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Assembly of graphitic membranes
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2. Experimental methods
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Compare properties of GO and RGO films
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G. Eda and M. Chhowalla, Adv. Mater. 2010
M. Fernandez-Merino et al., J. Phys. Chem. C 2010

R. Nair et al. Science 2012
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Assembly of GO and RGO films ) i,

Drop casting? Vacuum filtration?

a
(a) Qiution Nz' ( )
Substrate

GO suspension

Assembly at an oil-water interface3

[1] G. Eda and M. Chhowalla, Adv. Mater. 2010 [2] S.-K. Lee et al. Nano Lett. 2012
[3]S. Gan et al. Adv. Mater. 2012 [4] L. Cote et al. Soft Matter 2010.




Dense, ordered

molecular monolayers

assembled using Langmuir-Blodgett deposition
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[1] M. Bardosova, et al. Thin Solid Films, 2003

Compression of an amphiphilic molecule
LANGMUIR-BLODGETT DEPOSITION
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Overlapping GO flakes?

BaCrO, nanorods?

[2] F. Kim et al. JACS, 2001  [3] L. Cote et al. Soft Matter 2010.
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Stable graphene oxide surface phase enables WETS
Langmuir-Blodgett assembly

08/08/12, iGO01: Compression at 10 mm/min

GO structure
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Goal: Optimize deposition to generate continuous GO and RGO films
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Control of Graphene Oxide Coverage (@&

Adjusted Parameter Effected Property Impact to Coverage

Initial GO concentration Amount of flakes in solution Peak SP at lower concentration f
Centrifugation Flake size Large flakes yield higher coverage {
Addition of HCI, NaOH, or  Excess charge on flake Basic conditions show higher
NH,O, coverage
Surface Pressure Flake Density Increased coverage until plateau

y
Dipping speed Dynamics of flake attachment  Higher coverage with slower dip

Number of dips Layers of flakes More dips yield higher coverage

7
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Determination of Graphene Coverage ) .

Area Analysis
¥ 61 % monolayer GO

19 % bilayer and thicker GO ¥

I 20 % uncovered Si
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More continuous GO films are possible [,
through controlling flake size

Initial GO size distribution After removing smallest GO flakes
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78 % GO coverage 97 % GO coverage
for deposition at 15 mN/m for deposition at 17.5 mN/m
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Multiple dips can result in higher ) .
surface coverage

Second dip at 17.5 mN/m

83 % coverage 94 % coverage
75 % monolayer GO 20 % monolayer GO
12 % thicker and overlapped GO 74 % thicker and overlapped GO
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RGO surface phase is stable, yet deposition is

Ch d I I e ngl ng High coverage, but wrinkled RGO flakes with methanol
RGO structure preading oIvnt. |

Low coverage of flat RGO with dilute ammonium

3op=— ° RGOIndiute ammonium hydroxide|  hydroxide as a spreading solvent.
’*.;\\ + RGO in 1:5 Dl:methanol
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Demonstration of GO as permeation k=
barrier

Sum
: o

HT=1.00kv WD= 3.1

GO coverage between bubbles.

o 5
98 %

lmﬂ' EHT= 100KV WD=3.1mm SignalA=InLens File Name = 0620_iG0006_SP0_005.ff
Water bubbles are trapped by
overlapping GO flakes.

High

vacuum
- "\Q GO
water \_

An unusually large bubble is 8-um tall and 450- um in diameter. T
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omposite GO membranes can stretch =
without bursting

File Name = 0710_iG017_SP16_0fg

EHT= 300K/ WD=37mm Signal A=InLens

Wiy v 250

EWT=300k/ WD=37mm SignalA=lnlens File Name = 0710_iG017_SP16_058

EWT=300k/ WD=37mm SignalA=llens File Name = 0710_iG017_SP16_0¢

A 3 keV SEM beam, slowly rastered
across the bubble, heats and charges
the trapped water.

Signal A = InLens 1710iG017_SP16_057if
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Are GO and RGO membranes permselective?

