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Experiments are being performed on the Self-Magnetic Pinch (SMP) electron beam 
diode1 on the RITS-6 accelerator at Sandia National Laboratories.  This diode 
produces a tightly focused electron beam (< 3mm diameter) which is incident on a 
high atomic number bremsstrahlung x-ray converter.  Typical diode parameters are 
120 kA, 7 MeV, and 70ns current pulse, giving a ~45ns x-ray pulse.  Plasmas from 
contaminants on the electrode surfaces propagate into the A-K vacuum gap, 
affecting the impedance, x-ray spectrum, and pulse width.  These plasmas are 
measured using diagnostics, which include: spectroscopy, optical imaging, and 
photodetection, to obtain velocity, density, and temperature information.  These 
parameters are measured both spatially using multi-fiber arrays and temporally 
using streak cameras and avalanche photodiodes.  Plasma densities and 
temperatures are determined from detailed, time-dependent, collisional-radiative 
and radiation transport models, which include Stark broadening of the hydrogen-
alpha transition line and carbon ion line ratios.  These results are combined with 
hybrid PIC/fluid simulations to model the plasma’s overall behavior.  Densities of 
up to 10^19 cm-3 have been measured on the electrode surfaces, decreasing by 
several orders of magnitude both radially and axially across the vacuum gap.  
Electrode plasma expansion velocities of up to 10 cm/microsecond correlate well 
with the decreasing impedance profile (~0.5 Ohms/ns) observed during the pulse. 

Abstract

1K. Hahn, N. Bruner, M.D. Johnston, B.V. Oliver, et. al, IEEE TRANSACTIONS ON PLASMA SCIENCE,           
VOL. 38, NO. 10, OCTOBER 2010, pp.2652-62.
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2D. Johnson, et al., Proc. 15th IEEE Int. Pulsed Power Conf (IEEE, Jun. 13-17, 2005) pp. 314–317.
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SMP Diode Parameters

• 6-8.5 MV

• 150 kA (~15% ions)

• 50  Impedance

• 70ns Electrical Pulse

• 45ns Radiation Pulse

• > 350 Rads @ 1 meter

• < 3 mm focal spot size

Self-Magnetic Pinch (SMP) Diode                     
Electrical Characteristics

Bremsstrahlung 
Converter

SMP Diode

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100 110

Time (nanoseconds)

C
u

rr
en

t 
(k

A
)

Im
p

ed
an

ce
 (

O
h

m
s)

0

1

2

3

4

5

6

7

8

V
o

lt
ag

e 
(M

V
) 

D
o

se
 R

at
e 

(R
ad

s/
n

s)

FWHM (Dose Rate) = 46ns

IDVD

ZD

Falling Impedance Profile



SMP Diode LSP Simulations3

Cathode Electrons

Cathode

mid-1015 cm-3

1017 cm-3

Cathode

Anode

~ 1012 cm-3

Anode Ions

Falling Impedance Profiles

Simulations of Evolving Plasmas

•LSP simulations predict variations in plasma 
density of up to 5 orders of magnitude during a 
~50ns radiation pulse, and a falling impedance 
due to gap closure.  Gap closure occurs at a rate 
of ~10cm/sec, dependent on species.     

•Simulations predicts a more rapid impedance 
collapse for Al due to excess ion charge buildup     
(~1014 cm-3 species) around the cathode.  

•Variations in impedance behavior are affected by 
changes in both species and geometry (g/rc).

C+

Al+

3N. Bruner, D.R. Welch, K.D. Hahn, and B.V. Oliver, Phys. Rev. ST Accel. Beams, Vol. 14, 024401 (2011). 
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Role of Plasma Spectroscopy Experiments
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Optical Diagnostic Layout on the        
RITS-6 Accelerator

Concrete Shield Wall

RITS-6 Vacuum 
Chamber              

(8 optical ports)

RITS-6 Screenroom

11x1 fused silica 
optical fiber array    

and focusing optics
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Diode Region
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Streak Camera Images (Slit Positioned Radially                   
at Different Axial Positions across the A-K Gap)
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Plasma Propagation Measurements using Silicon 
Avalanche Photodetectors

Anode Expansion Velocity: 4.6 +/- 0.3cm/sec; Cathode Expansion Velocity: 2.6 +/- 0.2cm/sec

*All data taken on the same shot
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Mid-Gap

Radial Distribution of Spectra at Different Axial Locations 
(spectra collected on separate shots)
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Spectral Data at Anode Surface During the 
Radiation Pulse

•Spectra collected along the anode surface 
during the radiation pulse consist of 
carbon ion lines, hydrogen neutrals, and 
continua.

