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Abstract. We present initial findings of an ongoing effort to endow the key players 
in a nation-state model with behaviors. The model is based on resource exchange as 
the fundamental interaction between entities. In initial versions, model entities were
severely limited in their ability to respond and adapt to changes in their
environment. The ability to instill entities with behaviors of varying degrees of 
sophistication is essential for reliable policy analysis. To address this need, we have 
developed a hierarchical behavioral module, based on an extension of the proven
ATLANTIS architecture, to provide flexible decision-making algorithms to agents.
A Three-Layer Architecture for Navigating Through Intricate Situations 
(ATLANTIS) was originally conceived for autonomous robot navigation at NASA’s 
JPL. It describes a multi-level approach to artificial intelligence. We demonstrate the
suitability of our reification for guiding vastly different types of decisions in our
simulations over a broad range of time scales.
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1   Introduction

There is growing interest in the social sciences in numerically modeling the key processes 
and interactions important for determining change in geopolitical systems. A major long-
term goal is to develop models to critically evaluate U. S. foreign policy in a complex 
arena of multi-national corporations, military and economic rivalries, and long-term 
changes in the balance of power between nations. To be useful in guiding policy 
decisions, models must capture the breadth of values and ideologies that guide nations of 
various sizes and political configurations.

The resource-exchange model [1] has been adapted to be capable of representing both 
historical and contemporary economic interactions among key players in the geopolitical 
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arena. The actors in the model can include national and sub-national entities (such as 
provinces) as well as corporations, whether sponsored by a single nation to advance its 
interests (e.g., the East India Company) or a semi-autonomous organization with
international affiliations (e.g., Microsoft). We often refer to the model of [1] as the 
“nation-state model” in this configuration, which is well-suited for geopolitical scenarios.
Although it does not yet include prediction of military conflicts and their outcomes, the 
model nevertheless captures essential features of real economic systems. For example, it 
has been used successfully to represent economic interactions in the current Pax 
Americana, in which global-scale military conflicts are inhibited.

The nation-state model structurally employs a systems’ dynamics approach, in which 
differential equations representing the important rates of change in the system are 
integrated forward in time. The continuous timeline described by the rate equations is
interspersed, however, with discrete resource-exchange events. These exchanges occur 
through markets and constitute the fundamental interaction between the entities in the 
model, which measure their success by a health attribute.  Money is represented in this 
framework as simply a resource which can be exchanged for any other, whereas all other 
resources are exchanged in specific ratios according to their relative importance to
different entities. Whether corporate, national, or sub-national, actors instantiate new 
processes and change parameters of processes already in operation in order to affect the 
flow of resources in and out of their boundaries.  Processes represent what actors can do; 
what they will do is a separate question.

It is noteworthy that entities in the current implementation of [1] do not have the ability 
to make choices or analyze and adapt to their environments (e.g., to improve their 
performance).  Their behavior is governed solely by the dynamics, with no awareness of 
the other entities in the simulation. The behaviors exhibited are therefore quite limited. In 
evaluating the strength of foreign policy decisions, naïve models carry the risk of
underestimating the capabilities of adversaries and therefore evaluating U. S. policies 
over-optimistically.  Actors in credible models must be capable of innovative approaches, 
such as trade regulations and the initiation of conflicts, to promote their own goals and 
undermine those of their competitors. Human history repeatedly demonstrates that nations 
initiate (or take actions that result in) conflicts in order to achieve political and economic 
ends.  We are actively exploring theories of conflict and their effects to imbue agents with 
military capabilities.

It is the goal of this effort to implement agent behavior (with varying capability levels) 
for the resource-exchange model using ideas from the artificial intelligence community.
Our approach has been to design and develop reusable Java language [2] modules, which 
themselves depend minimally on the structure of the resource-exchange model itself, in 
order to facilitate future application of the behavioral layer to other agent-based 
simulations. Architecturally, the software is a reification of the ATLANTIS architecture, 
proposed by [3], [4] as a solution for the complex problem of navigating NASA’s ground 
rovers through rocky Martian terrain.  We will discuss the advantages of their design for 
the applications anticipated for the nation-states model.