Size-selective permeation of H, Compare the permeability of GO
through graphene recently reported and RGO films on porous supports.
GO or RGO membrane

N, PUI e P2
“H P eo
$eletes .l b CH? o’ || ° H, "

S. Koenig et al., Nature Nano.2012 (Adv. Onli ~ ~
oenig et al., Nature Nano (Adv. Online) P1/P2 108 TOIT, P1 1 Torr

Progress towards continuous GO and RGO films on porous supports




Conclusions ) e,

Laboratories

Optimized deposition of GO on a variety of substrates, including porous
alumina.

Achieved Langmuir-Blodgett deposition of RGO membranes, which hasn’t
been reported before.

Discovered both GO and RGO membranes restrict water permeation.
S e ®
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Natural graphite is oxidized via Hummer’s method
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Transparent graphitic films are ideal for @)
flexible electronics and barrier membranes

Dielectric for flexible electronic51 Environmental barrier4

Anode for organic LEDs
(OLEDs)?

[1]S.-K. Lee et al. Nano Lett. v. 12, 3472-6, 2012.  [2] T. H. Han et al., Nat. Photonics v. 6, 105-10. 2012
[3] G. Eda and M. Chhowalla, Adv. Mater. 2010 [4] F. Guo et al. Enviro. Sci. Tech. v. 46, 7717-24, 2012.




Approach to confirm size-selective ) s,

permeation

Variable
pressure
chamber

Sample on
gate valve

Laboratories

Compare the permeability of GO and RGO
films supported on alumina membranes.

GO or RGO membrane

A precision permeation system allows for

high pressure differentials

= P,/P,~ 108 Torr, P, ~ 1 Torr

= Permeation rates and composition will
be detected using a mass spectrometer

System design following P. Galambos, K. Zavadil, R. Shul, et al. Proc. SPIE (1999).
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Size-selective separation is expected in [z
nanoporous graphene

A pristine graphene membrane is o
impervious to gasses. For H,/CH, and He/CH,, selectivity > 10%°
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AFM image of a graphene
monolayer under Ap = 700 torr

[1] S. Blankenburg et al. Small 6, 2266-71 (2010)
[2] D. Jiang et al. Nano Lett. 9, 1419-24 (2009)
J. Bunch et al., Nano Lett 8, 2459-62 (2008). [3]J. Schrier, J. Phys. Chem. Lett., 1, 2284-7 (2010) 20
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Progress towards continuous films on .
porous supports

86 % coverage by GO flakes

>95 % coverage by RGO

Porous alumina
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GO coverage can be controlled through @)z
surface pressure

=
——
< 20 100
E
0 mN/m lj‘ 151 % 80 & & ®
1 mN/m SP ) S oo @
a 101 3
5 mN/m SP ) O 40t
D gl Q) @
12.5 mN/m SP 3 < 20|
O gl
15 mN/m SP 8 °L . . . ol ‘ . ‘
b 5 20 100 150 200 250 0 5 10 15
w Surface pressure, T1, (mN/m)

L-B trough area (cm2)

GO deposited at IT = 0 mN/m GO deposited at I1 = 12.5 mN/m

GO coverage plateaus at SP = 5mN/m )5
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Flake size can be controlled through
separation techniques

W Starting size distribution
20F B - iter centrifugation to remove smallest flakes H
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pH had minimal effect on coverage and
overlap

pH 10.1 DI water (pH 5.8) pH 4.3
SP = 12.5mN/m SP= 15mN/m SP = 14 mN/m
84 % coverage 72 % coverage 75 % coverage

1 um - . ;
| H EHT= 1.00kv WD= 3.1mm SignalA=InLens F EHT= 1.00kVv. WD= 33mm SignalA=InLens
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pH had negligible effect on surface pressure,

contrary to literature reports
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L. Cote et al. Soft Matter 6, 6015-6218 (2010)
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Slightly higher coverage achieved )
by slower dip speed

Laboratories
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