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ABSTRACT
Many adversarial domains such as viral marketing feature a con-
tagious component beyond the original actions taken. Counterin-
surgency, which is the effort to mitigate support for an opposing
organization, is one such domain that has been studied recently
and past work has modeled the problem as an influence blocking
maximization that features an influencer and a mitigator. The two
players act on a graph, where nodes represent assets (such as lo-
cal leaders in a society) and edges represent the influence of one
asset on another. Each player is then allowed to choose some sub-
set of the nodes from which to begin propagating support for their
cause. Past work has introduced scalable heuristic techniques for
generating effective strategies using a double oracle algorithm.

In these domains, however, graph structure is often not known
with certainty and one party can have an informational advantage
over the other that can, in theory, cause unbounded loss. We model
this asymmetric information situation as a two-player zero-sum
Bayesian game where each Bayesian type represents one possible
graph instantiation. The mitigator is uncertain which of these types
nature has selected, but the influencer acts with full knowledge of
the type. Contrary to what has been assumed in past work in secu-
rity games, we show through extensive experimentation that many
common forms of uncertainty can be addressed near-optimally by
simple heuristics such as solving a subgame with just one or two
types. This implies that optimal strategies that may not model the
full range of uncertainty in such situations are often actually very
robust to uncertainty. Finally, based on the simple heuristics, we
introduce novel techniques to improve the efficiency of the optimal
double oracle algorithm.
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1. INTRODUCTION
Social contagion and the spread of information have long been ar-
eas of great interest due to the widespread impact of such phenom-
ena as viral marketing, rumor spreading and the Arab Spring [12,
15, 19]. Counterinsurgency, the competition for the support of local
leadership, has also been studied as a game with two strategic play-
ers [7, 6, 20]. The key computational question is to decide which
local leaders to influence to achieve each player’s desired end: max-
imize influence for one player, and mitigate the first player’s influ-
ence for the other player.

These ’counter-contagion’ games have received recent attention
in the security games literature [20] and has been modeled as a
graph where nodes represent leaders and edges between the nodes
representing the probability of influence. However, this line of re-
search has not yet examined the impact of asymmetric information.
Informational challenges abound in counterinsurgency, where the
insurgents are typically an indigenous group that has an informa-
tional advantage and the mitigators often have uncertainty about
their knowledge of the social network [7].

In our work, the mitigator’s uncertainty about the graph structure
is modeled as a Bayesian game with each Bayesian type represent-
ing a separate instantiation of the graph. The mitigator’s strategy
must now reason over the distribution of types. The influencer’s
(insurgent’s) perfect knowledge of the graph structure allows him to
specify a behaviorial strategy which conditions the strategy used on
the specific type. We show that given incorrect information about
even a single edge, a mitigator can suffer unbounded loss. Further-
more, quantifying the impact of changing a single edge is #P-Hard,
making it extremely challenging to efficiently evaluate one strat-
egy’s performance on a slightly different graph.

In the past few years, many researchers have addressed uncer-
tainty in security games using a Bayesian model and introduced
more efficient algorithms for handling them [11, 13, 22]. Contrary
to what has been assumed in past work, however, our experiments
show that simple heuristics actually produce near-optimal rewards
in our domain under numerous models of uncertainty. Furthermore,
evidence suggests that this may be true in the areas explored by
prior research as well. This implies that such extremely challeng-
ing problems may often be amenable to very efficient, near-optimal
heuristic techniques. Finally, this also suggests that strategies de-
termined without modeling uncertainty may actually be very robust
to many forms of uncertainty.

There are, however, some real-world domains that require guar-
antees on the quality of the solutions produced and heuristics can-
not be used. For these problems, we introduce novel techniques
for optimally solving Bayesian models of counter-contagion games
with large numbers of types based on the high-performance heuris-
tics mentioned. First, we develop the Verified Response which pro-
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vides increased efficiency by re-using best-responses generated by
other types. Second, we develop Centrality Similarity Sampling,
which first clusters the types based on graph-theoretic measures and
samples these to solve a smaller, representative subset of the origi-
nal Bayesian game before adding the remaining types and seeding
them with the actions found in the subgame. We show both tech-
niques provide efficiency gains in practice while retaining optimal-
ity.

2. RELATED WORK
Recent work in game-theoretic security allocation have also dealt

with domains that were modeled as graphs [1, 10, 4], however
their actions were all deterministically defined and did not feature
a probabilistic contagion component. The work in uncertainty in
security games is also relevant [11, 13, 22], but once again do not
feature the contagion component found in our domain.