2   Simulating Agent Behaviors

2.1 Layers of Simulated Behavior

The ideas we present in this section come from internal discussions as well as perusal of 
the artificial intelligence literature, especially the excellent textbooks that have been 
written on the subject; see [5] and [6]. Defining intelligent decision-making processes by 
entities (herein also called agents or actors) in complex systems is critical to 
understanding the interactions between them, which can be both cooperative and 
competitive. The algorithms that accomplish this are expected to be broadly applicable. 
By not tying the behavioral layer to a particular complex-system model, we confer the 
ability for it to be used to inform decision-making for a wide range of agent-based 
systems. For example, flocking and steering behaviors can be encapsulated as common 
algorithms of certain animals. Once a particular behavior for an animal has been 
implemented, other animals exhibiting similar behaviors can be modeled using existing 
algorithms as a foundation.

For general utility in experimenting with multiple decision-making approaches (e.g., 
intelligent, scripted, random, etc.), it is desirable to have an interface separating the 
decision-making algorithms from the specific structures of the models to which they will 
be applied, to promote maximal reuse of code and ideas. It is also desirable to be able to 
provide certain entities with decision-making capabilities that are not cognitive, 
knowledge-based, or even particularly intelligent. For example, for evaluating the 
performance of a particular entity and its decisions, it may make sense to script the 
specific actions of its competitors. Similarly, in systems such as ant colonies, inter-agent 
cooperation is possible without cognitive decision-making by any one member. Individual 
ants behave reflexively to specific chemical stimuli they receive from others in the 
colony.

The first-order, rudimentary approach to modeling behavior, which has been used with 
some success in video games, is scripting. Scripted actors have a set strategy they follow. 
For example, a nation-state in our model could be told to always spend 10% of its GDP on 
military products, unless that action engenders a response from others. This approach, 
which is straight-forward to implement, can certainly instill nations and corporations with 
behavior. It is important to recognize, however, that scripted, predictable strategies, in 
which the behaviors of actors cannot adapt in time to new input and new situations, will 
almost certainly fail in competitive environments against adversaries that learn and adapt.

The next layer of sophistication for agent behavior is to instill actors with reflexes. For 
example, even animals we would not consider to be particularly intelligent have the 
ability to blink an eye to avoid being hit by a pebble. This rule-based approach to behavior 
is sufficient for making good decisions in some situations. For example, contemplation is 
not required (or a good idea) to avoid a car crash while driving. Braking and/or steering 
actions must be taken in a timely manner to preserve the driver’s health.



The most sophisticated artificial intelligence systems are deliberative. That is, the 
decision-making process must evaluate multiple options and make choices in 
environments in which the state of the world is uncertain and the outcomes of actions are 
not entirely predictable. Although challenging to implement (and potentially intractable), 
deliberative decision-making may be needed in order to achieve the ultimate goals of this 
research: to begin evaluating computationally the performance of diverse policy choices
in a multitude of hypothetical scenarios.

2.2 Components of Intelligent Agents

We assume here that the agents we will be dealing with in practice are neither 
omniscient nor omnipotent. They are limited in their knowledge (and their ability to 
acquire knowledge); and those agents that can perform actions (actors) have a discrete, 
limited set of capabilities to affect their surroundings. Some but not all actors will also 
have memories and the ability to learn from past experiences.  For agents that learn and 
adapt to their surroundings, we do not necessarily expect repeatable output for a given 
sequence of inputs. Intelligent agents exhibit dynamic behaviors; they are capable of 
improving their performance at tasks by repetition.

We consider as a reasonable starting point a functional model for decision-making, 
which has the flexibility to encapsulate at least some common elements of the range of 
problems requiring agents to make decisions and perform actions. Note we conceive of 
decisions and actions (or plans of action) as separate concepts. The latter are clearly the 
output of any decision model, but the implementation of a plan is time-dependent and 
therefore susceptible to dynamical obstacles in the environment or disruption by the
actions of other agents. In other words, things don’t always go according to plan.  
Dynamic, intelligent agents should be capable of perceiving obstacles and rethinking 
plans as unforeseen circumstances arise.

Before discussing our proposed functional decomposition of decision-making 
problems, other temporal questions about decision-making problems should be 
mentioned. It seems likely that complex agents will perform multiple tasks 
simultaneously.  How often do decisions about these tasks need to be reconsidered?  What 
level of analysis or effort is appropriate for each decision type? How much time is 
available to make each decision before action is required for the well-being (even 
survival) of the agent?  How is the timing of decisions related to the rate of sensory input 
and the agent’s ongoing accumulation of knowledge of its environment? Answers to these 
questions are likely to be highly application-dependent. We note here only that how 
decisions are made, which it is our goal to address here, is distinct from when decisions 
are made. An application attempting to model the behaviors of intelligent agents must 
consider both problems in turn.

