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1) Abstract

Effective mass is a system property that is used in the aerospace industry in predicting the forces of an elastic payload on the
delivery system in a specific direction. Effective mass is usually calculated with the finite element model. Experimental
effective mass can be used to validate calculated effective mass from a finite element model. Measuring the effective mass of
a system, however, has been difficult and has been attempted by putting force sensors between the payload and a test base. A
much more tractable method amenable to a payload mounted on a slip table is provided here. The method measures a driving
point and a base frequency response function and uses a recently developed method to constrain the base response and
calculate the effective mass. This theory will be demonstrated with an analytical system and example hardware.
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2) Motivation

Sandia National Laboratories has at least three motivations for having measured effective mass values for the modes of a base
mounted payload in a specific direction. The first motivation comes from satellite payload applications. When performing
loads analysis to determine the loads a payload puts back into the delivery bus during launch, the modes with high effective
mass put high loads back into the bus. Classically, effective mass is calculated from the finite element model, but if the
effective mass of the model is wrong, the loads analysis will be wrong. It would be of value to validate the model with test
measured effective mass to greatly enhance the confidence in the loads analysis.

The second motivation is associated with the methodology now being utilized at Sandia to quantify margin. This
methodology requires a modal model with the modal masses scaled so that the effective mass of each mode in the various
shock or vibration test axes are known. Again, this information has always come from a finite element model in the past, but
in some cases finite element models have not been generated. It would be of value to extract a modal model experimentally
with the associated effective masses for each important mode in the various test axis directions. Then the margin
quantification could proceed without the finite element model. Even if the finite element model is available, to check its
effective masses against test data would provide a valuable check on the model for the margin calculation.

A third motivation is for vibration control. In certain cases force limiting is practiced to remove over-conservative effects of
enveloping test environments. Knowing the effective mass of the test article would allow notching of acceleration inputs
without installing force gages under the test article, because the effective mass and input accelerations could be used to limit
the force into the structure.

3) Effective Mass Concept and History

The effective mass offers a physical interpretation of a physical system with multiple modes of vibration being excited
dynamically from a base, similar to testing that occurs for many systems. The concept was proposed in the early 70’s by
Bamford[1] with others. For a base excited system, it is represented as attached to a massless base, which will be excited in
only one direction with acceleration, X , with each mode represented by a single degree of freedom oscillator as shown in
Figure 1. The mass of each oscillator is valued so that it is the effective mass of the respective mode of vibration. The
springs are scaled so that the mass vibrates at the appropriate modal frequency. In general, only the modes that have the
significant effective masses are required to represent the response up to some desired frequency. In the figure we show four
such modes. The other modes are truncated. The effective mass of all the truncated modes is added directly to the base as a
residual mass. When the base is accelerated with some vibration specification, the various effective mass oscillators will
impose the correct reaction force on the base in the direction of excitation. As can be seen from this illustration, effective
mass is based on a system that can be represented as having a base input. It depends also on the assumption that the base is
rigid.



%% % EE

Massless Rigid Base

A

Figure 1 - Physical Picture of Effective Mass Concept

Effective mass is related to modal participation factor, P;. The derivations of modal participation factor and effective mass
can be found in the FEMA 451B Topic 4 Notes [11]. A major difference between effective mass and modal participation
factor is that modal participation factor is different depending on the scaling of the modal mass, mmy, whereas effective mass
is a single defined value. In a fixed base eigenvalue problem of an analytical model of the system, the modal participation

factor multiplied by — X provides the modal force that will excite a particular mode for the rigid base acceleration, X . The
effective mass, which provides the actual base reaction force associated with a particular mode, resolves any question about
mode shape scaling and is calculated as

2
M . =P mm,. (1
If ‘P/lﬁmd is the fixed base mode shape vector for mode £ and M is the mass matrix of the test article, the modal participation

factor can be calculated from the rigid body mode shape vector, @, of the system released and translating in the direction of
acceleration of the base as

B =®'"MY},,, /mm, 2)

where the rigid body shape values of vector @ in the direction of acceleration are equal to one and in orthogonal directions
are equal to zero. The modal participation factor and effective mass are related to direction. If vector @ represents the rigid
body mode shape in the y direction, as opposed to the x direction as shown in the figure, a different modal participation factor
(and effective mass) will be calculated for mode .

