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Motivation

GTM seal designs are pushing the frontiers with
— irregular geometries (lack of symmetry)
— more pins in less real estate
Despite years of experience — we still struggle with glass cracking (SFN MC4713)
Unexpected glass cracking, produces many concerns:
— loss of hermeticity
— foreign debris (e.g., glass chips)
— diminished mechanical integrity allowing pins to shift or short out
Past studies have identified discrepancies between model predictions and
indentation results but root cause has not been identified
— Models make assumptions about: geometry, materials, processing
— Experiments lack ability to make direct stress measurements
Faced with B61-LEP and W88-ALT demands for GTM seals, time is right to:
— Incorporate missing physics: glass viscoelasticity for process modeling
(history)
— More fully characterize materials: glasses, metals for small strain plasticity at
temperature
— Perform extensive model validation: materials 1%, then the structure
— Assess modeling assumptions/sensitivities: wetting, uniform cooling, etc
— Explore the glass sealing process: coupled thermo-mechanical analyses
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Current State of Material Modeling

8061 Glass Advances in material modeling have not kept
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We Can Do Better!
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Program Goal & Approach
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Tan Delta

S8061 Glass Storage Modulus Tests

Temperature Sweep at Fixed Frequency
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Storage moduli were measured:

» to define temperature dependence

e ) ) Dynamic Tests:
» to assess sensitivity to processing history

* impose oscillating

* Samples conditioned differently: deformation while ramping
> as-received ‘l’ temperature
> annealed (slow cooled) & ntbending @ * measure in-phase (E/, G')
fast cooled (quenched) storage response

* measure out-of-phase
(E”, G”) loss response

Both E’ (bending) and G’ (shear) were measured

Tan delta bump at 250 C is reproduced consistently

Defines temperature dependence of shear modulus %\ ﬂ%
AN\

torsion
Experiments conducted by Mark Stavig, 1833
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S$S8061 Master Curve Construction

Frequency Sweep at Stepped Temperatures
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For viscoelastic materials, shear modulus is a function of time/frequency

Define frequency dependence of dynamic moduli assuming Dynamic Tests:

* impose oscillating

thermorheological simplicity = time/temperature superposition deformation sweeping
Convert from frequency to time domain = G(t,Tref) frequency (f=0.1 to 10 Hz)
Response functions are defined as an exponential (Prony) series » measure moduli (G, G”)
* Increment temperature
3 # * repeat frequency sweep
G@t.T) = Go(T) f(1 ’Tref) from Temp= 400-600C in
. N N 10 Cincrements
f@.1,)= Ef, exp(-t /t,) where Efl =1 « shift tan 8 curves in log f to
i=1 i=1 generate Master Curves

Experiments conducted

Defines shear relaxation modulus at any temperature
by Mark Stavig, 1833



Schott 8061 Shear Relaxation Master Curve at T=460 C

S8061 Shear Master Curves

88061 Shear Relaxation Function
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Master curves generated from 2 tests

* DMA — dynamic oscillation

* frequency sweep at different temperatures

* shift tan delta, G and G”

* transfer from frequency to time domain to
get G(t)

G(1.7) =Gy(T) f(t'.T,,)

| [T, = E foexp(-t'/T)

N
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S8061 Glass Shear Relaxation
T=460 C
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Measure shear relaxation modulus directly

e conduct torsional relaxation test at T=460 C
* compare to shear master curves from
dynamic experiments

This is an independent test — and it compares exceptionally well !

Next steps: Repeat T=460 C torsion relaxation test
Conduct similar tests at T=450, 440, 430, . ... to generate a master
curve directly from relaxation data in time domain

(Test data generated by Mark Stavig, 1835)



Linear Viscoelastic Analysis of 3-Pnt Bending at T=460 C

F =5 N/min
l ]
O] QO
Nominal 3-pnt bending sample dimensions: %.

(50 mm long x 10.9 mm wide x 1.1 mm thick)

Experiments conducted by
Mark Stavig, 1833

$8061 3-Pnt Bending @ T=460 C * Load Sample @ 5 N/min at
90 G(0)=226GPa Tref=460 C
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o Analysis of test
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S8061 Glass Structural/Volume Relaxation

Netzsch Dilatometer DIL 402 C

Thermocouple s
Fused silica spacer

Fused silica spacer X
f ‘ /
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Raj Tandon, Clay Newton, 1825, &

Chris Diantonio, 1833, are
characterizing thermal strain histories

Thermal Strain (%)

* Thermal strain is not defined by a material parameter, i.e., CTE
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S8061 Glass Thermal Strain
Annealed at 500 C

—C1 Cool 30 C/min
——C1 Reheat 0.5 C/min
0.5/ © C12nd Cool 30 C/min
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S8061 Glass Thermal Strains
Samples Annealed at 500 C
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Anneal glass at 500 C,

e cool @ 30 C/min

* reheat @ 0.5 C/min

e 2" cool at 30 C/min
Glass structurally relaxes
on reheat producing
hysteresis in strain curve

Anneal glass at 500 C,
e cool @ 0.5C/min
* reheat @ 5 C/min
Thermal strain is
different passing
through Tg (400-500 C)

— It is a function of glass structure and all prior history (need data to characterize)
— Must be predicted by a viscoelastic constitutive equation
— Can vary from point to point if thermal history is spatially non-uniform



stress (psl)

New test setup developed for higher
fidelity small strain plasticity data

* New extensometer in small
furnace with cutout
* Small strain capacitive

. —
extensometer in furnace
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Summary

* In our first year, we can claim several novel accomplishments:
1) Designed samples and test to measure shear stress relaxation master
curve for an inorganic glass (S8061)
— this is a 1%t for Sandia
— defines solidification on cooling
2) Measured the temperature dependence of S8061 glass moduli
— 3 pnt bending (E) and torsion (G) from -80 C to 500 C
— assessed sensitivity to glass structure and processing history
3) Measured the S8061 thermal strain behavior under several
temperature histories to characterize structural relaxation
4) Developed new experimental apparatus to measure small plastic
strains in metals as a function of temperature
— Previous measurements have focused on large strains to failure
— Glass-to-metal compression seals experience 1-2% strains
* Began the process of calibrating and validating higher fidelity glass models
that incorporate time/temperature relaxations (i.e., not just elastic
approximations)
* Through this work, we have developed a methodology for characterizing
and comparing “equivalent” glasses = These tests are affordable