This contagion process has been studied outside of the security
games literature and is known as influence maximization, in which
a player attempts to optimize a selection of beginning ‘seed’ nodes
from which to spread his influence in a known graph. This class of
problems were first introduced as a discrete maximization problem
by Kempe et al. (2003) who showed submodularity of the max-
imization problem, enabling a greedy approximation. This work
has been followed-up by numerous proposed speed-up techniques
[3, 14, 15].

Two-player variants of influence maximization have been stud-
ied as well, one of which is known as influence blocking maximiza-
tion problems and are equivalent to the counter-contagion games
we study. These models have been explored with both independent
cascade and linear threshold models of propagation [2, 5], how-
ever, work in this area has generally focused only on the defender’s
best-response problem. The exception is Tsai et al. [20] which
addresses the algorithmic challenge of finding equilibria strategies.
Finally, Hung et al. (2011) and Howard (2010) also model coun-
terinsurgency and attempt to optimize against a strategic adversary.
However, none of these works model the uncertainty that is critical
in domains such as counterinsurgency.

3. EXAMPLE DOMAIN
Counterinsurgency is, perhaps, the most important application

of our model. In particular, we can view counterinsurgency as a
game between two parties: the insurgents and the peacekeepers [8,
6, 7]. While this interaction is multi-faceted, we focus on one par-
ticular aspect of it: influence spread. In this context, the insurgents
aim to spread their views, unrest, etc. among the local population,
whereas the goal of the peacekeepers is to minimize this spread
by engaging in their own information and influence campaign. A
crucial feature of this setting is that influence does not just spread
directly from the insurgents and peacekeepers: rather, people influ-
ence each other, and this indirect spread of influence is arguably
just as important as direct influence, particularly since both parties
have limited resources to engage in their respective campaigns. We
model such spread of individual influence in a stochastic fashion,
such that any two individuals who are socially connected can influ-
ence each other with some fixed, and independent, probability.

Clearly, the structure of the social influence graph is critically
important in this setting. Knowledge of this structure, however,
is asymmetric: the insurgents, who deeply understand local cul-
ture and social patterns, likely have considerably more informa-
tion about the social network than the peacekeepers, who are often
foreigners. We model this by assuming that the social network is
known by the insurgents exactly, whereas the peacekeepers have a

probability distribution over the structure of the graph (e.g., over
which edges are present).

4. MODEL

4.1 Asymmetric Information Game
We model counterinsurgency as a two-player Bayesian zero-sum

game situated on a graph in which two players, the influencer (de-
noted by I) and the mitigator (denoted byM ) compete to maximize
influence over the nodes. Formally, letG = (V,E) be a graph with
nodes V and edges E, and for each edge (i, j) ∈ E, let pij be the
probability that node i’s opinion will influence node j. We model
propagation of influence in the graph as a synchronized indepen-
dent cascade process [12] as follows. Suppose that the influencer
initially attempts to influence a subset of nodes SI ⊆ V to his
cause, and the mitigator’s initial influence is aimed at a subset of
nodes SM ⊆ V . For nodes v ∈ SI ∩ SM which both players ini-
tially try to influence, initial “activation” (e.g., actual opinion adop-
tion) happens in either player’s favor with equal probability, while
all the remaining nodes adopt the view of (are activated by) the
player who directly targets them. Next, we activate all edges (i, j)
in the graph with the corresponding probability of influence, pij .
At that point, the influence process proceeds through a sequence
of iterations. In each iteration, if a node j has not yet adopted an
opinion but has active edges to neighbors who have, j either adopts
the opinion of these neighbors when it is unanimous, or adopts
each opinion with equal probability if j’s active neighbors disagree.
Viewing now the initial target nodes SI and SM as the strategies of
the players I and M respectively, let σ(SI , SM ) be the expected
number of nodes that adopt the influencer’s opinion following the
independent cascade process described above. We define the utility
of the influencer to be UI(SI , SM ) = σ(SI , SM ).

We now depart from the model of Tsai et al. [20] by relaxing
the complete/symmetric information assumption. Specifically, we
assume that the influencer knows the actual influence graph G ex-
actly, while the mitigator is uncertain about its true structure, and
only knows the probability distribution over possible graphs. Let
λ be an index identifying a particular graph Gλ, and let us make
explicit the dependence of the expected influence on the graph,
denoting it by σ(SI , SM , λ). Finally, we denote by P the prob-
ability distribution over λ, with Pλ the probability that the true
graph is the one identified by λ. From the mitigator’s perspec-
tive, the influencer’s decision will depend on his type, that is, on
the true graph which the influencer observes. Thus, we view the
influencer’s strategy SI as a function of λ, with SλI denoting the
influencer’s strategy when his type is λ. The mitigator’s utility is
then UM (SI , SM ) = −Eλ∼P [σ(SλI , SM , λ)].