If the output of a decision-making model (or algorithm) is a plan of action, what is the 
input? To determine this, we must first separate those elements of the problem intrinsic to 
the agent and the elements extrinsic to the agent. The latter are the agent’s environment, 
from which it receives input through its sensors and receptors in the form of percepts.



Environmental awareness is limited by the agent’s sensors (which poll for new percepts) 
and receptors (which receive signals from the environment), and the time scales for 
updating the agent about the environment depend on how they function (e.g., ears and 
eyes, which allow animals to gather information at different frequencies).

The agent must have a self-model of its sensors, actuators, and world view, which 
specify the inputs to various decision-making problems. Note agents may use different 
decision models for different types of decisions. For example, human eyes blink 
reflexively to prevent damage to them, even though humans also make knowledge-based 
decisions about other topics, which require intelligence. For agents that acquire and 
accumulate knowledge, decisions are not always made in reaction to percepts directly.  
Rather, sensory information is acquired, filtered, processed, and stored in the form of 
memories. Cognitive decisions are made based on knowledge–some sort of world model–
comprising an agent’s fragmented memories about its environment and its experiences 
with the outcomes of past decisions. Certain percepts to be sure (such as an imminent car 
crash) will trigger immediate decisions at specific times.  Intelligent agents, however, will 
also make decisions at various (in principle unpredictable) times, depending on the 
importance of the topic, the agent’s self-confidence about its current plans, and the 
availability of new, relevant information.

2.3 Decision Problems and Thinking Agents

We hypothesize in this discussion that many important decision-making problems can be 
embodied in a decision function.  The decision function can be represented abstractly with 
a decision model, which evaluates different actions against whatever (presumably 
domain-specific) criteria are appropriate for the problem at hand. From an object-oriented 
architecture standpoint, the decision model is likely to be an aspect of the agent attached 
using some sort of strategy pattern [7]. This design makes it possible for new ways of 
making decisions (for different types of problems) to be dynamically plugged into the 
agent.  We elaborate here on the rationale for the simplified form of the decision function 
we have adopted in these interfaces.

The decision function clearly must take in the sequence of percepts from the agent’s 
sensors acquired since the last time the agent processed sensory information (e.g., by 
acting on it or incorporating the new information into its world model). What other inputs 
are required to fully specify a decision problem? In addition to the environmental 
information (what the agent knows or can detect), we also will need a description of the 
agent’s actuators; i.e., those things that the agent can do. A plan of action, which is the 
output of a decision function, will naturally consist of a sequence of actions within the set 
of actions possible (e.g., according to the agent’s physics or other manifestation). The set 
of allowed actions limits the scope of each decision problem to a finite set of possible 
choices, although the correct plan for the agent might in some cases consist of an 
infinitely repeating sequence of actions.

For self-aware, thinking agents, we start with a simplistic model of human psychology 
rooted in the assumption of rational behavior: the so-called rational-actor hypothesis.



Rational-actor models assume intelligent agents always pursue their own interests, or 
what they believe to be in their own interests based on past experience, limited only by 
their imperfect ability to predict future outcomes of their actions.  That is, they are goal-
oriented and seek effective solutions to the problems they encounter that promote their 
goals.  The filtering of information by sensory perception mechanisms in the agent lead to 
skewed information or incomplete knowledge about the system.

The rational-actor hypothesis affords great breadth of freedom to entities. The notion 
that judgments are subjective is captured by differences in values between entities; i.e., 
those concepts the entities view as priorities. The value sets can vary greatly between 
entities and are in principle time-dependent, varying with a given entity's perception of its 
surroundings.  In rational decision-making, all options for an entity to pursue its interests 
are on the table. We do not assume motivations beyond the initial conditions and axes for 
evaluating decisions, which enumerate the (hypothetically orthogonal) set of ideas entities 
would value to varying degrees.

With a suitable decision function, artificial intelligence becomes a well-posed problem. 
Agents must combine their knowledge to solve problems in their task environments, with 
the potential to improve their performance with experience. In practice, the decision-
making algorithm can consider multiple choices for actions (or plans of actions) against 
various goodness criteria. The problem is then optimizing the agent’s path through the 
decision tree, considering tradeoffs and likely responses from allies and adversaries.

