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SUMMARY & CONCLUSIONS

This paper will describe some of the challenges and 
strategies for sampling and testing of complex one-shot
systems. A taxonomy for defect types will be offered that 
informs the nature of the testing and analysis that should be 
done. In addition, some options for balancing and articulating 
risk will be described for the various surveillance programs 
described.

1 DEFINITION OF ONE-SHOT

This paper will describe some of the challenges and 
strategies for sampling and testing of one-shot systems. Key 
attributes of these systems are that they typically stay in 
dormant storage until called upon for one-time use. Common 
examples of one-shot devices are air-bags in vehicles, fire 
suppression systems, certain types of safety features in nuclear 
power plants, missiles, thermal batteries, and some stand-by 
systems. Some of the components of the system may be 
capable of multiple operations, but the fundamental usage is as 
a one-shot item. This paper will focus on complex one-shot 
systems which may be difficult or expensive to test.

2 DEFINITION OF SURVEILLANCE OBJECTIVES

Unlike continuously operating systems, one-shot systems
typically do not reveal defectiveness until tested. This poses a 
major challenge for surveillance, especially if the testing is 
destructive. In many cases, one is limited to making inferences 
regarding the entire population from testing of samples.

This paper will focus in particular on systems that have 
long periods of dormant storage, potentially decades. One 
must thus manage one’s assets recognizing that over such a 
time period, there can be a variety of defectiveness that could 
be manifested over the life of the system. The objective of 
surveillance is thus to look for unanticipated defectiveness 
through the use of sampling and testing. 

The risk of not doing surveillance is that defects cannot be 
found and fixed and more importantly, one’s presumptions 
about the reliability of the one-shot system may be flawed. A 
history of few defects in a one-shot system may mean that the 
inherent reliability is good but it may also mean that an 
inadequate test program has been conducted. It is critical that 
the risks of not looking are understood and communicated in 
addition to understanding the assumptions made when 
interpreting results of tests that have been conducted.

3 DEFECT TAXONOMY

One of the most fundamental assumptions one must make 
is whether defects are catastrophic quality defects or margin 
insufficiency defects. 

In Figure 1, a quality defect is shown notionally. A 
histogram of some parameter is plotted for a population of 
units. The performance of each population member is either 
well above the performance requirement L or fails 
catastrophically (e.g., no output). Understanding the 
distribution to the right of L tells us nothing about the 
probability of units to the left of L.  

Figure 1: Quality Defect

This is contrasted with 
Figure 2, a margin insufficiency defect. Here, it is 

presumed that knowledge of the population distribution 
characteristics allows one to make inferences about the 
probability of units to the left of L. Clearly one will plan 
surveillance differently depending upon which view one holds 
regarding the nature of the defects that are present.

Figure 2: Margin Insufficiency Defect

For certain classes of complex one-shot systems, the 
historical experience has been that quality defects 
overwhelmingly predominate. This is not surprising when 
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considering the design process. Significant resources and 
effort are invested during design to ensure that margin to the 
requirement is large, and conservative requirements and 
product acceptance specifications are defined to ensure this. In 
short, rigorous design, development, and qualification ensure 
that few cases of margin insufficiency are present when a 
system is newly fielded.

Note that one could argue that many problems that are 
first detected as catastrophic defects could have been tracked 
as margin insufficiency, if we just knew the right parameter to 
examine. Thus this characterization of defects as either quality 
or margin insufficiency hinges to a large extent upon the 
nature of the evaluations that we do. However from a practical 
standpoint, given that complex one-shot systems may include 
numerous individual components, each with a wide variety of 
materials and functionality, it is clearly not possible to explore 
every single parameter that might reveal margin insufficiency.

The question then arises: what happens to systems as they 
age? How do we most effectively “look for change”? One 
model of age-related defects is shown notionally in Figure 3. 
While the margin of the parameter value (e.g., the amount of 
active ingredient) may have been adequate at time of 
production (t0), it may be slowly changing over time such that 
at some point in time (t2) there is a defective fraction due to
margin insufficiency.