As can be seen, this standard approach requires a finite element model. If the finite element model is in error, the modal
participation factor and effective mass will be in error. One method of attempting to extract the modal participation factor
and effective mass is to sandwich force gages or a so-called force measurement device between the test article and the shaker
table and measure those forces and extract modal parameters from the system during a vibration test[2-4]. Even such a
measurement generally assumes the shaker table is rigid. Sedaghati, Soucy and Etienne[5] did this placing eight triaxial force
gages beneath a payload during a vibration test. They checked their results by comparing with the effective mass of a finite
element model. One of the larger effective mass measurements was within seven percent but two were off by greater than 40
percent and the effective mass of the first mode was off by hundreds of percent. They claimed the error was due to
nonlinearity, but the FRF showing the apparent mass appeared to retain the shape one would expect for the first mode of a
linear system. This also required an in situ re-calibration of the force sensors to match the measured mass of the test article,
which demonstrates the difficulty of trying to obtain force measurements in a sandwich configuration.

4) Effective Mass Measurement Approach

Here the authors propose an approach logistically simpler than measuring all the forces of attachment of a structure to a slip
table. It may be applied to any fixture which has at least one rigid body mode (a mode low enough in frequency that it can be
considered to be represented purely by rigid body motion), as well as to a shaker table (which always has a rigid body mode
in the direction it is designed to shake). The method does not require a rigid base assumption as with the sandwiched force
measurement device. The natural dynamics of the shaker table or fixture are measured and then analytically constrained to
provide a mathematical rigid base. The method builds on previous work which has been used to calculate fixed base mode
shapes from experimental modal parameters extracted from a test article mounted to a shaker table or other dynamic fixture.
Mayes and Bridgers[6] first showed that one could perform a modal analysis of a test article on a plate and analytically fix
the modes of the plate so that the resulting constrained modes approximated the fixed base modes. Since then several



refinements and studies have been performed[7-9]. This capability to analytically constrain the system inherently contains
enough information to calculate the effective mass in directions well excited by the modal test, if one knows the mass
properties of the fixture to which the test article is attached. From this point forward, the “fixture” refers to the base to which
a test article is attached, whether it is a shaker table or some other system.

This approach will be demonstrated with a simple MATLAB spring mass model and an experimental system. The
experimental system is shown set up on a slip table in Figure 2. The test article is a nylon beam-like structure.

Figure 2 - Experimental Test Article Mounted on Slip Table
5) Effective Mass Measurement Theory

Begin with a system that has one rigid body mode in the direction of the desired effective mass estimate. Let us consider an
example multi-degree of freedom system as shown in Figure 3.
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Figure 3 - Simple Analytical Base Mounted Test Article

The system has one rigid body mode in the x direction of motion. The mass of the base, Mg, is known. The multi-degree of
freedom test article is represented by masses m; through m,. Although the individual masses are not known, the test article
total mass, which is the sum of m, through m,, is known. The base cannot rotate, and is considered a rigid mass that may
only move in the x direction. One performs a modal test on this system and at least determines the modal parameters and the

mode shape of the base for the rigid body mode and several elastic modes, which we will call ‘¥,
Recalling eqn (2) as

1)1{ = 6TM¢_/I‘{‘1xed /mmk (2)

the first question is how can we get ‘P_/lﬁmd ? In the appendix, the equations to constrain the experimental mode shapes

obtained from the test of Figure 3 are given providing

‘Pﬁxed =YLI' 3)
so that ‘P_/lﬁmd can be determined from
Vi = Va, (4)
where the vector @, is the kth column of LI". Assume the mode shapes are scaled for unit modal mass and substitute eqn
(4) into eqn (2) to give
P, =®"MWYa, (5)
Which can be expanded as
P =[®0'"M¥, ®'MY¥, .. O'MYJa, . ()
Let us define each term in the brackets in eqn (6) as a pseudo-modal participation factor (pmpf). It is prefixed with “pseudo”
because we obtain it with the base mass free to move, instead of fixed, as in the strict definition of modal participation factor.

