SAND2012-10765C

Characterizing Android Application Plagiarism and its
Impact on Developers

Clint Gibler
UC Davis
cdgibler@ucdavis.edu

Jonathan Crussell
UC Davis,
Sandia National Labs
jcrussell@ucdavis.edu,
jcrusse@sandia.gov

ABSTRACT

Malicious activities involving Android applications are ris-
ing rapidly. As prior work on cyber-crimes suggests, we
need to understand the economic incentives of the criminals
to design the most effective defenses. In this paper, we inves-
tigate application plagiarism on Android markets at a large
scale. We take the first step to characterize plagiarized appli-
cations and estimate their impact on the original application
developers. We first crawled 304,275 free applications from
19 Android markets around the world and ran a tool to iden-
tify similar applications (“clones”). Next, we captured live
HTTP advertising traffic generated by mobile applications
at a tier-1 US cellular carrier for 12 days. To correlate each
Android application with its network traces, we extracted a
unique advertising identifier (called the client ID) from both
the applications and their network traces. Based on the data,
we examined properties of the cloned applications, including
their distribution across different markets, application cate-
gories, and ad libraries. Next, we examined how cloned ap-
plications affect the original developers. We estimate a lower
bound on the revenue that cloned applications siphon from
the original developers, and the user base that cloned ap-
plications divert from the original applications. To the best
of our knowledge, this is the first large scale study on the
characteristics of cloned applications and their impact on the
original developers.

1. INTRODUCTION

Criminals and other miscreants follow new computing
technologies closely to take advantage of them, as exem-
plified by email spam, malicious web sites, botnets, etc.
As mobile applications are leading a new wave of in-
novation, malicious activities targeting mobile applica-
tion markets are on the rise. Many researchers studying
computer-related crime observe that miscreants are pri-
marily motivated by economic incentives. While tech-

Ryan Stevens
UC Davis
rcstevens@ucdavis.edu

Hao Chen
UC Davis
hchen@cs.ucdavis.edu

nical solutions might mitigate the harm caused by these
malicious activities to some extent, as long as the eco-
nomic incentives remain, criminals will continue to op-
erate. Therefore, to deter these criminals, we must
limit their economic incentives, which requires us to first
measure and understand these incentives.

TODO: Perhaps it would be better to talk about mal-
ware after plagarism in the intro, as we dont want to
start with what we didnt do. Perhaps the most well
known malicious activity on smartphones is malware.
Malware usually manifests itself as seemingly benign
applications which have additional malicious function-
ality, such as stealing private information or root ex-
ploits [22]. However, we choose not to include malware
in this study for two reasons. First, different malware
developers have vastly different incentives, such as steal-
ing users’ private information, making unauthorized ac-
tions that result in charges, and taking control of the
phone. It would be difficult to quantify and compare
economic incentives across these different malicious goals.
Second, researchers have gained extensive knowledge in
studying desktop malware and much of the experience
applies to mobile malware too. Thus, our contributions
in this area would be minimal.

Besides malware, another prominent malicious activ-
ity targeting mobile application markets is plagiarized
(or cloned) applications [1]. Mobile applications, espe-
cially Android applications, are straightforward to re-
verse engineer and copy. We define a cloned application
as an app that is a modified copy of another app, and
thus shares a significant portion of its application code
with the original. A plagarized application is a cloned
app that was fraudulently copied from one developer
to another. Prior studies showed that indeed there
were many cloned applications on mobile markets [4,
21]. However, these studies leave many questions unan-

swered. From the plagiarists’ point of view, what are
their incentives? From the users’ point of view, how
often do they run plagiarized applications? From the
original application developers’ point of view, to what
extent does the practice of application plagarism im-
pact them? The answers to these questions would have
deep technical and policy implications. For example,
even if there are many plagiarized applications on the
mobile markets, if users rarely download and run them,
perhaps dealing with them is not a priority. On the
other hand, if the plagiarized applications severely af-
fect the economic interests of original application devel-
opers, we must deal with them swiftly and adequately
to maintain legitimate developer interest in application
development.