4.2 Generative Models for Graphs
Over the years, numerous stochastic generative models for graphs

have been proposed to generate synthetic instances of graphs that
resemble real social networks [16]; some of the best known exam-
ples of these are the preferential attachment process, which gener-
ates scale-free graphs, and the process of generating small-world
networks pioneered by Watts and Strogatz [21]. Recently, a new
generative model, BTER, has been developed, and the authors con-
vincingly demonstrated that this model matches the important prop-
erties of real-world networks, such as the degree distribution and
the distribution of clustering coefficients, far better than any pre-
viously proposed methods [18]. BTER graphs feature a scale-free
collection of densely clustered community structures (dense Erdös-
Rényi subgraphs), which are sparsely interconnected. Significantly,
the parameter space of BTER models can generate graphs that ex-



hibit both the scale-free degree distribution, as well as those that
have small-world network properties described by Watts and Stro-
gatz. As such, we use these as the primary generative model for
graphs in our evaluation, although in many instances we present re-
sults for the preferential attachment and small-world (Watts-Strogatz)
models as well.

4.3 Models of Uncertainty
We consider several specific models of mitigator’s uncertainty

about the graph. Primarily, we explore the following three mod-
els. The first model, Random Edge Uncertainty, is the simplest:
the mitigator has perfect information about the nodes in the graph,
and is uncertain about a set of possible edges (i.e., about a set of
pairwise relationships in the social network). The second model
of uncertainty, Inter-community Edge Uncertainty, applies only to
BTER graphs and models the mitigator’s uncertainty about the inter-
community edges. Indeed, it is very likely that the mitigator is rel-
atively poorly informed about inter-community connections, since
an accurate understanding of such relationships requires consid-
erable information about the cultural patterns that govern inter-
personal and inter-group communication. Note that in both of these
classes of uncertainty, we may have a type λ for each possible sub-
set of edges in the graph, and, thus, the number of types could be
as large as 2|E|. The third class of uncertainty that we consider, In-
fluential Node Uncertainty, models information asymmetry about
who the most connected nodes are in the graph, motivated by the
fact the most socially connected and influential nodes are not al-
ways readily identifiable, since their identity is very much the func-
tion of local culture which is much more familiar to the influencer
than the mitigator. Specifically, we start with a baseline graph, then,
for each, type, choose a set of j nodes and add k additional edges
from each of these nodes to others. In this model, the number of
types is at most vCj .

We have also considered several other classes of uncertainty,
such as uncertainty about the identity of the nodes who connect
different communities, and uncertainty in which types involve both
intra- and inter-community edges, but the experimental results for
these are not markedly different than the results we obtain with the
three primary classes described above. We therefore report only on
the three primary uncertainty classes and refer the interested reader
to our website: http://aamas2013.webs.com.

5. THE CHALLENGES OF UNCERTAINTY
Quantifying known model uncertainty is a crucial aspect of mod-

eling and analysis [9], and the Bayesian game framework that we
adopt here is one common way to do so in game theoretic set-
tings. Naturally, we wish to ask how much do we gain by explicitly
modeling uncertainty about the graph in the context of counter-
contagion games, and at what cost? First, we address the question
of added value by showing in the example that follows that, in gen-
eral, ignoring uncertainty can yield a solution that is arbitrarily poor
for the mitigator. Consider the graph shown in Figure 1 in which
the edge from A to B is uncertain, N > M , and both players have
a single resource. There are two ways in which the mitigator can
ignore uncertainty: he can either assume that the edge does exist,
or assume that it does not. Suppose that the influencer chooses to
influence node A with probability 1. First, let the mitigator ignore
the edge from A to B. In this case, his best response is to influence
node C with probability 1. However, if the edge actually does ex-
ist, the mitigator’s actual loss amounts to N

2
, as compared to M

2
he would lose by influencing B. Since the difference between N
and M is arbitrary, the resulting difference in utility can be made
arbitrarily large.

Figure 1: Example showing unbounded loss

Now, let the mitigator assume that there does exist an edge from
A to B. In this case, his best response is to influence B with proba-
bility 1. However, if the edge in fact does not exist, the mitigator’s
loss would be M

2
, whereas an optimal strategy of influencing C in

this case would result in a loss of only a single node A. Since M is
arbitrary, the amount of this loss can be made arbitrarily large.