Figure 3: Margin Loss

Thus even though static quality defects might still be 
present, at some point in time the greater risk for the one-shot 
system becomes age-related defects. From a surveillance 

perspective, the concern shifts from detection of quality 
defects to emerging margin insufficiency defects (“margin 
loss”). Along with this comes increased emphasis on variables 
data analysis in order to efficiently detect margin loss as 
depicted in the graphic below.

It should be noted that there is a second aging model in 
addition to margin loss. This is noted in Figure 4 as a quality 
defect later in life – these are typically referred to as “latent 
quality defects”. Latent quality defects are catastrophic defects 
that appear with time. 

These, like quality defects early in life, are not predictable 
from knowledge of the distribution that lies to the right of L. 
Instead one generally relies on regular functional testing of a 
large number of units to characterize their prevalence. A good 
example is stress voiding, where the circuit path continues to 
conduct current as stress voiding is occurring until that critical 
moment when the voids progress to the point that the circuit 
path is opened. To outward appearances, the performance 
“drops off the cliff” with no parameter signaling prior 
degradation. 

Note that latent quality defects may eventually affect the 
entire population (as stress voiding does) or only 
subpopulations (an example is corrosion that only occurs in 
units that were contaminated during production).  Thus while 
it may be possible to predict some latent defects as margin 
loss, if one has access to the correct parameter, this will be 
impossible to do in the case of unknown problems that affect 
unknown fractions of the population. The difficulty is 
compounded by the huge scope of materials and potential 
degradation mechanisms present in complex one-shot systems.
Given this, latent quality defects are generally the most 
common way that age-related issues are observed and 
assessed, rather than margin loss. As with early-in-life quality 
defects, latent quality defects cannot be characterized by the 
main population distribution; instead, one must rely on 
sampling data to estimate the prevalence of a defective 
subpopulation.

Figure 4: Defect Taxonomy for One-Shot Systems



4 SELECTION OF TESTS AND PARAMETERS

One of the strengths of variables data analysis is that it 
offers the opportunity to detect stockpile change through the 
monitoring of various parameters. However this is a double-
edged sword. If the wrong parameters are monitored, one may 
be misled into believing that change is not occurring when it 
actually is. There is a major difference in the nature of 
inferences that can be made from functional tests compared to 
variables data analysis on a handful of parameters – each has
its strengths and weaknesses. And certainly different 
parameter selections give us different types of information.  

There is a clear paradox in selection of parameters to be 
analyzed. Parameters measured at higher levels of assembly 
often tend to be easier to relate to overall performance and 
also reveal a broader range of failure mechanisms than 
parameters at lower levels of assembly. This is particularly 
true if realistic functional tests can be conducted. However if 
something is changing, that change may not be manifested in 
measurements taken at a higher level of assembly but could be 
detected by monitoring parameters at lower levels of 
assembly.

This underscores the interesting dichotomy noted earlier.  
The very same issue can appear to be either a latent quality 
defect or a margin loss defect, depending upon the particular 
parameter one is monitoring. The dilemma is that in order to 
detect margin loss, one must (1) have access to the relevant 
parameter in order to measure it, (2) be smart enough to 
choose that parameter for monitoring, and (3) be careful 
enough in making the measurements over time such that a 
change can be differentiated from changes in testers or test 
procedures.

5 SURVEILLANCE STRATEGIES FOR DEFECT TYPES

One’s assumptions about the nature of the defectiveness 
and types of evaluations available thus have important 
implications for sampling and data analysis for complex one-
shot systems. Methods to characterize the distribution of a 
parameter are an excellent tool to identify and understand 
margin loss, but they cannot answer questions regarding latent 
quality defects. In order to estimate reliability, it is not 
sufficient to collect data to characterize the population 
distribution to the right of L. Instead, one must sample to 
ensure that the quality defects (as shown on the left of L) can 
be detected. In the absence of identified parameters, one must 
rely on functional testing to make this judgment. Defect 
discoveries from functional testing often lay the foundation for 
understanding the parameters that describe physical 
degradation in these complex one-shot systems.