Each of the pseudo-modal participation factors considers the mode shape of the entire test article, but NOT the base. One
must determine each of these pmpf's. For the first mode, which is the rigid body mode translating in X, we can note that

o'M=[m m, .. m], @)

Which gives a row vector of all the masses of the test article, subscript TA, and
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Combining eqn(7) and (8) yields the first pmpf from the rigid body mode as
1
STAw] 1 1 1
pmpf (1) =0®" MY = [ml my, . m, ]TA ¥y =mp, ¥y : ©)
1

This requires only two values, the known mass of the test article without base, mz, , and lPllg which is the measured base

rigid body mode shape (mass normalized) in the desired direction. Though the individual elements of the mass matrix are not
known in a hardware modal test, both terms are known on the right hand side if one extracts the mode shape of the base and
weighs the test article.

The pmpf for any other elastic mode may be obtained from conservation of momentum. Assume we excite only one of the
elastic modes, £, in an undamped sense. Then the momentum sum is

Zmivi+MBvB =0 (10)
i=1

where v is the velocity . The velocity can be replaced with the modal substitution to give

(zmilyik +MB\P§)q'=O (11)
i=1
with g as a generalized coordinate. Dividing by the generalized velocity and noting that the summation term is equal to the
pmpfik) gives

pmpf (k)= ® ' MY* = Zmi‘I’ik =-M,¥; . (12)
i=1
The pmpf for each elastic mode comes simply from the mass of the base and the mode shape of the base. Now all quantities
are know so eqn (9) and (12) are substituted into eqn (6) to give the estimate of the true modal participation factor, Py, from

which effective mass can be obtained in eqn (1). Inreview, @, is the kth column of LI", pmpf(1) comes from the mass of

the test article and the rigid body mode shape of the base, and the elastic pmpf(k) are determined from the mass of the base
and the test mode shape of the base. The resulting modal participation factor, Pj, is subject to errors of modal truncation.

The previous derivation shows how to estimate the effective mass from modal parameters for the described system which has
only one unconstrained DoF for the base motion. However, most systems are not constrained with only one base DoF as the
described system. They may have more than one rigid body mode of the fixture, and there may be other elastic modes of the
fixture. Here we follow the previous work[6-9]. One performs a modal test on the system and fixture with enough
accelerometers mounted on the fixture to uniquely identify every different shape active in the fixture. These fixture shapes

are then captured as multiple independent vectors in ®_. One of those vectors, noted as vector j, should be rigid body

motion that is purely in the x direction of Figure 3. Eqn (A4) provides the required constraint, except that row j should be
removed from the constraint. This allows the system to have rigid body motion in the one desired direction as depicted in
Figure 3, while constraining all other rigid body and elastic motions. The appendix equations with the required adjustment to
eqn (A4) recasts the original dynamics to those of a problem constrained as defined in Figure 3.

To review, one performs a forced modal test on the system. Enough accelerometers on the fixture must be placed so that the
active rigid and elastic shapes may be captured with independent fixture shapes, @C . The appendix equations are applied to

obtain a system that is constrained similar to that shown in Figure 3. Then use the partially constrained modal parameters,
the mass of the base and the mass of the test article to calculate the pseudo-modal participation factors. Finally constrain the
final rigid body DoF and determine the modal participation factors and resulting effective masses from eqn (1) and (6).