•Line of sight traverses plasmas with 
different properties. 

•Plasma density decreases by a factor of 
~35x from the center outward to 6mm.

•Asymmetries in plasma composition and 
density can be observed across the 
surface.

•Intensities calibrated in absolute units4. Carbon Ion Lines Observed

•CIII 4647A

•CIV 4658A

•CIV 5804A
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4M.D. Johnston, B.V. Oliver, D.W. Droemer,   B. 
Frogget, et al., Review of Sci. Instruments,    
Vol. 83, No. 8, p. 083108-1.



Sample Analyses of Spectral Data off the 
Anode Surface Following the Radiation Pulse

**Analyses use the optical streak images to determine 
pathlengths through the plasma volumes in time.

Electron densities are determined from Stark 
Broadening of the H-alpha line and from 

absolute continuum intensities using 
collisional-radiative (CR) spectral analysis. 
Electron temperatures are obtained from 

CIII/CIV line ratios. 

Fiber 7 (6.0mm off-axis on the anode surface)

Ne from H-alpha: 7.4x1017 cm-3

Ne from Continuum:    2.9x1017 cm-3

Electron Temp. (Te): 5.2eV                                                                                      

Nhydrogen (Z = 1): 3.2x1017 cm-3 (45%)

Ncarbon (Z = 2.9): 3.0x1016 cm-3 (12%)

Ne(other): 3.0x1017 cm-3    (43%)

*Continuum density is averaged over the full fiber viewing area,                          
while Stark broadening is a localized measurement.
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Summary

•Dense plasmas are formed on electrode surfaces in the SMP diode during 
the ~50ns FWHM radiation pulse.  These plasmas migrate into the A-K gap 
at velocities of 5-10cm/sec.  

•Spectroscopic data shows that these plasmas are composed primarily of 
hydrogen and carbon ion species.  Electron densities of up to 1019 cm-3 have 
been measured on axis at the anode surface during the x-ray radiation pulse.      

•It is believed that these “dense” plasma are responsible for the gradual 
impedance decay observed during the x-ray radiation pulse. In addition, a 
“rapid” impedance collapse is observed on some shots, and experiments are 
planned to look at this phenomena spectroscopically.  

•Spectroscopic data is incorporated into LSP, a hybrid particle-in-cell / fluid 
dynamic code, to help design the next generation of enhanced radiographic 
sources. 

•This type of information (density and temperature profiles in time) enhances 

our physics understanding of the role of plasmas in e-beam diodes.
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Plasma Spectroscopy Experiments are Used to 
Try and Understand Diode Behavior. 

•Help understand “good” vs. “bad” 
diode impedance behavior.

•Identify individual plasma species.

•Obtain plasma information 
including: charge states, electron 
and ion temperatures, and densities.

•Study the effects of plasma 
formation on electron beam 
dynamics and diagnose differing 
diode behavior.

•Provide experimental validation for 
diode physics modeling.

X-ray Dose

Diode Current
Excess diode 

current is 
coincident 

with a loss of 
x-ray output

X-ray Dose

“Bad”
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Imaging Optics on RITS-6

Focusing Optics
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Variation in focal spot with wavelength

•Optical fiber arrays are used to collect spatial 
information on the plasmas in the A-K gap.

•The optics are adjusted for specific wavelengths of 
interest.

•Corrections are made to account for chromatic 
aberrations.  



Determination of Stark FWHM 

Assumptions:

1. Due to the low ion temperature the line widths are determined by 
instrumental resolution and Stark broadening.

2. The instrumental response is Gaussian.

3. The Stark broadening of isolated lines is Lorenzian, thus the Stark FWHM5 

is:

wl = (w2
v - w2

g)/wv (1)

where wl, wg, and wv are the FWHM’s of the Stark broadening (Lorenzian),  

the instrumental response (Gaussian), and the measured value (Voight), 
respectively.

5J. Quantitative Spectroscopy and Radiative Transfer, Vol. 8, p. 1379 (1968)


