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= Motivating problems in continuum multiscale plasticity
= Modeling fracture and failure
= Good finite elements are required to resolve stress states

= Constitutive models must capture necking and plastic localization
(global instabilities)

= Convergent numerical methods for models with local damage
require regularization—=> Nonlocal methods, surface elements

= Material (local) instabilities, loss of ellipticity, indicate localization
and/or failure

= Continuum-to-Continuum Coupling
= Summary and Conclusions



Modeling Fracture and Failure ) g,
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X3 Ductile failure experiments, courtesy Brad
RbdVv Boyce via Sandia X-Prize
Finite element formulations for localization phenomena
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Ductility across a wide
range of stress states,
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Finite Elements )

= 10 noded tetrahedral element, Thoutireddy et al 2002.

= Multilinear basis with assumed linear spaces for deformation
gradient and stress stemming from a three field Hu-Washizu

variational principle
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Constitutive Models ) i,

= |ntroduce and internal state variable to govern statistically
stored dislocations, homogenization of slip system response

= Pose a hardening minus recovery evolution equation for the
isotropic hardening variable with a rate and temperature
dependent flow rule

Regueiro, Marin, Brown, et al

= Add state variables to capture the presence of voids in the
matrix, with evolution equations for the size of the voids at a
material point
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Representative Results ) .
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Sandia X-Prize geometry,
results courtesy of Brad Boyce
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Regularization

Nonlocal volumes created on

= Nonlocal methods Drocessor
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Euler-Lagrange equations Length scale comes form the nonlocal volume

Domain decomposition
algorithms can give

poorly shaped volumes
(left), a solution may be

damage

- centroidal Voronoi

20-75 tesselation (right)
0.5

Foulk, Mota, Ostien, Variational Nonlocal
Regularization, in prep 7




. Sandia
Length scale comes from thickness parameter II'l National

Regularization

= Surface elements
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Foulk, Emery, Mota, Lindblad, Ostien, Brown, Boyce, The formulation and _ _ )
Regularized global solution solution 3

application of strain localization elements to ductile fracture, in prep




. . . . M ﬁgggﬁal
Review of optimal meshes, Rimoli & Rojas 1.

A random mesh is generated by throwing random points and
performing Delaunay’s triangulation.

A K-means clustering algorithm is used to
improve the mesh quality of the random

Barycentric subdivision is
employed to add conjugate
directions to the mesh

A
X
Sl
S
A
e

ﬁﬁﬁvvﬁé <]

Nt
KRR
NERIGREX
R
DESED
IR
I
\/

e
@
N

L

o]

2
RN
SR
XX

0\,
P!

S
7
=
S

@----P--------2

U
4
o)

0
=

Goal: Minimize error between
‘true” path and discrete path
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Evolution of barycentric subdivision in 3-D (10) ) e

(10) Add the corresponding new elements
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Bifurcation )

= Surface insertion criteria evaluated on interior faces

Define the acoustic tensor Parameterizations of the unit sphere Different landscapes of the
A=n-C-n n c 52 ] ] determinant emerge as a
' ’ function of parameterization
The strong ellipticity condition
, | B
m-A-m>0, meS '
The bifurcation condition to § § T

q X
(a) Spherical (b) Cube

determine the onset of material
failure
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Mota, Chen, Foulk, Ostien, 2012, A Cartesian Parameterization for the Analysis of Material Instability, in prep.




Continuum-to-Continuum Coupling

= Methods to couple continuum treatments at different length

and time scales
= Two examples

= Arlequin — Domain coupling via energy partitioning

= An extension of the variational multiscale method to finite
deformation

h
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Energy Partition — method to describe one mechanical (i) i
response in one domain with two energy functionals

Partitioned Incremental Energy Functional Partitioned internal energy
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Localization, in prep




Foulk’s Singular Bar (2008) ) i,

* Weuse the BVP introduced by Path dependent damage model
James W. Foulk Il to test whether
regularization procedure is able to W(C,¢) =1 —OW,(C)

regularized the PDE if it is only

applied in the fine domain d 1./ d d
Woge) = SE((G2) 2 + (52 —2)
* Due to the vanishing area, mesh

pathology is expected unless length ¢

scale is introduced via regularization s€[0,t]
procedure.
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Example 2 Foulk’s bar ) fouea,

Regularization in small region

With DOC method, only a small nonlocal domain is required to regularize
the PDE. A large portion of the domain is modeled by simpler, cheaper
constitutive law with coarser mesh to cut down computational cost.
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Variational Multiscale
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Variational Multiscale ) i,

Hyper-elasticity with damage
4
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Computing Environments

= Sandia’s production analysis code suite, Sierra and

Sierra/Mechanics

= Surface (localization) elements

= Active work on the Nonlocal partitioning algorithm

= Research goes into an open source finite element code

repository, Albany

= Coupled physics (not shown)

= Adaptivity (not shown)
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Summary and Conclusions Ll

= Multiple efforts towards modeling ductile material behavior
up to and including fracture and failure

= Developing and testing non-standard finite elements and
methods

= Relying on regularization methods, introducing length scales,
resolving plasticity

= The nature of plasticity and ductile failure requires multiple
scales to be resolved