6) Analytical Example

Consider a spring mass system with three DoF as shown in

Figure 4. Here, Mj is the mass of the base and m; and m, are associated with the masses of the test article. So the total mass
of the test article is my,= m+ m,. For this configuration, the system has one rigid body mode. One might imagine Mj as the
slip table and m; and m; as the test article mounted to the slip table.

kBQ k12

Figure 4 - Analytical Example 3 DoF System

One desires to perform a modal test of this system, with accelerometers mounted on the base. The mass of the base, My, and
the mass of the test article, myy, are known. From the modal test three modes are extracted with mass normalized mode
shapes of the base. The first mode is a rigid body mode. Then one desires to analytically fix the base, and get the modal
participation factors of the test article and the effective mass for the two remaining modes in the x direction. The parameters
used in this example are Mp= 500, m;=2, my=>5, mr, =7 , kg,= 10,000, ki,= 10,000. Using eqns(4,7,8-19) the effective mass
for the first and second modes of the fixed base system are computed as 6.8577 and 0.1423, which match the true values
calculated for a fixed base system from eqn (1,2). Also, the sum of all the effective masses in one direction are equal to myy ,
which is seven for this case.

7) Hardware Example on Small Seismic Mass

The first hardware test setup is shown in Figure 5. The test article is a 72 kg nylon beam and the fixture is a 605 kg steel
seismic mass which was instrumented with four triaxes at the corners. The test article and seismic mass were suspended with
straps, yielding rigid body modes below five Hz. A modal test was performed using a random shaker input and modes were
extracted using SMAC[10]. Three input locations near the top of the beam were excited. Effective mass was extracted for
the first ten modes to 1350 Hz in the softer bending direction of the beam. The seismic mass had one elastic classic plate
mode at 1370 Hz, and it was constrained along with the rigid body modes of the mass for this analysis. One of the x
direction accelerometers on the mass was found to have low amplitude, so it was excluded from the analysis. The beam was
modeled with finite elements (FE) in SALINAS and the uncertain Young’s modulus and Poisson’s ratio were adjusted to best
match the test data. All the first ten modes in the soft bending direction matched within two percent between the test and FE
model. The effective masses are compared in Table 1, expressed as a fraction of the total test article mass. The difference
column is the difference expressed as a percentage of the total test article mass. Most of the agreement is within two percent
of the total test article mass. Interestingly, the very first mode is the worst comparison, with the values about eight percent
different, which is an error that is a little over three percent of the total mass.

Table 1- Test Effective Mass from Seismic Mass Test Compared to FE Model

Test Frequency Effective Effective Difference as % of
(Hz) Mass from Mass from Total Test Article
Test FE Model Mass

38.94 0.415 0.448 33
163.5 0.187 0.189 0.2
396.3 0.088 0.085 -0.4
706.4 0.037 0.047 1.0
859.2 0.004 0.000 -0.4
1034.7 0.011 0.000 -1.1
1048 0.003 0.023 2.0
1190.7 0.000 0.000 0.0
1316.1 0.027 0.004 -2.3
1344.3 0.020 0.004 -1.6




It was noted above that one of the accelerometers on the base that measured motion in the direction of the desired effective
mass was excluded from the analysis. It appeared to be reading about 20 percent lower than the others for modes with fairly
pure motion in that axis. When that accelerometer was included in the analysis, the difference from the FE calculation in the
first test effective mass more than doubled. This result underscores the need for very accurate absolute measurements on the
fixture structure.

Figure 5 - Small Seismic Mass (left) d Test Article Stup (Right)

8) Hardware Example on Slip Table

The same test hardware was used on a slip table with the same theory. In this case only two fixture modes were present. One
was a rigid body mode of the slip table at 0 Hz and one was the first extensional mode of the slip table at 2035 Hz. In this
work, a portable shaker was attached to the slip table with a force gage and the slip table was not connected to the large
shaker that normally drives it. The test setup is shown in Figure 6. Seven triaxial accelerometers were mounted on the slip
table and used for the constraint analysis. The modal test utilized random input, and the modal extraction was performed
with SMAC. Very similar test effective mass results were obtained from this separate setup and are given in Table 2.