We take the first step toward answering the above
questions. We use a technique that combines static ap-
plication analysis and network analysis to bring a num-
ber of relevant insights into this problem. These tech-
niques allow us to find cloned applications in the wild,

analyze what properties are prominent among these clones,

and analyze the popularity and profitability of these
clones. During the process, we face several challenges.
First, we must download a large number of applications
from many markets (because often the plagiarized and
original applications appear on different markets) and
use a tool to detect clones among them. Second, we
must capture a large amount of live network data from
mobile applications, allowing us to extract relevant ad-
vertising information to bring insight into each app’s ad-
vertising revenue. Note that these traces must be from
large number of real users unaffiliated with and unaf-
fected by our study. This precludes generating traces
in our lab, because the users aren’t “real”, and captur-
ing network traffic at our university, because the user
population is not large or diverse enough. Finally, we
must correlate the plagiarized applications with their
network traces.

1.1 Overview
Our study consists of the following steps (Figure 1).

o We crawled 304,275 free Android applications from
19 markets around the world. Then, we ran a
tool [4] to find clones within these applications, re-
sulting in 44,268 cloned apps. TODO: Time frame

o We captured live HTTP advertising traffic gener-
ated by mobile applications at a tier-1 US cellular
carrier for 12 days, resulting in 2.6 billion packets
and 19,125,311 ad impressions.

e We link cloned applications detected in our lab to
their network traffic by their client IDs. Most free
Android applications include one or more advertis-
ing libraries. For each ad library, the application
includes a client ID, which is sent along with the

ad requests so that the ad provider can credit the
application developer for ad impressions or clicks.
We use static analysis to extract client IDs from
the downloaded applications. Then, we extract
client IDs for popular ad providers from captured
HTTP traffic. Finally, we correlate these two sets
of client IDs.

Using the data acquired in the above steps, we first
examine properties of the cloned applications, includ-
ing their distribution across different markets, applica-
tion categories, and ad libraries. Next, we examine how
cloned applications affect the origin developers. We es-
timate a lower bound on the revenue that cloned ap-
plications siphon from the original developers, and the
user base that cloned applications divert from the orig-
inal applications. To the best of our knowledge, this
is the first large scale study on the characteristics of
cloned applications and their impact on the original de-
velopers.

We make the following contributions:

e We conduct a large scale study on the character-
istics of cloned applications and their impact on
the original developers. This serves as a first step
toward understanding the incentives of clone au-
thors.

e We link applications crawled from major Android
markets to their live traces in a tier-1 US cellular
network carrier. This allows us to correlate the
static properties of an application to its live net-
work characteristics.

e We propose the use of client IDs in ad requests
to correlate Android applications to their live net-
work traces. We present approaches for extracting
client IDs from both application code and network
traces.

2. BACKGROUND
2.1 Android Background

Android is a Linux-based smart phone operating sys-
tem designed by Google which is designed to run An-
droid applications (apps) that are downloaded from var-
ious Android app markets. An Android application is
distributed as a .apk file, which is similar to Java’s jar
file format. The apk is an archive which contains all the
code and data needed to install and run the app.

The largest and most popular app market is Google
Play (also called the official Android market), which
consists of over 550,000 applications by various devel-
opers [2]. In addition to Google Play, there are a number
of third-party Android markets where users can go to
download apps, for example the Amazon Appstore or

Tier-1 Cellular
Provider

Crawl

Capture

App DB Clone

Network Trace Detection

Google . Android
[Play][SlideME][Online]o o0

Clone Clusters

Ad Request
Analysis Client ID
Extraction
Network . S
Client IDs App Client IDs

Figure 1: Overview of the methodology we used for our
study.

SlideMe. There are various reasons developers would
choose to release their apps on third-party markets:
many do not charge to create a developer account and
upload applications, they may have less stringent terms
of service, or developers may simply want to increase
the exposure of their apps across these different mar-
kets.