It is thus critical to keep both the strengths and limitations 
of variables data in mind when considering how well we 
understand complex one-shot systems. A similar comment can 
be made for sampling strategies: they must take into account 
the possibility that any of these defects may be present in the 

population with sample sizes chosen appropriately to enable 
detection with reasonable level of risk.

In this section, some potential strategies for sampling and 
analysis for each of these defect types will be described.

5.1 Quality Defects

Looking back at Figure 1, recall that analysis of the 
variables data to the right of L does not help understand the 
probability of catastrophic failure. The most reasonable 
approach is to avoid making a distributional assumption and 
treat the functional evaluations as Bernoulli trials. One can 
size the sampling program by deciding the level of risk one is 
willing to live with (cast in terms of “what is the size of the 
defect that may be undetected?” along with a confidence level
that the defect will be detected) and using the hypergeometric 
distribution or binomial approximation to calculate number of 
samples.  Of course there are many important assumptions that 
must be kept in mind, foremost being that this presumes that 
one is able to detect all defects present if one is lucky enough 
to sample a defective unit. This requires careful test design for 
complex one-shot systems, particularly if the tests are 
destructive and there is only one chance to exercise the 
hardware.

Using the hypergeometric distribution, one can calculate
the confidence, γ, that at least one defective unit will be found 
in a random sample from a fixed population as:

(1)

where:

n is the number of samples,
P is the defective fraction, and
N is the population size.

If no defective units are found in the sample, γ can be 
interpreted as the confidence that the defective fraction is no 
more than P.  This uses the reasoning that if more than NP
defective units had been present, at least one of them would 
have been sampled with probability, γ. Since the defective 
fraction is unknown, the calculation is interpreted in terms of 
both the confidence and the defective fraction that is 
precluded.  Thus for example, a sample of 25 out of a 
population of 500, with no defects found, would give 93% 
confidence that the defect fraction is no more than 10%, but 
only 70% confidence that the defect fraction is no more than 
5%, and 23% confidence that the defect fraction is no more 
than 1%.  Similar calculations can be done to examine the 
risks associated with other choices of sample size.  Figure 5 
shows example calculations for sample sizes of 10, 25, and 50 
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out of a population of 500 units. Note that 100% sampling is 
required to have 100% confidence in zero defects.  

Figure 5: Confidence vs. Defective Fraction Precluded

5.2 Margin Insufficiency Defects

A tolerance limit approach provides a good basis for 
thinking about sampling quantities for margin insufficiency
[1],[2]. From a theoretical standpoint, the number of samples 
required for determining margin depends upon the desired 
population coverage (the proportion of the distribution above 
the performance requirement that one wishes to demonstrate) 
and the desired confidence level.  It also depends upon the 
inherent margin of the component – a component with more 
margin will require fewer tests compared to a component with 
less margin to show with the given level of confidence that the 
given coverage proportion has been achieved. However this 
inherent margin is not known a priori and is the performance 
property to be estimated from the data. Hence although 
critical, it cannot enter into determination of sample size until 
at least some data are taken.

Another key factor that affects one’s estimate of margin, 
also unknown, is the distribution of the population.  Because 
the distributional assumption is pivotal in estimating margin, 
validation of this assumption may be the driver for setting a 
minimum sample size. In cases of small margin, many
samples may be needed to achieve the desired confidence.

