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Hydrogen Isotopes in Metals

El'ritium/Hydrogen in Structural Metala
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Local-Electrode Atom-Probe (LEAP) @i
Tomography

Compositional and structural p
analysis at the atomic scale |

@ Pulse encodes z

@ Area detector gives (x,y)
@ TOF encodes mass/charge

Instrument capability |

@ 10°-10’ nm?® analysis volume
@ 3 x1071"-107"9 torr UHV
@ 20-100 K specimen temp.
@ 200 kHz electrical pulsing
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Specifications of Atom-Probe )
Tomography

= 3-D
= Sub-nm resolution

= Equal sensitivity across periodic table
= 1 PPM detection

= 50-60% detection efficiency

= 200 kHz pulsing
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Deuterium Signal can be Deconvolved
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Material Systems Investigated ).

= UFG Al-Mg
= GB-engineered Ni
= 21-6-9 (Cr-Ni-Mn) SS with various amount of N
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Observation of trapping sites

* Observe trapped hydrogen isotopes by LEAP tomography

Establishes direct evidence of how microstructural features (solute atoms,
precipitates, grain boundaries) trap hydrogen isotopes.

Approach: Protium in LEAP tomography
* Cryomill Al-7.5Mg

« Consolidation
*Hot Isostatic Pressing
*Extrusion
* Precharge in 20 ksi, 300C
« Atom-probe tomography
Results:
« Excess Mg segregate to GB

* H segregates to Mg-rich GB — 275 nm




TDS of LEAP tips = ®=

* H replaces D during electropolishing

 lon-beam milled specimens; Charge pre-
sharpened specimens
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Intergranular Fracture Properties Depend
on Microstructure and Environment
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S and D at “non-special” GB
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Deuterium Trapping to N in 21-6-9 ) s
Ve rified by RDF Lahoratories

* Measured deuterium near nitrogen using radial distribution

functions
Confirm that nitrogen is an important trap

Results:
« No trapping is obvious visually. . . . . .

« RDF shows there is a preference 0.08
for D-N SRO
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Bulk Analysis Using TDS ) .

= Measures total dissolved and trapped
hydrogen and deuterium using an RGA

= Peak fitting spectra reveals trapping
energies and occupancies

= IR furnace (>1000 ° C)

= 109 torr hase nressiire

Interstitial
Site Trap State #] Trap Stale #2

A
askl Constituent Peaks

— Fit Results
Data
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Measure hydrogen trapping energies
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 Measure trapping energies in stainless steel using TDS

Establishes energies to use in bulk transport models and can be
compared to first principles approaches

Approach:

« Precharge in 20 ksi, deuterium at 300C TDS of 21-6-9 with varying ferrite content

* Thermal desorption spectroscopy 1

Results:

» 21-6-9 with varying ferrite levels
*Independent of ferrite orientation

o
o0

21-6-9 SS
"3 °C/min

=
and content -ﬂc-\l oc
« 21-6-9 with varying N o
*Height of 26 kJ/mol trapping peak D
varies with N 'g 0.4
*Similar E to dislocations and other §

solutes

— C-Axial
— D-Axial
— D-Radial
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Trapping in 21-6-9 with N D=

« Calculate hydrogen-solute binding energy in Fe
and compare to experimental results

* In agreement with VASP first principles
model shows:
*N and D prefer octahedral sites
*RDF of LEAP data agrees
*Binding energy of 0.08 eV/atom (with
no magnetism)
*Smaller than 0.2 eV measured
*With magnetism, there is actually
repulsion

*Need to check with vacancies 13— e o o )

T x 10" (K




Model trap energies and densities
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« Calculate hydrogen-solute binding energy in Fe
and compare to experimental results

Approach:

» VASP first principles modeling

Status:

» Simulated lattices have been generated for solute

studies.

» Solutes priority will be selected from LEAP results

» Elements of interest:
*Cr, Ni, Mn, C, Cu, N, Co, V, W, Ti, Nb, Al, Mo, Si
*Also vacancies

* More complicated features (dislocations, precipitates,

grain boundaries in next FY) == |nteralomic bond
Substitutional alloying element that
is bigger than the matrix element

O Substitutional alloying element that
is smaller than the matrix element

® Interstitial alloying element

e
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Summary )

= LEAP observations show:
= GB segregation of Mg and H in UFG-Al-Mg
= Segregation to “non-special” GB of S, D in CP Ni
= SRO of N-D in 21-6-9 containing various N

= TDS observations show:
= H replacement of D on electropolishing
= (.2 eV/atom trapping of D to N in 21-6-9
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LEAP of Trapped Deuterium
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