Having shown that explicitly modeling uncertainty in our case
can have very high value, we turn to the question of complexity.
Here, the result is very clear, and very negative. At a high level, the
challenge of efficiently reducing the runtime of computing equi-
libria in our setting lies in quantifying the impact of even small
changes in the graph structure. If this could quickly and accurately
be determined, then types could be efficiently clustered and bounds
could be placed on the quality loss. The fact that computing the
expected influence is #P-Hard [3] should already give us pause.
Indeed, a simple corollary of this result reveals that such quantifi-
cation is intractable in general.

PROPOSITION 1. Computing the difference in expected influ-
ence for a given seed set even when a single edge is added to a
graph is #P-Hard.

PROOF. We prove this by contradiction. Call the difference
function, d(S,G, e), where S is the given seed set, G = (N,E)
is the base graph, and e is the edge to be added. Assume d(·) can
be calculated in polynomial time. Define a graph G′ = (N, ∅).
σG′(S) can be calculated in polynomial time. Repeatedly add
edges fromE toG′ untilG is fully reconstructed, computing d(S,G, e)
in each iteration. Since the total influence ofG is

∑
e∈E d(S,G, e),

this implies that we have computed influence in polynomial time,
since only |E| iterations were executed, which contradicts that fact
that computing the expected influence of a graph is #P-Hard.

6. DOUBLE ORACLE ALGORITHM
In the previous section, we have shown that the problem of un-

certainty in the counter-contagion games we study here is both sig-
nificant and extremely complex. Although the problem we face is
in fact a zero-sum game, and any zero-sum game can be solved us-
ing a linear program (MaximinLP below), doing so in our case has
three basic problems. The first is that payoff estimation requires
determining the value of σ(SλI , SM , λ), which has been shown to
be #P-Hard [3]. Thus, constructing the payoff matrix for the Max-
iminLP is non-trivial. Second is that the strategy sets for both play-
ers are exponentially large, and thus even storing the entire payoff
matrix is impractical. Compounding the issue of scale is the fact
that in our Bayesian game, each type has its own exponentially
large payoff matrix.

The first problem was addressed in prior research [20] and we
briefly summarize the approach here. The standard technique for



estimating σ(SλI , SM , λ) is to use a Monte Carlo simulation of the
propagation process. However, since this is prohibitively slow in
practice, Tsai et al. developed the LSMI heuristic payoff estimator
to replace it and show that solutions generated with their heuristic
payoff estimation produce strategies that perform well when used
in the true game. Since the additional dimension of having multiple
influencer types compounds the scalability challenge we face, we
use the LSMI payoff estimator in the experiments shown here. We
conducted limited testing using the Monte Carlo estimation as well
but omit them as they exhibit the same trends as the LSMI results.

For the second problem of exponential strategy sets, the double-
oracle algorithm introduced by Halvorson et al. [4], provides a so-
lution. A double-oracle algorithm begins with a small subset of
pure strategies for each player and computes equilibrium strategies
for each player for the current subgame. In each iteration, best re-
sponse strategies are computed for both players and added to the
existing subgame. If the best responses already exist in the sub-
game, then the current equilibrium is an equilibrium of the true
game and the algorithm converges. If not, then the strategies are
added to the subgame and the process continues until convergence.
In the context of Bayesian games, Halvorson et al. propose com-
puting the best response for every player type, which in our case
means that we compute the influencer’s best response for each type
(graph), and add all of these to the MaximinLP in each iteration.

1: Initialize M with random mitigator allocations.
2: Initialize each Iλ ∈ I with a random influencer allocation.
3: repeat
4: (ρM , ρI) = MaximinLP(M,I)
5: M = M ∪{MitigatorOracle(ρI)}
6: for {λ ∈ Λ} do
7: r = {InfluencerOracle(ρM , λ)}
8: Iλ = Iλ ∪ r
9: until convergence

10: return (ρd, ρa)

Algorithm 1: Double-Oracle Algorithm for Bayesian zero-sum
games

Algorithm 1 shows the full double oracle algorithm for Bayesian
zero-sum games introduced by Halvorson et al. The double oracle
algorithm begins by initializing the mitigator and each influencer
type with random actions. This subgame is solved via the call to
MaximinLP with the corresponding mitigator and influencer equi-
librium strategies stored in ρM and ρI (line 4). Then the miti-
gator’s best-response oracle is called to determine the best action
against the current influencer strategy. Then the algorithm iterates
across all the influencer type best-response oracles and generates
new actions to add to each subgame. The process then repeats until
convergence.

