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SUMMARY & CONCLUSIONS

This paper will describe some of the challenges and
strategies for sampling and testing of complex one-shot
systems. A taxonomy for defect types will be offered that
informs the nature of the testing and analysis that should be
done. In addition, some options for balancing and articulating
risk will be described for the various surveillance programs
described.

1 DEFINITION OF ONE-SHOT

This paper will describe some of the challenges and
strategies for sampling and testing of one-shot systems. Key
attributes of these systems are that they typically stay in
dormant storage until called upon for one-time use. Common
examples of one-shot devices are air-bags in vehicles, fire
suppression systems, certain types of safety features in nuclear
power plants, missiles, thermal batteries, and some stand-by
systems. Some of the components of the system may be
capable of multiple operations, but the fundamental usage is as
a one-shot item. This paper will focus on complex one-shot
systems which may be difficult or expensive to test.

2 DEFINITION OF SURVEILLANCE OBJECTIVES

Unlike continuously operating systems, one-shot systems
typically do not reveal defectiveness until tested. This poses a
major challenge for surveillance, especially if the testing is
destructive. In many cases, one is limited to making inferences
regarding the entire population from testing of samples.

This paper will focus in particular on systems that have
long periods of dormant storage, potentially decades. One
must thus manage one’s assets recognizing that over such a
time period, there can be a variety of defectiveness that could
be manifested over the life of the system. The objective of
surveillance is thus to look for unanticipated defectiveness
through the use of sampling and testing.

The risk of not doing surveillance is that defects cannot be
found and fixed and more importantly, one’s presumptions
about the reliability of the one-shot system may be flawed. A
history of few defects in a one-shot system may mean that the
inherent reliability is good but it may also mean that an
inadequate test program has been conducted. It is critical that
the risks of not looking are understood and communicated in
addition to understanding the assumptions made when
interpreting results of tests that have been conducted.

3 DEFECT TAXONOMY

One of the most fundamental assumptions one must make
is whether defects are catastrophic quality defects or margin
insufficiency defects.

In Figure 1, a quality defect is shown notionally. A
histogram of some parameter is plotted for a population of
units. The performance of each population member is either
well above the performance requirement L or fails
catastrophically (e.g., no output). Understanding the
distribution to the right of L tells us nothing about the
probability of units to the left of L.
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Figure 1: Quality Defect

This is contrasted with

Figure 2, a margin insufficiency defect. Here, it is
presumed that knowledge of the population distribution
characteristics allows one to make inferences about the
probability of units to the left of L. Clearly one will plan
surveillance differently depending upon which view one holds
regarding the nature of the defects that are present.

A
Vd
—

pL

Frequency

A 4

\ ! parameter Value
Figure 2: Margin Insufficiency Defect

For certain classes of complex one-shot systems, the
historical experience has been that quality defects
overwhelmingly predominate. This is not surprising when



considering the design process. Significant resources and
effort are invested during design to ensure that margin to the
requirement is large, and conservative requirements and
product acceptance specifications are defined to ensure this. In
short, rigorous design, development, and qualification ensure
that few cases of margin insufficiency are present when a
system is newly fielded.

Note that one could argue that many problems that are
first detected as catastrophic defects could have been tracked
as margin insufficiency, if we just knew the right parameter to
examine. Thus this characterization of defects as either quality
or margin insufficiency hinges to a large extent upon the
nature of the evaluations that we do. However from a practical
standpoint, given that complex one-shot systems may include
numerous individual components, each with a wide variety of
materials and functionality, it is clearly not possible to explore
every single parameter that might reveal margin insufficiency.

The question then arises: what happens to systems as they
age? How do we most effectively “look for change”? One
model of age-related defects is shown notionally in Figure 3.
While the margin of the parameter value (e.g., the amount of
active ingredient) may have been adequate at time of
production (ty), it may be slowly changing over time such that
at some point in time (t;) there is a defective fraction due to
margin insufficiency.
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Figure 3: Margin Loss

Thus even though static quality defects might still be
present, at some point in time the greater risk for the one-shot
system becomes age-related defects. From a surveillance

perspective, the concern shifts from detection of quality
defects to emerging margin insufficiency defects (“margin
loss”). Along with this comes increased emphasis on variables
data analysis in order to efficiently detect margin loss as
depicted in the graphic below.

It should be noted that there is a second aging model in
addition to margin loss. This is noted in Figure 4 as a quality
defect later in life — these are typically referred to as “latent
quality defects”. Latent quality defects are catastrophic defects
that appear with time.

These, like quality defects early in life, are not predictable
from knowledge of the distribution that lies to the right of L.
Instead one generally relies on regular functional testing of a
large number of units to characterize their prevalence. A good
example is stress voiding, where the circuit path continues to
conduct current as stress voiding is occurring until that critical
moment when the voids progress to the point that the circuit
path is opened. To outward appearances, the performance
“drops off the cliff” with no parameter signaling prior
degradation.

