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= Practical Considerations and Geologic Background
= Axisymmetric Compression Geomechanical Testing
= Nonlinear Elasticity and Elastic-Plastic Coupling

= Constitutive Modeling with Kayenta

= Conclusions




Motivation and Regional Framework
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Core, Well Logs and Sampling

*Three well-log units (U, M, L)

*Three sampled lithofacies (I,
1, 111)

*Similar porosities but
markedly different
permeabilities

*Distribution of facies similar
to those on east flank of
lllinois Basin (Saeed and
Evans, 2012)

*Similar to lower portions of
lllinois Basin lithofacies
(Bowen et al. 2011) incl. main
injection horizon but lacking
upper “B-cap” muddy facies
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° ° ° Sandia
Lithofacies Interpretation ) ..

*| Lithofacies (main injection unit in IB): quartz-rich sand flat B1 facies of

Saeed and Evans [2012] or the “sandy tidal” facies of Fischietto [2009]

oIl Lithofacies: heterolithic T2 “mixed flat” facies and “sand flat to tidal
channel” B2 facies of Saeed and Evans [2012] or the “mixed fluvial-eolian
tidal” and “braided fluvial” facies of Fischietto [2009]

*lll Lithofacies: mud flat T1 facies of Saeed and Evans [2012] or the muddy
tidal facies of Fischietto [2009]

| Lithofacies Il Lithofacies l1l Lithofacies
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Microstructure and Cements
of I, Il, and Il lithofacies
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*| lithofacies (A) — fine
grain size, well sorted,
ubiquitous quartz cements

*ll lithofacies (B,C,D,E) —
poorly sorted, subarkosic,
clay cement

*lll lithofacies (F) — very
fine to silty to mud grain
size, abundant feldsparr,
clay and hematite cement




. . . Sandia
Axisymmetric Testing Results ) e
-1 hydrostat, 1 UCS, UCS and Triaxial Hydrostatic
and 2 Triaxial Tests >l
per facies
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right cylinders with .
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Yield and Failure Envelopes
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Failure envelope:
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Nonlinear Elasticity and Elastic-Plastic Coupling ) i,
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Strain Partitioning, UCS Tests ) 5.
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Strain Partitioning; Hydro and Triaxial @.
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Elastic-Plastic Constitutive Modeling®&.

Kayenta Includes:

*Non-Associative Plasticity
Stress Invariant Dep. Failure
*Elliptical Cap Surface
*Kinematic Hardening
*Isotropic Hardening
*Nonlinear Elasticity

Elastic-Plastic Coupling

Developed by Brannon et al.
2009
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Conclusions ) i

= Facies | (equivant to main injection horizon in Illinois Basin) is
largely elastic to 300 MPa

= Weaker facies Il and Ill exhibit elastic-plastic coupling

= Big difference in in yielding and failure envelopes although
porosities are similar. Strongest control is cement type.

= Kayenta constitutive model captures essential features of
Mount Simon lithofacies elastic-plastic geomechanical
behavior observed in experiments. It can be included in most
FEM models.