When the number of types is small, the approach by Halvor-
son et al. works well. In our case, however, types correspond to
instances of a graph, and for all models of uncertainty that we con-
sider, the number of types grows exponentially in the size of the
graph. Since computing a best response for a given type requires a
non-negligible amount of computation, having to do this for every
type will simply not scale. To tackle this problem we will present
two sets of results in the following sections. First, we show empiri-
cally that simple heuristics actually produce near-optimal solutions.
Second, based on the power of simple heuristics, we provide two
additional enhancements to the double-oracle algorithm that main-
tain optimality while offering runtime improvements in practice.

7. THE POWER OF SIMPLE
Our hardness results about the Bayesian counter-contagion prob-

lem that we study seem to suggest that scalability in the number of
types and, thus, the size of the graph may be rather elusive. We
now demonstrate through an extensive experimental study that in
fact by sampling a tiny fraction of graph types from Pλ we can
arrive at a nearly-optimal solution for a variety of generative mod-
els of social networks, as well as uncertainty about these. At face
value, this is a shocking result, particularly since considering only
a single type (i.e., no uncertainty) we already showed can be arbi-
trarily suboptimal. (However, it is sometimes still valuable to solve
a given instance to guaranteed optimality as fast as possible. We
deal with that problem separately below.)

7.1 Scale-up of Sampled Types
First, we examine the performance of the strategy obtained by

optimally solving a subgame that includes only a randomly drawn
subset of the Bayesian types, a technique we will refer to as Ran-
dom Sampling. We increase the number of types the algorithm is al-
lowed to include in the subgame and show that even with extremely
few types the algorithm generates a near-optimal strategy. All re-
sults are an average of 20 trials and were run on machines with
CPLEX 12.2, 2.8GHz CPU, and 4GB of RAM. Unless otherwise
stated, all experiments were conducted with contagion probabili-
ties on edges drawn from a N (0.4, 0.2) distribution, each player
was allowed two nodes in their seed set, and the payoffs for each
player are estimated using the LSMI heuristic introduced by Tsai
et. al [20]. Experiments conducted using the Monte Carlo payoff
estimation produced very similar results to the ones shown here, but
could not be meaningfully scaled up so we omit these results. Since
an optimal benchmark is necessary, the best-response oracles iter-
atively evaluate each available action to determine the best action
instead of using the greedy hill-climbing approaches that are popu-
lar in influence maximization. Finally, graph sizes were kept at 40
nodes, the number of uncertain edges was kept at 6 (26 = 64 types)
for Random Edge uncertainty results, and the number of types was
kept at 40 for Influential Node uncertainty results to provide room
for scaling up the degree of uncertainty modeled.

In each of Figures 2, 3, and 4, we show the reward achieved by
Random Sampling compared to optimal as the number of sampled
types increases. As an additional benchmark, we also show the
reward obtained by a mitigator that randomly chooses a pure strat-
egy to play (Random Pure). The experiments show results across
three different generative graphs commonly used to model social
networks: scale-free, small-world, and BTER graphs. For each
graph type, we show results using two forms of uncertainty, Ran-
dom Edge uncertainty and Influential Node uncertainty. For BTER
graphs, we also examined the same scale-up with respect to Inter-
community Edge uncertainty, but we omit the figure as it reveals
the same trend as the results shown here. Normally, we would ex-
pect both Random Pure and Random Sampling to do very poorly
relative to the optimal solution, but this was not the case at all.

For all three figures, the x-axis shows the number of types the al-
gorithm is allowed to sample and the y-axis shows the mitigator’s
expected reward. Note that the x-axis results are not linear and
actually show results for 1-5 samples then increases in increments
of 5. The phenomenal performance of even just a single type is
highly unexpected. As Figure 2 shows, under both forms of uncer-
tainty for scale-free graphs, even a single sampled type is already
quite close to optimal in these games with 64 and 40 types total.
Similar results can be seen in Figure 3, which shows the results
for small-world graphs. For BTER graphs, under Influential Node
uncertainty, all algorithms perform very poorly (yet nearly equally



(a) Random edge uncertainty (b) Influential node uncertainty

Figure 2: Reward comparison, Scale-Free graphs

(a) Random edge uncertainty (b) Influential node uncertainty

Figure 3: Reward comparison, Small-world graphs

poorly) because it is so difficult to mitigate the influencer. The opti-
mal solution loses around 100 points of reward (as opposed to 8-15
in scale-free and small-world graphs) and only beats Random Pure
by approximately 10%.