Table 2 - Effective Mass Extracted from Slip Table Test Compared to FE Model

Test Frequency Effective Effective Difference as % of
(Hz) Mass from Mass from Total Test Article
Test FE Model Mass

38.2 0.413 0.448 3.5

162.3 0.177 0.189 1.2

393 0.080 0.085 0.5

701.5 0.051 0.047 -0.4
852.9 0.000 0.000 0.0

1028 0.033 0.000 -3.3

1040 0.018 0.023 0.5

1199 0.000 0.000 0.0

1301 0.001 0.004 0.3

1344 0.001 0.004 0.3

figure 6 - Test Article Mounted on Slip Table with Portable Shaker
9) Conclusions
This paper develops the theory to calculate effective mass from a standard modal test of a test article on a fixture, when the

fixture has at least one rigid body mode in the direction of the desired effective mass calculation. The strength of the theory
is verified by an analytical example. It is then applied to two different test setups for the same test article. In one setup, the



test article is mounted on a seismic mass and suspended softly with straps. In the other setup, the test article is mounted on a
slip table for a shaker. The effective mass for each mode in one direction is extracted from the tests and compared to a FE
model effective mass calculation for the test article. (The FE model Young’s modulus and Poisson’s ratio were calibrated so
that the frequencies of the FE model match the test within two percent). The test effective mass calculations agree with the
FE calculations within about four percent of the total mass of the test article. The first mode has the greatest test effective
mass, and is the most different from the FE model calculation. Agreement for the test effective mass between the two tests is
very consistent, being within about one percent of the total mass, even though the setups were quite different. It is not known
whether the difference between the test effective mass and the FE effective mass in the first mode is due to test error or FE
error.

10) Appendix — Constraining a system with one rigid body mode to fixed base
The system of Figure 3 can be modeled, neglecting damping, as
v 2 2 T
[ fa}-o’tnlg}=¥" {1} (A1)

where w, represents the circular natural frequencies, g represents the modal coordinates, f'is the vector of forces. A
constraint for the fixture (subscript ¢) DoF can be written as

{x, =10} (A2)
or using the modal substitution, then
¥ {af={o}. (A3)

Generally, with the authors’ method, there will be many accelerometers mounted on the fixture represented by the lower
mass, Mp. One may convert from many physical DoF constraints of eqns (A2) and (A3) to one modal constraint with

;¥ {g}=1{0} (A9
Where the vector ®_ comes from an estimate of the single translation rigid body mode shape vector of the fixture. The
superscript + indicates the pseudo-inverse. This projects the constraint onto the vector space of ® , which has the advantage

of producing a least squares fit through any experimental modal analysis shape errors, since ® _has more sensors (rows)

than modes (columns). The unconstrained coordinates can be written in terms of a reduced number of unconstrained

generalized coordinates as
la}=Lig,}. (A5)

Substituting eqn (AS5) into eqn (A4) yields

0:¥,Lig, }= {0}, (A6)
where L is found as the matrix of vectors that are orthogonal to [P, ]"

L =null(®;Y,) (AT)
which satisfies the constraint. Substituting eqn (A5) into eqn(A1) and pre-multiplying by L, gives the coupled eigenvalue
problem

U} Llg, }-o L 171, }= 0} (A8)

If we solve this eigenvalue problem and call the resulting generalized uncoupled coordinates p and the associated
eigenvectors [, then from the modal substitution and eqns (A2, A3 and A5)

X = lI’Ll“{p} . (A9)
So the fixed base mode shapes are estimated as
\med =YLI . (A10)

Eqn (A10) shows that the fixed base mode shapes are just a linear combination of the original mode shapes associated with
the boundary condition of Figure 3.
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