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Outline 



Nuclear materials: a hot mess.  
Microstructural evolution, radiation damage, extreme heat!  

Lenticular void formation and 
growth is observed. These cause 
problems.  
 
Causes are speculated and 
approximated:   

• Vapor transport 

• Soret Effect 

 

Left and bottom-right: P.F. Sens, J. Nuc. Mat. 43, (1972) 293-307 
Top right: M. P. Anderson, et al., Acta Metall., (1984), 32, 783-791 
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About the phase-field method 

• A meso/continuum-scale method based on thermodynamics 
• Takes some macro “order parameter” that varies in space 

(superconductivity, magnetism, etc.) and solves its evolution 
by a variational method.  

• We treat the parameter as a continuous variable. 
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The phase-field model 
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ℎ 𝜂 = 𝜂 − 1 2 

𝑗 𝜂 = 𝜂2 

Terms coupling phase (𝜂) and 𝒄𝜶 

Bulk energies:  

𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐, 𝜂
= 𝜅𝑐𝑔 𝛻𝑐𝑔
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Gradient energies:  

[1] P. Millett, A. El-Azab, and D. Wolf, Comp. Mat. Sci. 50 (2011) 960-970 



𝑅𝑖𝑖 = 𝑅𝑟𝑐𝑣𝑐𝑖 = 𝑅𝑏𝑏𝑏𝑏 + 𝜂2𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑣𝑐𝑖 

𝑃𝑣 = 𝑏𝑣/𝑖𝑃𝑖 = �
0,  𝑖𝑖  𝜂 > 0.8 𝑜𝑜 𝑟𝑟𝑟𝑟 0,1 > 𝐶𝑝𝑝𝑝𝑝

𝑉𝐺 𝑟𝑟𝑟𝑟 0,1 ,   𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

Evolution of the order parameters 
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Non-conserved order parameter - Allen-Cahn equation: 

Conserved order parameters - Cahn-Hilliard equation: 

Recombination term:  

Production term:  



What’s not in the model? (and could be important?) 

• Elastic strain response of material 

• Dislocations 

• Other gases, phases, or types of vacancies.  

• Anisotropic effects (anisotropic stesses, grain boundary energy, mobility, etc.) 
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𝜏 = 0 𝜏 = 25 𝜏 = 50 

Test cases: void shrinkage, with 𝒄𝒊 > 𝟎 in the matrix 



Test cases: void growing, with 𝒄𝒗 > 𝒄𝒗,𝒆𝒆 in the matrix 
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𝜏 = 0.5 𝜏 = 25 𝜏 = 50 
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𝜔 ≅ 1 + 𝛽2 𝛻𝑥𝑢 2 

Mesh moves to where it’s most needed: using a monitor function to approximate the error.  

[1] W.M. Feng et al., J. Comp. Phys. 220 (2006) 498-510 

Physical domain (left) and computational domain (right)[1]. 
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Variational eq’n Monitor function 

Microstructural evolution with adaptive meshing 



Microstructural Evolution with Adaptive Meshing (cont’d) 

System energy consists of ‘bulk’ and gradient terms, depending on 𝑞 spins:  
Non-conserved order parameter: “spins”,𝜙𝑖, for treating microstructural evolution.  

𝑓𝑠𝑠𝑠𝑠 = 𝑓𝑠𝑠𝑠𝑠,𝑏𝑏𝑏𝑏 + 𝑓𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
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Temporal evolution via 
Allen-Cahn equation: 

(512 x 512) simulation of microstructural evolution and resulting mesh 



Adaptive meshing and grid coarsening 
𝜏 = 10 𝜏 = 200 𝜏 = 400 



Introducing radiation damage in a single crystal system 
(Need to further examine nucleation conditions) 
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𝜏 = 0.5 𝜏 = 12.5 𝜏 = 25 



Conclusions 

• We developed  a semi-implicit moving-mesh phase field 
model for microstructural evolution.  

• The model produced qualitatively accurate results for several 
simple examples and is being employed to study evolution 
under radiation.  

• We demonstrate a moving mesh for the phase field model 
which greatly reduces the computational time needed for 
these grain + compositional evolution in phase-field models.  



• Examine kinetics of nucleation and segregation of bubbles on 
grain boundary vs. bulk.  

• Introduce radiation into grain microstructure, and examine 
the effect of temperature gradients on bubble migration.  

Future Work 

• Obtain quantitative comparison with experiments or other 
types of models.  

• Include other important aspects of microstructural evolution: 
anisotropic grain properties, elastic properties, etc.  
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