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m Nanostructured metals provide the potential for
radiation tolerant design

m Far-from-equilibrium nanograined metals can exhibit
very unique and unexpected defect structures

m Thermal, mechanical, and radiation properties are
probably related

m Precession microscopy provides a way to characterize
grain orientation and grain boundary at the smallest
scale

® In situ ion irradiation provides the potential to directly
watch the evolution
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Properties and Mechanisms Active
In Nanograined Metals

Due to the variations in:
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1) What are the thermal and mechanical properties and how do they
effect the radiation tolerances?

2) Beyond just grain size, what is the microstructure?
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‘:ﬁ,_}mRadiation Tolerance from Nanograined Metals

Variation in radiation tolerances Similar cascade size and shape predicted
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To a first order mean grain size comparison, these reports appear conflicting.

This may not be the case if initial microstructural details and associated properties are considered




Thermal Stability of Nanocrystalline Materials

Abnormal Grain Growth
is a function of:
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90 nm-thick PLD Ni during annealing at 350 °C

A few select grains grow at the expense of the remaining matrix



A Variety of Unexpected Defect Structures in Ni

Stacking-fault tetrahedra
Multitude of defects in annealed PLD Ni
« SFT at temperature
« Stable microstructure for over 15 months

« SFT not due to irradiation, quenching, high strain rate

230 nm thick PLD Ni Annealed « SFT are theorized to be formed by rapid grain growth
il 225 SONCIEARES through the high free-volume at the initial grain
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Thermal Stability of Nanocrystalline Materials:
Evidence of HCP Phase Gralns

BFCC phase
B HCP phase
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- & Failure Analysis of Strained PLD Ni

'Nénograined Bimodal Ultra-fine grained

Brittle Fracture 500 nm | imited Plasticity °°° ™ Shear Failure = 500
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< Deformation and Failure in Bimodal PLD Ni

Throughout the film In the plastic zone At Crack Tip
Elastic strain Extensive dislocations slip Necking
Limited dislocation slip Twinning Grain agglomeration

We have some insight into the unique thermal and mechanical mechanisms
| and properties. What is the initial nanostructure that causes this?




Precession Electron Diffraction Microscopy
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Advantages:

e <10 nm spatial resolution
. Near kinematical electron diffraction

*  Symmetry ambiguities are resolved
Fast and automated acquisition
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Phase Determination in 50 nm As-deposited Ni Film

- BF-TEM

Re-constructed phase and reliability map
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( Clear observation of morphology
_‘"@"‘  Mean HCP gram size:8.1+0.3nm m nanocrysta”lne fllms

%« Mean HCP phase percentage: 6.0%




FCC and HCP Texture Determination In
50 nm As-deposited Ni Film

FCC phase inverse pole figure
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“FCC and HCP.Phase Evolution after 35 MeV Ni Irradiation

Optical
Microscope

As-deposited

Larget Depth o um

35 MeV Ni ~ 10 dpa

Despite the minimal interaction
predicted in 100 nm film, grain growth
was observed and increased HCP

phase resulted (711) Sandia National Laboratories




In situ TEM Beamline

Collaborators: D. Buller and J.A. Scott

Double tilt
stage needs to
tilt only 12°
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Pre-TEM Coupon
Irradiation Chamber

Faraday Cup and
Viewing Screen

Tandem beamline into the TEM is completed and operated regularly
Colutron beamline is assembled, under vacuum, and baked out

Beam burn from We hope to have concurrent heavy and light ion irradiation facility
14 MeV Si | operational in 2012




Initial In situ lon Irradiation Results of PLD Ni
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s ;,r ¢ a S 80nm PLD Ni deposited on salt and transferred to Cu grid
o < Annealed 2 hrs at 250 °C

60 nA 5 MeV Si®* beam with d,.,,, ~ 3mm

Sample irradiated 45° normal to ion beam

High energy heavy ion 5 min (~.02 dpa) 10 min (~.04 dpa)
beams alter the ' > N N ™ . ——
electron beam when
not grounded

Some structural
changes observed
during in situ TEM

Collaboratlon with: A. nghorn



Conclusions

m Unique structures result from
nanograined processing

m Thermal, mechanical, and
radiation stability of
nanograined metals are
probably intertwined

m Precession microscopy
provides a unique tool to
study the grain orientations
and boundary relationships

As-deposited

lon Irradiation
+
Precession Microscopy

Greater insight into
structural evolution due
to radiation damage

35 MeV Ni ~ 10 dpa
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Interesting New In situ TEM Directions...

Hydride Irradiation stability of
formation scintillators

in Zirlo Initial CdAWO, model
exposed
to pure H,
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Irradiation with 20 nA,

Rajasekhara and B.G. Clark
: 3 MeV Cu*

Zircaloy heating in air
Vacuum & Single Window ~1 atm & Two Windows ~1 atm & ~1200 C

Collaboration with: S. Hoppe, B.A.
Hernandez-Sanchez