Before an app may be submitted to a market, it must
be digitally signed by the developer using her private
key. This signature is used by Android to determine
authorship and trust relationships between apps [16].
Android phones and emulators will not install apps that
are not signed. Android developer certificates may be
self-signed, so there is little barrier for a developer to
create as many signing keys as she wishes. However,
for Android to allow an app to seamlessly update to
the next version, the newer version must be signed with
the same key. Otherwise, the user will be prompted to
install the newer version as if it were a separate app.

An important file which is included with every app
is the Android Manifest file. This XML document con-
tains a number of parameters that the Android frame-
work needs in order to run the app. This includes the
names of the Activities, which are the different screens
of the app, the permissions the app requires and the
API version. Developers may also use this XML docu-
ment to store any additional information the app may
use; for example, advertising parameters are sometimes
specified here.

2.2 Android Application Cloning

Android applications are written in Java and com-
piled into Dalvik bytecode in order to run on Android’s

App APK (\
Ad Request

Ad and Click URL

< Ad Server

Ad
Library
SDK
Click

F— |- === = »
Advertiser's URL

) -/

Figure 2: Overview of ad library sdk and ad server in-
teraction.

Dalvik Virtual Machine. Dalvik bytecode is very well
structured and clearly separates code from data which
makes it much easier to reverse engineer than tradi-
tional machine code. In addition to app code written
in Java, Android allows developers to include native li-
braries with the application which interface with the
Dalvik bytecode using JNI. This is commonly referred
to as “native code” TODO: Is native code relevant?

To protect their application from reverse engineering,
prudent developers may use a tool called Progaurd [12]
to perform class and function name obfuscation. It can
also be used to obfuscate the package name of included
libraries. However, Proguard alone is not enough to
protect apps from being reverse engineered or cloned.
Open-source tools such as ApkTool [3] and smali [§]
make it straightforward for unscrupulous individuals to
reverse engineer, modify, and recompile the Dalvik byte-
code of an Android application for distribution TODO:
Mention legit uses of apktool, smali?.

2.3 Advertising on Android

An Android developer that wants to make money
by displaying advertisements as part of her application
must sign up with an ad provider and download the
provider’s advertising SDK, which is a library (in the
form of jar file) that the developer includes in the app.
The SDK provides an API for displaying an ad in the
application, and abstracts away the complexity involved
with fetching, displaying, and managing advertisements
for the ad provider (an overview of which is shown in
Figure 2).

In order to receive payment for ads shown in the ap-
plication, the developer is given a client ID from the ad
provider that uniquely identifies the app; this client ID
is then hardcoded into the application such that that
it is available to the ad library SDK. When it is time

to display an ad, the SDK sends an ad request over
HTTP to the ad provider’s ad server. The ad request
includes the client ID, a device identifier (for example,
the IMETI), and other fields such as demographic infor-
mation. The exact format of the ad request and the
fields present differs between ad providers. Once the
request is received, the ad server responds with the im-
age URL of the ad to display and a click URL that
opens in the browser app if the ad is clicked. A suc-
cessful ad request and associated response is called an
impression and represents one instance of an ad being
displayed to the user. To track the clicks, the ad server
generates a unique click URL for each impression which
points to one of the provider’s ad servers. When the
browser opens this page the click is matched with its
associated impression and recorded before the browser
is redirected to the advertisement’s landing page. Un-
like ad requests, the click request does not contain the
client ID of the application as the ad server can lookup
the client ID once the click is matched with the impres-
sion that generated it. As we will explain in Section 4,
this extra level of indirection prevented us from obtain-
ing suitable click results. TODO: Sample HTTP for the
ad request?

3. DATASET

In this section we describe the data used in our study.
The two main datasets are a large collection of down-
loaded Android applications, which we analyzed to find
clones, and 3G network data from a tier-1 cellular car-
rier, which provided us insight into the advertising be-
havior of applications in our database.