7.2 Scale-up of Uncertainty
In light of our findings, we added two additional algorithms to

the mix to evaluate performance as the degree of uncertainty is
scaled up in a fixed game size. First, we include Max Prob, which
simply chooses the highest probability type and solves the subgame
with that single type as an even simpler alternative to Random Sam-
pling. Second, we attempt to improve upon Random Samplingin
the rare cases when the performance is slightly suboptimal with
a novel technique that builds upon the sampling idea, Centrality
Similarity Sampling (CSS). CSS attempts to improve upon Ran-
dom Sampling by intelligently choosing the N types that are used
to create the subgame that we solve. CSS clusters the types via
k-medians clustering and uses only a single type per cluster as a
representative in a smaller Bayesian game where each type inherits
the cumulative probability mass associated with its cluster. Ideally
we would like to use payoff matrix similarity as the basis for clus-
tering, however, we do not ever expand the entire payoff matrix
in a double oracle formulation and even if we did it would be pro-
hibitively large to use. Instead, we measure similarity by evaluating
the difference between the centrality of each node of both graphs
as measured by PageRank. The resulting strategies generated by
these heuristics are evaluated against the actual type distribution of
influencers.

As before, we show results for scale-free, small-world, and BTER
graphs as the degree of uncertainty is scaled up but the game size
is kept fixed. For all three graph types, we show results under Ran-
dom Edge and Influential Node uncertainties. For BTER graphs,
we also vary the density of connections within the communities
(ρ = 0.5 or ρ = 0.9) and show results with Inter-Community Edge
uncertainty. For Random Edge uncertainty we varied the number
of uncertain edges from 1 to 6 (2 to 64 types), for Influential Node
uncertainty we varied the number of types from 4 to 40 in incre-

(a) Random edge uncertainty (b) Influential node uncertainty

Figure 4: Reward comparison, BTER graphs

ments of 4, and for Inter-Community Edge uncertainty we once
again varied the number of uncertain edges from 1 to 6. For Influ-
ential Node uncertainty, each type randomly selected 3 nodes and
randomly added 4 edges to each of them. The number of types was
kept low because of the poor scalability of the optimal algorithm.

Figure 5 shows the results for scale-free graphs under each model
of uncertainty. As can be seen, as we scale up the uncertainty
the sampling techniques continue to perform extremely well and
stay neck and neck with the optimal solution. Even with a total
of 64 types, a random sample of two types and performs nearly
optimally. Even using the strategy generated by solving against a
single type (Max Prob) performs nearly optimally. The same is true
of the small-world graph tests shown in Figure 6, as evidenced by
all four bars staying extremely close through both scale-up exper-
iments. BTER graphs under Random Edge and Inter-community
Edge uncertainty (Figures 7 and 8) show very similar results with
minimal performance degradation. As can be seen in Figure ??,
under Influential Node uncertainty the different techniques seem to
perform slightly differently, but the story is once again the same as
noted previously. All of the algorithms perform extremely poorly
because it is simply too difficult to mitigate a strategic influencer
in this situation. Even in the worst case, the sampling algorithms
perform within 10% of the optimal solution, with CSS generally
staying within 5%. Finally, as can be seen by the side-by-side com-
parison for the BTER graphs, the community density affects the
overall difficulty of the problem (lowers reward for the mitigator
across the board) but does not seem to create additional difficulties
for the sampling techniques relative to the optimal soluation.

(a) Random edge uncertainty (b) Influential node uncertainty

Figure 5: Reward comparison, Scale-Free graphs

Although not shown here, additional experiments were conducted
that explored more forms of uncertainty and other parameter vari-
ations. These included uncertainty over a mixture of intra- and
inter-community edges and a form of uncertainty wherein each type
possessed a random set of N inter-community edges. We also cre-
ated resource imbalances by testing games in which the mitigator
was allowed 3 or 4 nodes against the influencer’s 2. Similarly we
tried the opposite, with the influencer being given 3 or 4 nodes
against the mitigator’s 2. We also varied the distribution of con-



(a) Random edge uncertainty (b) Influential node uncertainty

Figure 6: Reward comparison, Small-World graphs

(a) Low community density (b) High community density

Figure 7: Uncertainty about a set of random edges

tagion probabilities on edges from the 0.4 we set it to for the ex-
periments shown to 0.7 to examine the impact of changes in con-
tagion probability. For BTER graphs we also examined multiple
degree distributions in addition to the variation of community den-
sity that we show here. All of these variations, however, resulted
in a multitude of graphs that looked extremely similar to the edge
uncertainty graphs shown here, with simple heuristics performing
extremely close to optimally. The results for the full set of exper-
iments conducted, including those not shown, are available online
at our website: http://aamas2013.webs.com.

