <> direct solve

4-level V

w N

3-level W
0 O presmooth
1 [ ] postsmooth
<> direct solve
2
4-level W
0
1
2
3

* V-cycle: fewer solves at coarser levels (e.g. for 7-level, one

KLU apply)

« WW-cycle: more solves at coarser levels
* 5-, 6- and 7-level W-cycle have 8, 16 and 32 direct solves
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Weak Scaling: Iteration Count for Different
Coarsening Schemes

(GMRES lterations)/(Newton Step)

2D BJT steady-state drift-diffusion

4-level aggressive coarsening: METIS/METIS/ParMETIS 7
METIS, coarse matrix repart; Uncoupled, coarse matrix repart ‘_
Scaled to 8192 cores and 250 million DOF; 31000 DOF/core

BG/P Weak Scaling 31,000 DOF/core BG/P Weak Scaling 31,000 DOF/core
Charon Steady BJT GMRES ML V-cyc Charon Steady BJT GMRES ML W- cyc
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Weak Scaling: Solution Time for Different
Coarsening Schemes

« 2D BJT steady-state drift-diffusion
* 4-level aggressive coarsening: METIS/METIS/ParMETIS
 METIS, coarse matrix repart; Uncoupled, coarse matrix repart

e Scaled to 8192 cores and 250 million DOF; 31000 DOF/core
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 V-cycle: prec setup+Aztec « V-cycle: MPI time
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Weak Scaling Study: 1-level vs. Multigrid

« 2D BJT steady-state drift-diffusion )
» Uncoupled aggregation with coarse matrix repartitioning ‘_
———————————

* Problem scaled to 8192 cores and 252 million DOF
 GMRES Krylov solver

core [fine grid 1-level ILU Uncoupled V-cyc Uncoupled W-cyc

unknowns [ave its per [time per |ave its per [time per |ave its per [time per

Newt step [Newt (s) |[Newt step [Newt(s) Newt step [Newt (s)
32 988533 214 55 21 13.5 14 13.1
128|3.95E+06 435 192 26 14.9 15 13.6
512(1.58E+07 859 697 33 17.5 16 15.6
2048|6.31E+07 1697 2634 46 21.6 20 18.1
8192(2.52E+08 3377 10559 58 25.6 25 22.6

« Compared with 1-level preconditioner for 8192-core, 252 million DOF case
» Uncoupled agg V-cyc reduces iterations by 182x, time by 412x
» Uncoupled agg W-cyc reduces iterations by 422x, time by 467x
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Reducing Iteration Count: Improved Aggregation

BG/P Weak Scaling 31,000 DOF/core BG/P Weak Scaling 31,000 DOF/core
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« Uncoupled with matrix repartitioning
* more levels (up to 7); better aggregates )
- Significantly reduces iterations: W-cyc by L
~8x, V-cyc of ~3x for 2 billion DOF for 64k
 Time reduction: W-cyc 3.6x 2 billion DOF, 64k
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Uncoupled Aggregation: Time/lteration

|
> Charon l<Stsecaaclz:'yn%J3T1 9381\3%?% « TFQMR: can look at time/
[y == _&| jteration
* V-cyc time/iteration flat from
,,,,,,,,,,,,,,,,,,,,,,,,,,, ./ | 64to 64k cores
« W-cyc time/iteration not
******************* ~~ 1 doing well due to significant

Increase in work on coarse
levels

* V-cyc and W-cyc require

| | | about the same total time,
ol . . ... | eventhough W-cyc had fewer

1e+06 1e+07 1e+08 1e+09

Unknowns iterations/Newton step

(ML/Aztec Time)/(Krylov lteration) (sec)
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Weak Scaling to 147,000 Cores

BG/P Weak Scaling 10,000 DOF/core BG/P Weak Scaling 10,000 DOF/core
Charon Steady BJT GMRES ML Charon Steady BJT GMRES ML
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* 10,000 DOF/core; 1.47 billion DOF at 147,000 cores
« GMRES; Uncoupled aggregation with coarse matrix repartitioning
* Problem size increased 2304x: W-cycle iter increased 2.0x; (prec

+Aztec) time increased 8.8x (prec setup time is double Aztec)
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Weak Scaling to 147,000 Cores: Time/lteration S

BG/P Weak Scaling 10,000 DOF/core
Charon Steady BJT TFQMR ML

e =] | 10,000 DOF/core; 1.47 billion
DOF at 147,000 cores
 TFQMR uncoupled
aggregation
* V-cyc: time/iteration

* 64 to 64k increases 28%

» 64k to 144k increases 12%
» \W-cyc time rapidly increases
3 3 3 3 due to larger amount of work at
16106 1es07  1e+08 1409 coarser levels

0.5

(ML/Aztec Time)/(TFQMR lteration) (sec)
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Sandia
&3 Tor //Al I ag?s) m Notiowe)
' EN ERGY // ’ v Dm,"v" Laah:Jorg?ories




