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Assembly of graphitic membranes

2

1. Motivation 2. Experimental methods

Langmuir-Blodgett 
deposition

Graphene 
flakes

3. Controllable deposition

1 μm

4. Permeation barrier

water

High 
vacuum



10/22/2012

Compare properties of GO and RGO films
Graphene Oxide (GO)

Reduced Graphene 
Oxide (RGO)

G. Eda and M. Chhowalla, Adv. Mater. 2010
M. Fernandez-Merino et al., J. Phys. Chem. C 2010
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Assembly of GO and RGO films

Drop casting1 Vacuum filtration2

[1] G. Eda and M. Chhowalla, Adv. Mater. 2010 [2] S.-K. Lee et al. Nano Lett. 2012
[3] S. Gan et al. Adv. Mater. 2012 [4] L. Cote et al. Soft Matter 2010.

Assembly at an oil-water interface3 Langmuir-Blodgett deposition4
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Dense, ordered molecular monolayers 
assembled using Langmuir-Blodgett deposition

Overlapping GO flakes3

Katherine 
Blodgett

Compression of an amphiphilic molecule

Aqueous 
subphase

Irving 
Langmuir

[1] M. Bardosova, et al. Thin Solid Films, 2003 [2] F. Kim et al. JACS, 2001 [3] L. Cote et al. Soft Matter 2010.

Synthetic opals1 BaCrO4 nanorods2

5 μm
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Stable graphene oxide surface phase enables 
Langmuir-Blodgett assembly

GO structure 1:5 GO:Methanol

Water subphase

GO

Goal: Optimize deposition to generate continuous GO and RGO filmsGoal: Optimize deposition to generate continuous GO and RGO films

2 μm

GO
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Control of Graphene Oxide Coverage
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Adjusted Parameter Effected Property Impact to Coverage

Initial GO concentration Amount of flakes in solution Peak SP at lower concentration

Centrifugation Flake size Large flakes yield higher coverage

Addition of HCl, NaOH, or 
NH2O4

Excess charge on flake Basic conditions show higher 
coverage

Surface Pressure Flake Density Increased coverage until plateau

Dipping speed Dynamics of flake attachment Higher coverage with slower dip

Number of dips Layers of flakes More dips yield higher coverage
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Determination of Graphene Coverage

Area Analysis
61 % monolayer GO
19 % bilayer and thicker GO
20 % uncovered Si
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More continuous GO films are possible 
through controlling flake size
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78 % GO coverage 
for deposition at 15 mN/m

97 % GO coverage 
for deposition at 17.5 mN/m

Initial GO size distribution After removing smallest GO flakes



10/22/2012

Multiple dips can result in higher 
surface coverage
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83 % coverage
75 % monolayer GO
12 % thicker and overlapped GO

First dip at 14 mN/m Second dip at 17.5 mN/m

94 % coverage
20 % monolayer GO
74 % thicker and overlapped GO
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RGO surface phase is stable, yet deposition is 
challenging High coverage, but wrinkled RGO flakes with methanol 

spreading solvent. RGO structure

Low coverage of flat RGO with dilute ammonium 
hydroxide as a spreading solvent.

2 μm10 μm

25 μm

Hydrophobic surfaces 
yield best transfer for 
aqueous RGO
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Demonstration of GO as permeation 
barrier
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Water bubbles are trapped by 
overlapping GO flakes.  

98 % GO coverage between bubbles.

An unusually large bubble is 8-μm tall and 450- μm in diameter.  

water

GO

High 
vacuum

5 µm50 µm

100 µm
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Composite GO membranes can stretch 
without bursting
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A 3 keV SEM beam, slowly rastered
across the bubble, heats and charges 
the trapped water.

20 µm



Are GO and RGO membranes permselective?

S. Koenig et al., Nature Nano.2012 (Adv. Online)

Size-selective permeation of H2

through graphene recently reported
Compare the permeability of GO 
and RGO films on porous supports.

GO or RGO membrane

P1/P2 ~ 108 Torr, P1 ~ 1 Torr

P2

H2

H2CH4

N2

?
P1

20 mm
0.5 μm

Porous alumina

Progress towards continuous GO and RGO films on porous supports

100 µm 2 µm

>95 % coverage by RGO
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Conclusions
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Optimized deposition of GO on a variety of substrates, including porous 
alumina.

Achieved Langmuir-Blodgett deposition of RGO membranes, which hasn’t 
been reported before.  

Discovered both GO and RGO membranes restrict water permeation.  

water
GO
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Natural graphite is oxidized via Hummer’s method

Paredes et al., Langmuir 2009.

Oxidized using a mixture of NaNO3, H2SO4, and KMn04.
Diluted and heated with H2O and H2O2

Filtered and rinsed with HCl



Transparent graphitic films are ideal for 
flexible electronics and barrier membranes

Window electrode for solar cells3

Dielectric for flexible electronics1

[1] S.-K. Lee et al. Nano Lett. v. 12, 3472-6, 2012.      [2] T. H. Han et al., Nat. Photonics v. 6, 105-10. 2012
[3] G. Eda and M. Chhowalla, Adv. Mater. 2010 [4] F. Guo et al. Enviro. Sci. Tech. v. 46, 7717-24, 2012.

Anode for organic LEDs 
(OLEDs)2

Environmental barrier4
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Approach to confirm size-selective 
permeation
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UHV 
chamber

Variable 
pressure 
chamber

Leak valve

Sample on 
gate valve

Compare the permeability of GO and RGO 
films supported on alumina membranes.

P1

?

P2

GO or RGO membrane

A precision permeation system allows for 
high pressure differentials
 P1/P2 ~ 108 Torr, P1 ~ 1 Torr
 Permeation rates and composition will 

be detected using a mass spectrometer

Permeation System

System design following P. Galambos, K. Zavadil, R. Shul, et al. Proc. SPIE (1999).
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Size-selective separation is expected in 
nanoporous graphene
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[1] S. Blankenburg et al. Small 6, 2266-71 (2010)
[2] D. Jiang et al. Nano Lett. 9, 1419-24 (2009)
[3] J. Schrier, J. Phys. Chem. Lett., 1, 2284-7 (2010)

For H2/CH4 and He/CH4, selectivity > 1020

J. Bunch et al., Nano Lett 8, 2459-62 (2008).

A pristine graphene membrane is 
impervious to gasses.

4.5 μm

AFM image of a graphene 
monolayer under ∆p = 700 torr

0.2 μm
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Progress towards continuous films on 
porous supports
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100 µm

2 µm

86 % coverage by GO flakes 
(dark grey)

(
a
)

>95 % coverage by RGO

4 µm

20 mm

0.5 μm

Porous alumina
20 µm

R. Nair et al. Science 2012
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GO coverage can be controlled through 
surface pressure

22
GO coverage plateaus at SP ≈ 5mN/m
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Flake size can be controlled through 
separation techniques
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pH 10.1
SP =  12.5 mN/m
84 % coverage

DI water (pH 5.8)
SP =   15mN/m
72 % coverage

pH 4.3
SP =  14 mN/m
75 % coverage

pH had minimal effect on coverage and 
overlap
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pH had negligible effect on surface pressure, 
contrary to literature reports

L. Cote et al. Soft Matter 6, 6015-6218 (2010)
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Dip speed: 2 mm/min

Slightly higher coverage achieved 
by slower dip speed

Dip speed: 0.2 mm/min