Figure 6 shows a set of operating characteristic (OC) 
curves for the probability of demonstrating a specified margin 
as a function of true margin.  Margin can be defined by a z-
score, which is equal to the number of standard deviations 
from the population mean to the value that defines the 
defective fraction.  If the distribution is normal, the defective 
fraction, P, is a known function of the z-score, zP.  For 
example, only about 2% of a normal distribution falls more 
than two standard deviations below the mean, so a z-score of 
two translates into a defective fraction of 2%.  The confidence 
limit is equal to one minus the risk of falsely concluding that 
the z-score is greater than two.  Calculations such as those 
shown on Figure 6 illustrate the risk of failing to demonstrate 
an adequate margin.  The risk is reduced by increasing the 
number of samples, but the number of samples that may be 
required to have a high probability of demonstrating margin 
becomes very large as the true margin approaches the margin 
to be demonstrated.  When true margin is equal to margin to

be demonstrated, the probability of demonstration is limited to 
10% by the nature of the tolerance limit calculation.

Figure 6: OC Curves for Demonstrating Margin

Comparison of Figures 5 and 6 shows the relative 
efficiency that may be achieved by monitoring variables data.  
For example, from Figure 5 one sees that a sample of 50 is 
needed to demonstrate a defect fraction of less than two 
percent at the 60% confidence level.  In contrast, from Figure 
6 one sees that one may be able to demonstrate a margin 
defect of less than two percent (i.e., z-score greater than two) 
at the 90% confidence level with as few as 5 samples, if the 
true z-score is six or more.  However, as noted above, the 
margin demonstration does not rule out the possibility of 
quality defects. 

5.3 Latent Quality Defects

This case is very similar to that described earlier for 
quality defects. The difference is that since latent defects 
emerge over time, inclusion of early tests in the calculation 
may result in overly optimistic interpretation of the test 
history. Including only recent tests will give a much better 
picture of the ability of a given sampling program to identify 
latent quality defects. The time window to choose depends 
upon the components in the system, but it should be noted that 
some problems do have rapid times of onset and thus regular 
sampling is always prudent, particularly if the consequences of 
failure are high.

5.4 Margin Loss Defects

One can extend the tolerance limit calculational approach 
to include regression in order to consider sampling needs to 
detect margin loss over time. Like the margin insufficiency 
case described earlier, there are numerous assumptions that 
must be made, and effort should be expended to confirm those 
assumptions. In particular, great care should be taken in the 
case of limited data to ensure that the caveats surrounding 
performance conclusions are well communicated.

6 BALANCING RISK

The dilemma of course is that one typically does not 
know a priori the nature of the defects that may be present 

2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

(true)

P
ro

b
ab

ili
ty

n = 5n = 10n = 20

Probability of concluding > 2 at 90% confidence



when a system is produced or even more, that may emerge 
over time.

As can be seen from the above examples, monitoring 
variables data can be more efficient at identifying change in 
performance compared to attributes data but there is an 
important presumption that (1) there is a variable that is 
associated with performance and which manifests any age-
dependent performance degradation that may occur and (2) 
that variable is being monitored during testing.  Defects often 
don’t meet both of these conditions, so functional testing must 
be the primary vehicle to detect them.

The point to underscore is that variables data analysis is 
not sufficient by itself to estimate reliability, because it does 
not address quality defects. In addition, one should not be 
lulled into complacency (and low sample rates) by high 
margin; there may be quality defects present that would then 
not be detectable.

One must thus craft a program that recognizes both types 
of risk and attempts to balance them. Even if one presumes 
excellent margin (and a concomitant small sample quantity), 
one must take into account the possibility of quality defects 
(either early in life or latent) when sizing one’s sampling 
program. The planned program will tend to be a maximum of 
these two, in cases where functional test units can yield to 
subsequent margin testing.

7 SUMMARY

There are different classes of defectiveness that may be 
present in complex one-shot systems. Unlike continuously 
operating systems, defects will not be detected unless testing 
is done explicitly. One’s ability to find defects (and 
consequent risk of undetected defects) thus depends upon 
sampling and testing. Different assumptions about the nature 
of the defects that are present or that may emerge over time 

can lead to very different sampling strategies. It is thus wise to 
consider each potential defect type separately and then select a 
program that gives an acceptable level of risk integrated across 
these defect types.
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