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Why mid- and far-IR?

Large number of possible applications

Spectroscopy

Heterodyne detection

Process controll

Security systems

Imaging



Metamaterial overview

Negative index1,2

4 J. Valentine et al., Nature 455, 376 (2008)
5 S. Burgos et al., Nature Materials 9, 407 (2010)
6 J. Ginn et al., Phys. Rev. Lett. 108, 097402 (2012)

Magnetic mirrors3

3D SRRs1,2,3

1 N. Liu et al. Nature Materials 7, 31 (2008)
2 D. Burckel et al., Adv. Mater. 2010, 22, 3171
3 D. Burckel et al., Adv. Mater. 2010, 22, 5053
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Additional functionality

Combine 
metamaterial 
with semi-
conductor

Coupling

Alter 
properties 

Geometry 
vs. bias



Intersubband transitions

Energy levels 
designed
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Intersubband tuning

Intersubband 
resonance 
tuned

Stark effect

Scales 
linearly

Oscillator 
strength 
constant
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Ultra-strong coupling physics

Geometry factorPlasma frequency
C. Ciutu et al., Phys. Rev. B 72, 115303 (2005) S. DeLiberato et al., Phys. Rev. Lett. 98, 103602 (2007)



FDTD resonator design

ABC

ABC

PBC

PBC

metasurface

vacuum

substrate

plane wave, single-cycle 
pulse source

Courtesy of D. Dietze
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Processing
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Strong coupling theory vs. experiment

FDTD 
simulations

Anti-crossing

Polariton 
picture1,2

2 Y. Todorov et al., Phys. Rev. Lett. 105, 196402 (2010)1 C. Ciutu et al., Phys. Rev. B 72, 115303 (2005)



Intersubband flexibility

Cover entire 
thermal IR

Quantum-well 
transitions

8, 10, 12 m
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Experimental Rabi oscillations

Energy exchange 
probed in time

33 fs oscillation

480 fs beating

System strongly 
coupled

Splitting of 4.2 
THz measured

15 % of 12
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Ez near-field profiles

Only Ez

couples

Near-field

Exponentially 
decaying

Integrated 
over xy-plane

Transmission 
at cavity res.



Application vs. physics

Transmission 
from 0 to 1

Electrically 
switchable

Works at room 
temperature
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Metamaterial detector

Inverted 
metamaterial

Double-metal 
cavity =>high-Q

Processing

Mesa structure

Couple normal 
incidence light 
quantum-wellCourtesy of S. Schwarz



Waveguide

Plasmonic
waveguide

Losses =5 cm-1

Confinement 
100 %

Constant mode 
profile

No leakage
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Same active 
region

Integration

LO-phonon 
scheme1, 2

Tmax 150 K

Emission 2.6 
to 3.2 THz

1B. S. Williams, et al., Appl. Phys. Lett. 82, 1015–1017 (2002).
2 A. Benz et al., Appl. Phys. Lett. 90,101107:1–101107:3 (2007).
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1 L. E. Henrickson, J. Appl. Phys. 91, 6273–6281 (202).
2 T. Kubis, et al., phys. stat. sol. (c) 5, 232–235 (2008).
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Field distribution
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Detector a=9.15 m

Globar as 
source

Linear regime

FTIR

No bandgap
components

Overlap of 
quantum-well 
and metamat.

A. Benz et al., (in preparation)
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Detector a=10.56 m

Almost no 
response for 
Ey polarized 
light
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sharp 
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Broadband by 
quantum-well

7.0 9.0 11.0 13.0

0.0

0.5

1.0

EyP
h

o
to

vo
lta

g
e

 (
a

.u
.)

Frequency (THz)

Ex

A. Benz et al., (in preparation)



Detector a=11.97 m

Ex and Ey 
peaks re-
produced by 
the simulation
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Conclusion & Outlook

Tunable filter

Operating in the ultra-strong coupling limit

Splitting can be turned on / off

Rich physics

Metamaterial detector

Normal incidence radiation

Integrated source-detector solution

Active region generates and detects light



Metamaterial

Resonant 
subwave-
length str.

 filters

Superlense

Cloaking

Geometry 
defines 
propertiesPaul, Opt. Express 17, 18590 (2009)Fang, Science 308, 534 (2005)© Warner Bros.



Metamaterial (2)
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Metamaterial simulation

Control near-field precisely, field-enhancement
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Resonant detector

Inverted 
metamaterial

Double-metal 
cavity =>high-Q

Mesa structure

Couple normal 
incidence light 
to quantum 
well

Courtesy of S. Schwarz



Detector overview

Incident Ex-
polarization

Sharp 
features 
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A. Benz et al., (in preparation)



Motivation, applications

Why filters

MIR / THz very rich for applications

No components

Some products already there