3.1 Application Database

Our collection of Android applications consists of 304,275

Android apps from 19 markets around the world. The
apps were collected via automated crawling and stored
in a database along with any meta information pro-
vided by the market (such as developer name, number
of downloads, and category). Only free applications are
included in the collection. The breakdown of across
various markets is as follows: 73.7% of the apps are
from the official Google Play market, 14.7% are from
10 third-party English markets, 13.8% are from 7 third-
party Chinese markets, and 0.46% are from 2 from Rus-
sian markets. Even though we may not have crawled
all the markets or have downloaded all the applications
from each market, our analysis in Section 4 indicates
that our collection represents a significant portion of all
the applications that include ads running on US cellular
networks. TODQO: List markets in footnote?

3.2 Plagiarized Applications

Using a more scalable tool based on DNADroid [4],
we analyzed our application database to look for plagia-

rized applications. This tool produced clusters of sim-
ilar applications, which we verified using DNADroid.
DNADroid compares applications using subgraph iso-
morphism on their Program Dependence Graphs (PDGs),
which is robust against syntactical modifications and
statement reordering, which plagiarists may use to de-
crease the likelihood of their clones being detected. In
their evaluation of DNADroid, the authors found that
it had a very low false positive rate.

Each clone cluster contains applications published by
different developers, as determined by the public key
signature. Each application appears in at most one
cluster. In total, we investigate a total of 5,431 clone
clusters consisting of 44,268 unique applications. These
clusters may or may not contain the “victim” of pla-
giarism, which we call the “original app” in this paper.
Determining the original application is difficult and un-
reliable, as described in Section 6.2.1.

3.3 Network Data

We had access to live 3G network data from a tier-1
cellular network carrier, which consisted of a sample of
all traffic that passed through a particular home agent
in the southwest United States. Packets were tapped
from the home agent and sent to the carrier’s research
lab for capture and analysis. The tap at the home agent
was quarter-sampled at the flow level, so in theory all
packets in a particular flow were available to be cap-
tured; however, packets were lost from limitations in
bandwidth and capture speed of the tapping infrastruc-
ture. The network data included all 3G internet traffic
sent from devices registered on the carrier’s cellular net-
work, including protocol headers and payload.

We captured HTTP traffic from the tap over the
course of 12 days: from 28 June 2012 to 10 July 2012.
Devices present on the network include both Android
and iOS devices, as well as feature phones and wireless
cards. The traffic characteristics are similar to those
in [13]. To optimize the capture, only 32 bytes of the
protocol header were captured along with the payload
for each packet. Additionally, we performed IP filter-
ing so that only packets with a source or destination IP
address that corresponded with a known Android ad
server were captured. In total, we captured 2.6 billions
packets in our trace. We describe how we extract ad
request data from the trace in Section 4.1.

4. METHODOLOGY

Figure 1 shows the procedure of our study. Our data
came from two sources: (1) HTTP traffic generated by
Android applications on a US tier-1 cellular network,
and (2) Android applications downloaded from Android
markets. We correlated the two datasets using adver-
tising client IDs. In this section we explain how we
extracted these IDs, both from application and from

the network.

4.1 Extracting Client IDs from Network Traces

We now explain how we extract client IDs from ad re-
quests sent by Android applications. We extract adver-
tising information from our cellular network trace (de-
scribed in Section 3.3) by analyzing ad requests at the
packet level as well as at the flow level. In order to iden-
tify ad requests, we manually ran a sample application
for each Android ad provider and captured all traffic
from the device so that we could characterize the for-
mat of each provider’s requests. From each ad request,
we record the ad provider, client ID, anonymized user
identifier, and the application package name if avail-
able. We anonymize user identifiers to avoid record-
ing any potentially sensitive device identifiers, such as
the IMEIL. We only record ad requests with an Android
HTTP User-Agent field.

To get packet level data, we look at the HT' TP header
of each packet to determine if it is an ad request from
a recognized Android ad provider and record relevant
advertising information. To analyze ad requests at the
flow level, we use the 32 bytes of protocol header to re-
construct each TCP flow, allowing us to observe both
the ad request and the response from the server. The
benefits of looking at ad requests at the flow level are
twofold. First, we observed that ad requests for some
ad providers are split across multiple packets, especially
when the request uses HT'TP POST, so it would be im-
possible to record the entire ad request in this case by
only looking at packets individually. Second, the server
response allows us to extract the click URL associated
with each impression so that we can match the impres-
sion with any observed clicks in the trace. These clicks
can be linked to an impression and thus a client ID by
using the click URLs that we parse from each flow.