Note that latent quality defects may eventually affect the
entire population (as stress voiding does) or only
subpopulations (an example is corrosion that only occurs in
units that were contaminated during production). Thus while
it may be possible to predict some latent defects as margin
loss, if one has access to the correct parameter, this will be
impossible to do in the case of unknown problems that affect
unknown fractions of the population. The difficulty is
compounded by the huge scope of materials and potential
degradation mechanisms present in complex one-shot systems.
Given this, latent quality defects are generally the most
common way that age-related issues are observed and
assessed, rather than margin loss. As with early-in-life quality
defects, latent quality defects cannot be characterized by the
main population distribution; instead, one must rely on
sampling data to estimate the prevalence of a defective
subpopulation.
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Figure 4. Defect Taxonomy for One-Shot Systems




4 SELECTION OF TESTS AND PARAMETERS

One of the strengths of variables data analysis is that it
offers the opportunity to detect stockpile change through the
monitoring of various parameters. However this is a double-
edged sword. If the wrong parameters are monitored, one may
be misled into believing that change is not occurring when it
actually is. There is a major difference in the nature of
inferences that can be made from functional tests compared to
variables data analysis on a handful of parameters — each has
its strengths and weaknesses. And certainly different
parameter selections give us different types of information.

There is a clear paradox in selection of parameters to be
analyzed. Parameters measured at higher levels of assembly
often tend to be easier to relate to overall performance and
also reveal a broader range of failure mechanisms than
parameters at lower levels of assembly. This is particularly
true if realistic functional tests can be conducted. However if
something is changing, that change may not be manifested in
measurements taken at a higher level of assembly but could be
detected by monitoring parameters at lower levels of
assembly.

This underscores the interesting dichotomy noted earlier.
The very same issue can appear to be either a latent quality
defect or a margin loss defect, depending upon the particular
parameter one is monitoring. The dilemma is that in order to
detect margin loss, one must (1) have access to the relevant
parameter in order to measure it, (2) be smart enough to
choose that parameter for monitoring, and (3) be careful
enough in making the measurements over time such that a
change can be differentiated from changes in testers or test
procedures.

5 SURVEILLANCE STRATEGIES FOR DEFECT TYPES

One’s assumptions about the nature of the defectiveness
and types of evaluations available thus have important
implications for sampling and data analysis for complex one-
shot systems. Methods to characterize the distribution of a
parameter are an excellent tool to identify and understand
margin loss, but they cannot answer questions regarding latent
quality defects. In order to estimate reliability, it is not
sufficient to collect data to characterize the population
distribution to the right of L. Instead, one must sample to
ensure that the quality defects (as shown on the left of L) can
be detected. In the absence of identified parameters, one must
rely on functional testing to make this judgment. Defect
discoveries from functional testing often lay the foundation for
understanding the parameters that describe physical
degradation in these complex one-shot systems.

It is thus critical to keep both the strengths and limitations
of variables data in mind when considering how well we
understand complex one-shot systems. A similar comment can
be made for sampling strategies: they must take into account
the possibility that any of these defects may be present in the

population with sample sizes chosen appropriately to enable
detection with reasonable level of risk.

In this section, some potential strategies for sampling and
analysis for each of these defect types will be described.

5.1 Quality Defects

Looking back at Figure 1, recall that analysis of the
variables data to the right of L does not help understand the
probability of catastrophic failure. The most reasonable
approach is to avoid making a distributional assumption and
treat the functional evaluations as Bernoulli trials. One can
size the sampling program by deciding the level of risk one is
willing to live with (cast in terms of “what is the size of the
defect that may be undetected?”” along with a confidence level
that the defect will be detected) and using the hypergeometric
distribution or binomial approximation to calculate number of
samples. Of course there are many important assumptions that
must be kept in mind, foremost being that this presumes that
one is able to detect all defects present if one is lucky enough
to sample a defective unit. This requires careful test design for
complex one-shot systems, particularly if the tests are
destructive and there is only one chance to exercise the
hardware.

Using the hypergeometric distribution, one can calculate
the confidence, y, that at least one defective unit will be found
in a random sample from a fixed population as:

NP\ N — NP
- 0 n )
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n

where:

n is the number of samples,
P is the defective fraction, and
N is the population size.

If no defective units are found in the sample, y can be
interpreted as the confidence that the defective fraction is no
more than P. This uses the reasoning that if more than NP
defective units had been present, at least one of them would
have been sampled with probability, y. Since the defective
fraction is unknown, the calculation is interpreted in terms of
both the confidence and the defective fraction that is
precluded. Thus for example, a sample of 25 out of a
population of 500, with no defects found, would give 93%
confidence that the defect fraction is no more than 10%, but
only 70% confidence that the defect fraction is no more than
5%, and 23% confidence that the defect fraction is no more
than 1%. Similar calculations can be done to examine the
risks associated with other choices of sample size. Figure 5
shows example calculations for sample sizes of 10, 25, and 50



out of a population of 500 units. Note that 100% sampling is
required to have 100% confidence in zero defects.
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Figure 5: Confidence vs. Defective Fraction Precluded

5.2 Margin Insufficiency Defects

A tolerance limit approach provides a good basis for
thinking about sampling quantities for margin insufficiency
[1],[2]. From a theoretical standpoint, the number of samples
required for determining margin depends upon the desired
population coverage (the proportion of the distribution above
the performance requirement that one wishes to demonstrate)
and the desired confidence level. It also depends upon the
inherent margin of the component — a component with more
margin will require fewer tests compared to a component with
less margin to show with the given level of confidence that the
given coverage proportion has been achieved. However this
inherent margin is not known a priori and is the performance
property to be estimated from the data. Hence although
critical, it cannot enter into determination of sample size until
at least some data are taken.