7.3 Analysis
The results shown are surprising in their extremity, especially in

light of the worst case performance result presented in Section 5.
We now delve deeper into why this is occurring in these games. A
plausible hypothesis is that the problems are simple to begin with
and that most actions provide very high reward to the mitigator.
To examine this, we plot the distribution of performance of pure
strategies available to the mitigator by evaluating the expected re-
ward obtained by each of the mitigator’s pure strategies against the
best response of the entire range of influencer types. To ease anal-
ysis, we bucket the rewards obtained into integer values. We show
the results for two prototypical game instances to illustrate our find-
ings. As can be seen in Figure 10a, the majority of actions lie in two
clusters near -67 and -57. Figure 10b shows a distribution resem-
bling a normal distribution. Neither of these shows a high percent-
age of high-reward actions, indicating that the initial hypothesis is
incorrect and that substantial value is gained by optimally solving
a subgame composed of a subset of types.

To better understand the high performance of the simple sam-
pling approach, we examine the type-by-type performance of a
given strategy. First, we solve a subgame against a single type op-
timally and evaluate that strategy’s performance on each of the re-
maining Bayesian types. This is compared against the type-by-type
performance of the optimal strategy over the full Bayesian game.
These experiments were run on a single instance each to illustrate
the trends found. These results are shown in Figures 11 and 12,
which show the mitigator’s reward on the y-axis and the type ID

(a) Low community density (b) High community density

Figure 8: Uncertainty about a set of inter-community edges

(a) Low community density (b) High community density

Figure 9: Uncertainty about which nodes are highly connected

on the x-axis. Figure 11 shows the results under Random Edge
uncertainty and Figure 12 shows the results under Influential Node
uncertainty. In the ‘Single Type Strategy’ graphs, the leftmost type
shown is the type that was solved optimally.

In Figure 11a, notice that the optimal strategy for the single
solved type actually performs nearly identically against all other
influencer types. The same is also true of the optimal strategy
shown in Figure 11b, with both strategies generating approximately
equal rewards. In Figure 12a, on the other hand, the difference is
quite substantial across the types, with many actually performing
much more poorly. Notice, however, that even the optimal strat-
egy, shown in Figure 12b, shows a similar result with the reward
against most types being very low. As noted before, this is due to
the fact that this problem is much harder. The differences between
the types were much more substantial for this form of uncertainty
with 3 randomly selected nodes having 4 edges added to them each
as compared to Random Edge or Key Edge uncertainty, where the
maximum difference was 6 edges in total and the average differ-
ences was far smaller. This is only evident in the BTER graphs
because the added edges sometimes connect multiple communities
that were previously not connected, causing sharp changes in pay-
offs. Thus, as shown previously, since optimizing against all types
is also extremely challenging, the overall expected rewards for the
heuristics still perform very well relative to optimal.

Our analysis suggests that under the naturalistic models of un-
certainty explored here, most problems are very well represented
by a single type. This was also true for the two additional types of
uncertainty that were tested but not shown. In the case when this is
not true and types differ substantially, they are so difficult that all
algorithms perform poorly.

8. EXACT ALGORITHMS REVISITED
We presented extensive evidence that, in fact, sampling only a

few types achieves nearly optimal utility for the mitigator. Since
some domains call for guarantees on the solution quality, we now
suggest two enhancements to the optimal double-oracle algorithm
discussed in Section 6 that leverage this insight. First, we propose



(a) Random Edge uncertainty (b) Influential Node uncertainty

Figure 10: Distribution of pure strategy performance

(a) Single Type Strategy (b) Optimal Strategy

Figure 11: Performance distribution, Random Edge uncertainty

the Verified Response algorithm, which aims to take advantage of
intuition that many graph types are sufficiently similar in the result-
ing payoff structure and, therefore, yield similar best responses for
the influencer. Indeed, even if the best response is not the same,
the best response for one type may often be at least a better re-
sponse for the other type, which is sufficient for the double oracle
algorithm to make progress. The Verified Response algorithm com-
bines this with the fact that verifying whether or not a given action
is a better response for a type is much faster than determining a best
response directly.