To extract client IDs, we first identify the ad provider
by examining the host name in the HTTP request. For
each ad provider, we create a pattern to identify its
client IDs in the HTTP requests accurately. TODO:
Explain why we dont have click results?

4.2 Extracting Client IDs from Applications

We extract client IDs from Android applications via
static analysis. Commonly, ad providers require devel-
opers to provide their client ID in one of three ways:
declaring it in the application’s manifest file, declaring
it in a layout XML file, or passing it to an ad object in
the application code.

4.2.1 Client IDs in Android Manifest

The most straightforward client IDs to extract are
those declared in the Android manifest file. Admob, for
example, recommends that developers store their client
IDs in a meta-data field with the name ADMOB_PUB-

LISHER_ID. Usually the client ID is directly included in
the Manifest XML; however, in some cases there can be
extra levels of indirection: Android allows developers to
abstract values into constant files such as string.xml.
In cases where the developer has abstracted the client
ID using notation such as @string/admob_id, we re-
solve these abstractions accordingly.

4.2.2 Client IDs in Layout XML

Some ad providers recommend that client IDs be in-
cluded in one of the auxiliary XML files that developers
generate for their application (not the manifest). Con-
veniently for us, these ad providers usually provide an
example for developers to copy and replace the client
ID with their own, which provides a common nam-
ing convention for each ad library. We take advantage
of this convention by searching XML files for specific
XML elements known to contain client IDs. For ex-
ample, Jumptap client IDs are usually in a field called
jumptaplib:publisherid.

4.2.3 Client IDs in Application Code

Client IDs that applications pass directly to ad li-
brary initialization methods are the most challenging
to extract. The initialization may happen at any point
in the code and the client ID may be instantiated in a
number of ways, including being passed in as a constant,
received over the network, generated dynamically, or
read in from a file. We observed that the first two are
the most common cases and focus on them accordingly.

Client IDs specified as constants.

We dump values from the DEX string constants sec-
tion in the application’s .dex file and search for strings
that match the structure of client IDs for each ad li-
brary. This approach is effective for ad providers whose
client IDs follow a distinctive pattern. For example,
Inmobi client IDs consistently begin with 4028cb or
££8080. To improve the precision of this analysis, we
also implemented a static analysis tool that performs
constant propagation on apps to detect when constant
values are passed to the client ID argument of ad library
initialization methods TODO: This sentence seems ir-
relevant.

Client IDs received over the network.

In addition to ad libraries, many applications include
Adwhirl’s SDK. Adwhirl is not an ad provider, but
rather offers a service that allows developers to dynam-
ically decide which ad provider and client ID should be
used in their ad requests. Before an application with
Adwhirl makes an ad request, it queries Adwhirl with
its Adwhirl client ID and receives a set of ad providers
and client IDs, which the application then uses to send
ad requests. This service allows developers to dynami-

cally change the advertising behavior of their apps with-
out having to push a new version of their app. We
handle apps that use Adwhirl by first extracting Ad-
whirl client IDs from the application. Then, we query
Adwhirl’s server to obtain a mapping from an Adwhirl
client ID to a set of client IDs and their ad providers.
This allows us to obtain many client IDs not hardcoded
in the applications.

From our application database, we extracted 1,386
unique Adwhirl client IDs, which mapped to 1,886 unique
client IDs from one of the five ad providers we eventu-
ally used in this paper (described in Section 5.1). Of
these, 1539 (or 81.6%) were new client IDs that we had
not extracted from our applications. Specifically, 764
were for admob, 523 for millennial, and 252 for inmobi.
TODO: Shouldn’t this be in the evaluation section?

