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Experimental EoS for explosives A i,
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PETN Shock Hugoniot data from the LASL shock handbook (Marsh)
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1) Not a straight line. 2) No information about temperature. 3) Data is usually low pressure.
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Extrapolation = Bad. ) e,

Laboratories

10000

Shock Velocity (m/s)

———————————————————————————————————————————————————————————————

Low pressure | :
gas gun data |

0o 1000"2000"'30'00""4000""'5000
Particle Velocity (m/s)




Density Functional Theory (DFT) and XC functionals: (g)
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Hard problem to solve “Easy” problem to solve
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Molecular Dynamics (MD):
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Finding the Hugoniot A i,
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Iterative compression
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Finding the Hugoniot: )
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First-principles EoS for PETN A i,
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Remarkable Agreement!
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Uniaxial shocks in PETN A i,
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Uniaxial shocks in PETN: Wi
Different Temperatures ???
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Experimental data for Hexanitrostilbene (HNS) ) e,
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Experimental data 1.6 g/cc

70007 | | |

oo Goveas etal. APS-SCCM 2006~ |
z

50000
R3]

s ,
© , | A

 A000[ oo _g7~ Davies etal. 6" Det Symp. |
Q | | |

o L

< L |

n I ‘

30000

20000 . 0

0 500 1000 1500 2000

Particle Velocity (m/s)

12
- _________________________________________________________________________________________________________________



EoS for Hexanitrostilbene (HNS) from DFT-MD ) i
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Predicted the shock response for any density? (s
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P-alpha model in CTH w/ crush pressure of 1.43 GPa [Kipp et al.]

- This is great, if you want to simulate the continuum scale and you don’t care

about the low pressure regime.
- We have repeated this exercise with microstructure (grain-scale simulation)
- Still need a tabular EoS for accurate temperature predictions. We have all

the data necessary.
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Hexanitrohexaazaisowurtzitane
CL-20 Hugoniot
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Comparison of shock temperature:
Implications for sensitivity?
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Shock Initiation:
Energy is localized at heterogeneities (pores)
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Grain-scale w/ statistically equivalent microstructure ) e,
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Statistical comparison
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Simulation with microstructure and crystalline EoS () i,
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Initial state.
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Simulation with microstructure and crystalline EoS () i,
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1.8 ns after flyer impact at 2.5 km/s
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Simulation with microstructure and crystalline EoS

1.8 ns after flyer impact at 3.0 km/s
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Demonstrating the EoS problem: ) i,
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. Extrapolation from low pressure is bad.

. We can predict EoS using DFT-MD

. We can make a tabular EoS and remove the need for making
approximations to C, and Gamma. Temperatures are
predicted... need to be validated.

. Shock temperature is linked to sensitivity.

. Working to incorporate DFT-MD EoS with microstructural

characterization and reactive process to build a predictive
grain-scale simulation of shock initiation.
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Extrapolation = Bad. Kerley = mysteriously good. ()
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