1: Initialize M with random mitigator allocations.
2: Initialize each Iλ ∈ I with a random influencer allocation.
3: Initialize A = ∅ // stores all influencer best-responses
4: repeat
5: (ρM , ρI) = MaximinLP(M,I)
6: M = M ∪{MitigatorOracle(ρI)}
7: for {λ ∈ Λ} do
8: r = ∅
9: for {a ∈ A} do

10: if {isBetterResponse(ρM ,a,λ) then
11: r = a
12: break
13: if {r = ∅} then
14: r = {InfluencerOracle(ρM , λ)}
15: A = A ∪ r
16: Iλ = Iλ ∪ r
17: until convergence
18: return (ρd, ρa)

Algorithm 2: Verified Response Modification

Algorithm 2 shows the full double oracle algorithm for Bayesian
zero-sum games that implements the Verified Response modifica-
tion in lines 9-12. Normally, the standard double oracle algorithm
then iterates across all the influencer type best-response oracles and
generates new actions to add to each subgame. However, since

(a) Single Type Strategy (b) Optimal Strategy

Figure 12: Performance distribution, Influential Node uncertainty

these calls are computationally expensive, the Verified Response
modification adds an intermediate step. Instead of directly calling
a type’s best-response oracle, the Verified Response heuristic first
checks whether any previously generated best-response (by any
type) is a better response for the current type. This can be done
efficiently by comparing against the reward achieved by this type
in the last call to MaximinLP.

The second technique we introduce is based on the fact that us-
ing only a few types already yields a good solution. Thus, using
the resulting solution as, essentially, a warm start for the double-
oracle algorithm should reduce the number of required iterations
and, therefore, reduce total computation time. Specifically, we pro-
pose an algorithm, Subgame Expansion , which first solves the sub-
game that is induced by sampling several influencer types. Then,
once this approximate game is solved optimally, we add all the re-
maining types, each seeded with the actions already generated in
the startup phase, and proceed using Algorithm 2 from that point
on.

Now we evaluate the runtime efficiencies gained by Verified Re-
sponse and Subgame Expansion. Specifically, we evaluate their
performance on BTER graphs on two different forms of uncertainty
to demonstrate their performance. The results are shown in Figure
13 and show that for Random Edge uncertainty the runtime is im-
proved dramatically by our techniques while for Influential Node
uncertainty the performance is inconsistent. This is in line with ex-
pectations from our experiments in Section 7.3 that showed Influ-
ential Node uncertainty produces types that are quite different. This
violates the fundamental assumption of both Verified Response and
Subgame Expansion that best-responses for one type will at least be
good responses for another type. While this did not meaningfully
impact the solution quality of the heuristics, optimal algorithms
based on this principle will sometimes suffer longer runtimes.

(a) Random Edge uncertainty (b) Influential Node uncertainty

Figure 13: Runtime comparison



9. DISCUSSION
The CSS algorithm developed here could have been presented

in the same form as many past researchers have showcased their
work and compared against only the optimal algorithm. Remov-
ing the Random Sampling and Max Prob results, we could have
shown phenomenal runtime improvements at virtually no cost to
solution quality and ended with a very impressive result. However,
the additional experiments that have been conducted in this work
have revealed an unexpected reality - that simple heuristics work
extremely well in this domain across a variety of models of real-
life uncertainties.

Indeed, a closer examination of previous literature in security
games that addresses uncertainty reveals that similar phenomena
may have been true elsewhere. In Jain et. al [11], the authors
provided a novel algorithm to handle large Bayesian Stackelberg
games (HBGS), but do not compare against other simple solution
techniques at all. Interestingly, they noted that allowing the al-
gorithm to solve for approximate solutions barely impacts solu-
tion quality but improves scalability tremendously. In Yin and
Tambe [22], the authors provide a novel algorithm (HUNTER) for
optimally handling Bayesian Stackelberg games with many types.
While the algorithm is orders of magnitude faster than previously
proposed optimal algorithms, the authors report that BRASS, a far
less complex solution method [17], achieves an average loss of 0.7
in a game where the range of rewards for optimal solutions ranged
from -26 to 17 compared against their algorithm. Again, the authors
do not provide a benchmark ‘simple’ approach to demonstrate the
practical gain achieved by an optimal solution. While the guaran-
tees provided by optimal and approximate algorithms are necessary
in some domains, one is left wondering if very simple heuristics
may actually provide near-optimal results in many of these domains
as well.

By no means does our work dispute the fact that extremely large
Bayesian zero-sum games remain very challenging to solve well
in general and there are certainly many problem classes that are
not amenable to simple heuristics. In Kiekintveld et al. [13],
for example, the authors introduce several techniques for handling
large numbers of Bayesian types to address payoff uncertainty and
they show that simple techniques do not perform near-optimally.
Our work stresses the need to perform this type of verification of
whether or not simple techniques work before embarking on ex-
tensive algorithmic gymnastics to achieve runtime improvements
on minimal gains in solution quality. Although we have provided
some analysis of why this occurs in our domain, this is only the
beginning of research in this direction and clearly more work is
needed. Finally, our findings give hope that many very challeng-
ing problems in computational game theory may actually be very
effectively addressed by simple techniques: the power of simple.
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