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Outline

 Motivating problems in continuum multiscale plasticity
 Modeling fracture and failure

 Good finite elements are required to resolve stress states

 Constitutive models must capture necking and plastic localization 
(global instabilities)

 Convergent numerical methods for models with local damage 
require regularization Nonlocal methods, surface elements
 Material (local) instabilities, loss of ellipticity, indicate localization 

and/or failure

 Continuum-to-Continuum Coupling

 Summary and Conclusions
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Modeling Fracture and Failure
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Ductile failure experiments, courtesy Brad 
Boyce via Sandia X-Prize

Finite element formulations for localization phenomena

Ductility across a wide 
range of stress states, 
triaxialities

Regularized 
numerical 
methods improve 
predictions and 
UQ



Finite Elements

 10 noded tetrahedral element, Thoutireddy et al 2002.

 Multilinear basis with assumed linear spaces for deformation 
gradient and stress stemming from a three field Hu-Washizu
variational principle
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Constitutive Models

 Introduce and internal state variable to govern statistically 
stored dislocations, homogenization of slip system response

 Pose a hardening minus recovery evolution equation for the 
isotropic hardening variable with a rate and temperature 
dependent flow rule

 Add state variables to capture the presence of voids in the 
matrix, with evolution equations for the size of the voids at a 
material point
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Bammann, Chiesa, Johnson, 
Regueiro, Marin, Brown, et al

Cocks and Ashby, 1980



Representative Results
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Sandia X-Prize geometry, 
results courtesy of Brad Boyce

Q1P0 hexahedral meshes

Composite Tet 10 results



Regularization

 Nonlocal methods

7

Euler-Lagrange equations Length scale comes form the nonlocal volume

Nonlocal volumes created on 
processor

Domain decomposition 
algorithms can give 
poorly shaped volumes 
(left), a solution may be 
centroidal Voronoi
tesselation (right)

Foulk, Mota, Ostien, Variational Nonlocal 
Regularization, in prep



Regularization
 Surface elements
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Length scale comes from thickness parameter

Foulk, Emery, Mota, Lindblad, Ostien, Brown, Boyce, The formulation and 
application of strain localization elements to ductile fracture, in prep Regularized global solution solution



Review of optimal meshes, Rimoli & Rojas

A random mesh is generated by throwing random points and 
performing Delaunay’s triangulation.

A K-means clustering algorithm is used to 
improve the mesh quality of the random 
mesh

Barycentric subdivision is 
employed to add conjugate 
directions to the mesh

Goal: Minimize error between 
“true” path and discrete path

“true” path

discrete path

geometric error (Hausdorff distance)



Evolution of barycentric subdivision in 3-D (10)
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(6) (7) (8) (9) (10)

(10) Add the corresponding new elements



Bifurcation

 Surface insertion criteria evaluated on interior faces

Mota, Chen, Foulk, Ostien, 2012, A Cartesian Parameterization for the Analysis of Material Instability, in prep. 

Define the acoustic tensor

The strong ellipticity condition

The bifurcation condition to 
determine the onset of material
failure
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determinant emerge as a 
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Evaluate for accuracy, robustness, 
efficiency

Simple Shear



Continuum-to-Continuum Coupling

 Methods to couple continuum treatments at different length 
and time scales

 Two examples
 Arlequin – Domain coupling via energy partitioning

 An extension of the variational multiscale method to finite 
deformation
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Energy Partition – method to describe one mechanical 
response in one domain with two energy functionals

Partitioned Incremental Energy Functional

Weighting function partitioned energy 
functional

Partitioned Domain with overlapping region(s)

Partitioned internal energy 

Partitioned 
external energy 

Compatibility 
constraint energy Partition of unity

Sun, Mota, Domain Coupling for 
Large Deformation Strain 
Localization, in prep



Foulk’s Singular Bar (2008)

Path dependent damage model

x

• We use the BVP introduced by 
James W. Foulk III to test whether 
regularization procedure is able to 
regularized the PDE if it is only 
applied in the fine domain

• Due to the vanishing area, mesh 
pathology is expected unless length 
scale is introduced via regularization 
procedure. 

D=0

D=D



Example 2 Foulk’s bar
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Regularization in small region

With DOC method, only a small nonlocal domain is required to regularize 
the PDE. A large portion of the domain is modeled by simpler, cheaper 
constitutive law with coarser mesh to cut down computational cost.



Variational Multiscale
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Decomposition of deformation mapping
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Variational Multiscale
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Computing Environments

 Sandia’s production analysis code suite, Sierra and 
Sierra/Mechanics
 Surface (localization) elements

 Active work on the Nonlocal partitioning algorithm

 Research goes into an open source finite element code 
repository, Albany
 Coupled physics (not shown)

 Adaptivity (not shown)
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Summary and Conclusions

 Multiple efforts towards modeling ductile material behavior 
up to and including fracture and failure

 Developing and testing non-standard finite elements and 
methods

 Relying on regularization methods, introducing length scales, 
resolving plasticity

 The nature of plasticity and ductile failure requires multiple 
scales to be resolved
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