Another key factor that affects one’s estimate of margin,
also unknown, is the distribution of the population. Because
the distributional assumption is pivotal in estimating margin,
validation of this assumption may be the driver for setting a
minimum sample size. In cases of small margin, many
samples may be needed to achieve the desired confidence.

Figure 6 shows a set of operating characteristic (OC)
curves for the probability of demonstrating a specified margin
as a function of true margin. Margin can be defined by a z-
score, which is equal to the number of standard deviations
from the population mean to the value that defines the
defective fraction. If the distribution is normal, the defective
fraction, P, is a known function of the z-score, zp. For
example, only about 2% of a normal distribution falls more
than two standard deviations below the mean, so a z-score of
two translates into a defective fraction of 2%. The confidence
limit is equal to one minus the risk of falsely concluding that
the z-score is greater than two. Calculations such as those
shown on Figure 6 illustrate the risk of failing to demonstrate
an adequate margin. The risk is reduced by increasing the
number of samples, but the number of samples that may be
required to have a high probability of demonstrating margin
becomes very large as the true margin approaches the margin
to be demonstrated. When true margin is equal to margin to

be demonstrated, the probability of demonstration is limited to
10% by the nature of the tolerance limit calculation.
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Figure 6. OC Curves for Demonstrating Margin

Comparison of Figures 5 and 6 shows the relative
efficiency that may be achieved by monitoring variables data.
For example, from Figure 5 one sees that a sample of 50 is
needed to demonstrate a defect fraction of less than two
percent at the 60% confidence level. In contrast, from Figure
6 one sees that one may be able to demonstrate a margin
defect of less than two percent (i.e., z-score greater than two)
at the 90% confidence level with as few as 5 samples, if the
true z-score is six or more. However, as noted above, the
margin demonstration does not rule out the possibility of
quality defects.

5.3 Latent Quality Defects

This case is very similar to that described earlier for
quality defects. The difference is that since latent defects
emerge over time, inclusion of early tests in the calculation
may result in overly optimistic interpretation of the test
history. Including only recent tests will give a much better
picture of the ability of a given sampling program to identify
latent quality defects. The time window to choose depends
upon the components in the system, but it should be noted that
some problems do have rapid times of onset and thus regular
sampling is always prudent, particularly if the consequences of
failure are high.

5.4 Margin Loss Defects

One can extend the tolerance limit calculational approach
to include regression in order to consider sampling needs to
detect margin loss over time. Like the margin insufficiency
case described earlier, there are numerous assumptions that
must be made, and effort should be expended to confirm those
assumptions. In particular, great care should be taken in the
case of limited data to ensure that the caveats surrounding
performance conclusions are well communicated.

6 BALANCING RISK

The dilemma of course is that one typically does not
know a priori the nature of the defects that may be present



when a system is produced or even more, that may emerge
over time.

As can be seen from the above examples, monitoring
variables data can be more efficient at identifying change in
performance compared to attributes data but there is an
important presumption that (1) there is a variable that is
associated with performance and which manifests any age-
dependent performance degradation that may occur and (2)
that variable is being monitored during testing. Defects often
don’t meet both of these conditions, so functional testing must
be the primary vehicle to detect them.

The point to underscore is that variables data analysis is
not sufficient by itself to estimate reliability, because it does
not address quality defects. In addition, one should not be
lulled into complacency (and low sample rates) by high
margin; there may be quality defects present that would then
not be detectable.

One must thus craft a program that recognizes both types
of risk and attempts to balance them. Even if one presumes
excellent margin (and a concomitant small sample quantity),
one must take into account the possibility of quality defects
(either early in life or latent) when sizing one’s sampling
program. The planned program will tend to be a maximum of
these two, in cases where functional test units can yield to
subsequent margin testing.

7 SUMMARY

There are different classes of defectiveness that may be
present in complex one-shot systems. Unlike continuously
operating systems, defects will not be detected unless testing
is done explicitly. One’s ability to find defects (and
consequent risk of undetected defects) thus depends upon
sampling and testing. Different assumptions about the nature
of the defects that are present or that may emerge over time

can lead to very different sampling strategies. It is thus wise to
consider each potential defect type separately and then select a
program that gives an acceptable level of risk integrated across
these defect types.
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