3   A Three-Layered Architecture

Many approaches have been tried since the inception of artificial intelligence to address 
the complexities involved in programming agents to solve problems (for example, see the 
discussion in [8]). In perusing various proposed solutions in the literature, we came to the 
conclusion that multi-layered approach would provide the flexibility we sought for the 
entities in the nation-state model.
TODO: finish the text for this section that describes the ATLANTIS architecture in more 
detail and the essential features shown in the figures.

4   Application of ATLANTIS

The solution offered by the ATLANTIS architecture offers numerous advantages over
many others we investigated (e.g., a black-board architecture (briefly described in [5], p. 
369-70). A full Java implementation of the components (even ignoring domain-specific 
objects and/or algorithms) is likely to involve a lot of code. But the architecture affords a 
sufficiently fine-grained division of labor amongst the components (without sacrificing 
flexibility) to allow the system to be built from the bottom up. Bottom-up construction is 
highly desirable because the individual pieces of the software are reasonably simple and 
testable.



The ATLANTIS architecture stays close to the objects in the problem domain itself and 
is therefore more intuitive than many other architectural descriptions for intelligent 
agents. It lends itself to development of a Java version without having detailed knowledge 
of the original version (or access to its source code, which was written in LISP by Erann 
Gat while at Virginia Tech and NASA’s JPL; see [3, 4]).

The architecture also strongly decouples the parts of the problem that are challenging
(deliberation in order to solve problems) from aspects that are more straightforward (agent
control through sensors and actuators). In software-engineering terms, ATLANTIS 
describes objects with weak coupling but strong cohesion, which is a key principle of 
building maintainable software (as discussed at length in [7]). This decoupling of 
deliberation and control extends not just to code complexity but computational resources, 
since the deliberative layer runs asynchronously from the rest of the system and is allowed 
to consume an arbitrary amount of memory and processor time.

We furthermore consider it a major advantage of ATLANTIS that dealing with error 
conditions and reporting unknown situations is well-specified at the architecture level.  It 
is the control layer’s responsibility to detect the end state of the actions it attempts 
(through actuators) and report this information to the sequencing layer. Agents in 
ATLANTIS are failure cognizant. This implies that in a fully functional system, there is 
natural cohesion between the information-gather objects (sensors and receptors) and the 
effector objects (the actuators).

It is worth noting that the intermediate sequencing layer is potentially complex, 
depending on the application.  Indeed, part of the design is to hide complexity in the 
sequencing layer. However, for a first pass-implementation, its operation can be 
approximated with a thread-safe priority queue (thread-safe because the deliberative layer 
runs asynchronously), in which the control layer has the option to interrupt in-progress 
actions at any time. We admit, however, that the sequencing layer is the main potential
disadvantage to three-layered architectures. For complicated agents, it is conceivable that
a robust implementation of the sequencing layer will prove elusive.

Nevertheless, a solution based on ATLANTIS has been deployed to solve a 
sophisticated robotics problem: how to autonomously steer a robot on the surface of 
another planet. Hence, the basic ideas are thought to be sound and compare favorably to 
alternative approaches to intelligent agent architectures (see [7]). Due to the generality of 
ATLANTIS and its dissection of the key interacting objects into manageable pieces, we
expect the architecture to have broad applicability to complex systems problems, even 
though many of the anticipated applications are quite different from the robotics problem 
domain in which it was conceived.



Fig. 1. As shown in this high-level overview of our Java reification of the ATLANTIS 
architecture [3], actors aggregate three interacting layers to make decisions accomplish tasks.  The
control and deliberative layers send messages to and from the mediating sequencing layer to 
coordinate tasks. The control layer is close to the environment and operates on short time scales, 
whereas the deliberative layer, which runs asynchronously, solves complex problems and suggests 
action sequences for queuing by the sequencing layer. Note also the hierarchical structure of the 
actors themselves; they are naturally organized as a composite.  Hence, specific tasks either too 
complicated or too low-level for the agent can be delegated to child actors (the delegates in the 
diagram) under the supervision of the parent.



Fig. 2. In this UML diagram of the key objects involved in the ATLANTIS architecture for 
decision-making, the task environment is represented with composite projections (IProjection 
instances).  We represent the notions of perceptions and beliefs with these projection objects, as the 
world view of an object can represent a distorted or incomplete description of the state of the 
system.  All direct interaction of the agent with its environment occurs through the control layer.
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