Overall Performance: Still Have Work To Do

* Next challenge to improve overall performance
* Improve preconditioner setup time
* Improved repartitioning to minimize data movement in
traversing mesh hierarchy and application of preconditioner
 Eliminate re-computation of symbolic graph algorithms for
projection and for matrix graphs (static meshes)
» Work to obtain true h-independent iteration counts

BG/P Scaled Efficiency: Time per Aztec lteration
Charon Steady BJT TFQMR ML V-cyc

* Time per iteration scales well for V-cycle . -

12 M per e « V-cyc overall performance:
e * 64 to 64k: prec+Aztec 3x slower
08 4700 — 35% due to prec, 65% due to Aztec inc

— Prec 1.6x slower
— Aztec 5.7x slower (4.3x iter inc)

64 to 147000: prec+Aztec 7.1x slower

0.6

Scaled Efficiency

0.4

02 — 60% due to prec, 40% due to Aztec inc
. — Prec 8.3x slower
O O e T e — Aztec 5.7x slower (3.6x iter inc)

Time per Krylov Iteration
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Resistive MHD Model

(J. Shadid, R. Pawlowski, E. Cyr, L. Chacon)

Navier-Stokes + Electromagnetics

o
pa—':+p(u-vu)—v-(T+TM)—pg=0
2
T=—(P+ —u(v -u))I + pu[Vu + Vu']
TMm = 1B ® B — —||B||21
Ho
9p

a2 + V- -(pu) =0

oT
pC)p [E—Fu VT} +V-q-n|J||F=0

0B
o Vx(uxB)+Vx(—VXB):O

SNL Z-machine
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Preliminary Weak Scaling: Kelvin-Helmholtz

Drekar (CFD/MHD): R. Pawlowski, E. Cyr, J. Shadid, P. Gabel

Cray XE6 Weak Scaling Drekar Cray XE6 Weak Scaling Drekar
Kelvin-Helmholtz 31 000 DOF/core Kelvin-Helmholtz 31 000 DOF/core
40 . 10 .
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» 2D Transient Kelvin-
Helmholtz instability

* Re=5000 shear layer, CFL ~2
» Cray XEG
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Preliminary Weak Scaling: 3D CFD (Fixed CFL)
Drekar (CFD/MHD): R. Pawlowski, E. Cyr, J. Shadid

Time = 0.5625

3D transient swirling jet,
fixed CFL (CFL~1)
« GMRES, ML prec

* Cray XEG
cores Newt/dt | Iter/Newt | Time/Newton step (sec)
step Prec Aztec

256 3.7 14 1.3 1.0

2048 4.0 20 1.8 1.6

16384 4.0 30 2.8 3.0

131072 | 3.8 34 5.4 3.5
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Preliminary Weak Scaling: 3D CFD (Fixed dt)
Drekar (CFD/MHD): R. Pawlowski, E. Cyr, J. Shadid

Time = 0.5625

3D transient swirling jet,
fixed dt=0.001
« GMRES, ML prec

* Cray XEG

cores Newt/dt | Iter/Newt | Time/Newton step (sec) | TFQMR
step Prec Aztec timel/iter

256 Failed to converge

2048 2.3 22 1.9 1.0 0.15

16384 | 3.6 27 2.2 24 0.18

131072 | 3.8 34 5.4 3.5 0.19
T oF Sandia
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Preliminary Weak Scaling: MHD Generator

Drekar (CFD/MHD): R. Pawlowski, E. Cyr, J. Shadid

Ux

-0.06 041 087 134 180

« 3D Steady-state MHD Generator
* Inlet V=1, permanent magnet supplies nonzero By

« Cray XEb6
cores lter/Newt | Time per Newton step (sec)
step Prec Aztec Prec+Aztec
32 10 15.4 2.2 17.6
256 14 16.1 3.2 19.3
2048 24 17 5.6 22.6
16384 38 20.5 9.9 30.4
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Concluding Remarks and Future Work

Newton-Krylov/AMG methods are promising for large-scale
simulations (semiconductor drift-diffusion, CFD/MHD)

Scalable linear solvers critical to scalability and efficiency for
large-scale simulation

Massively parallel simulations on up to 147,000 cores
 AMG V-cycle: time per iteration scales well
* Need to improve preconditioner setup and iteration count
Issues
« Strong convection effects, hyperbolic systems
 Highly non-uniform FE aspect ratios

Need to worry about hybrid (MPI/threading); depend on
Trilinos
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Thanks For Your Attention!
Paul Lin (ptlin@sandia.gov)
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Cray XE6 and IBM BG/P Weak Scaling

XE6 and BG/P Weak Scaling: Charon Steady BJT
0.25

XE6 —6— o
BG/P ——

10000 DOFicore » Steady-state drift-

TFQMR ML V : 1 :

T wel (iffusion BJT

16k 64k,

 TFQMR time per iteration
* Cray XE6 2.4GHz 8-core
Magny-Cours

 IBM Blue Gene/P 850
MHz quadcore PowerPC

« 10,000 DOF/core

0.1

(ML/Aztec time)/iter (sec)

0.05
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