4.3 Determining Authorship

An important consideration when investigating appli-
cation cloning is that not all cloned applications repre-
sent plagarism; we have observed that some developers
release a number of very similar apps from the same
developer account. We can extend this observation to
consider cases where similar applications are released
by the same author, but across different developer ac-
counts (perhaps on different markets). We define an
author to be the person responsible for uploading the
final version of an app to a market, even though she
may not have developed the majority of the code in
the case of cloning. We would like to attribute each
application in our clone clusters to its appropriate au-
thor (instead of developer account) in order to avoid
misrepresenting the impact of cloning in the case that
a legitimate developer publishes their apps over many
developer accounts. In this section we discuss how we
were able to do so, by merging developer accounts based
on signatures and client IDs. We make the following as-
sumptions: first that each author has their own unique
set of signatures that is not shared by any other au-
thor, and second that each author has their own unique
set of client IDs that is not shared with any other au-
thor. In Section 7.1 we discuss caveats associated with
these assumptions. Note, however, that these caveats
only cause us to merge more aggresively, lowering our
measured cloning impact.

4.3.1 Building Initial Author Set

The first step in our process of determining app au-
thorship is to create an author object for each unique
developer key fingerprint on any app in our collection.
As mentioned in Section 2, every Android app must
be signed by the developer’s private key before it may
be uploaded to a market and then installed on users’
phones. Thus, the maximum number of potential au-
thors behind the apps in our collection is the total num-

ber of unique developer key fingerprints across every
app (assuming no private keys are shared or stolen, an
issue we discuss further in Section 7.1).

However, it is free and easy to create an arbitrary
number of signing certificates, and as we expect cloners
to attempt to hide their tracks, we take the following
steps to connect authors across multiple key signatures.

4.3.2 Merging by Developer Account

Next, we merge two authors when at least one app
owned by each was uploaded to the same developer ac-
count on the same market. When developers upload
an app to a market, it is associated with their devel-
oper account on that market. Assuming that developer
accounts are rarely hacked (and if so, the newly up-
loaded apps are quickly removed), then two apps from
the same developer account on the same market must
come from the same author. The two apps must share
the same developer account and market because there
is no guarantee that the same developer account on two
different markets belong to the same author. That is,
there is nothing preventing a malicious developer from
registering a popular Play developer account name on
a new third-party market.

4.3.3 Merging by Client ID

Lastly, we merge any authors whose apps share at

least one client ID. As mentioned in Section 2, ad providers

give a unique client ID to each developer who signs up
for their service. Two independently developed apps
have no reason to share a client ID, even if they use the
same ad library. Thus we determine apps that share a
client ID to be from the same author.

S. EVALUATION

TODO: Should this section be called Results? In this
section we summarize the raw results of our analysis
and determine the accuracy of our application client ID
extraction.

5.1 Network Client ID Extraction

One important consideration was which Android ad
providers to include in our analysis. We started with 16
ad providers based on their popularity in our applica-
tion database; however, seven providers! had very small
number of ad requests in our captured traffic (some of
them are Chinese but our traffic was captured in the
US). Among the remaining 9 ad providers, four of them
had very little overlap between the client IDs observed
on the network and client IDs extracted from our ap-
plication database (Table 1). These 5 providers only
represented 7% of the total number of ad requests we
collected. Of the remaining providers, the number of

! Buzzcity, Mojiva, Quattro, Vdopia, Wooboo, Youmi, Zes-
tAdz

Unique Device IDsglient ID extraction from applications. The database

348,27%qverage, |Dap N Nap|/|Nap|, estimates the coverage

138,166ur application database on all the Android applications

n/aunning on the network where we captured traces.

61,127 |The results of this analysis are summarized in Ta-

Provider | Impressions | Clicks
admob 9,288,333 920
airpush 3,212,878* n/a
inmobi 220,982* 207

millennial 4,855,247 n/a

mobclix 1,547,871 1,080

32,75ble 1. The database coverages for most providers are

Table 2: Number of observed impressions, clicks, and
anonymized user identifiers in the network trace, broken
down by ad provider. The report of impression counts
uses packet level ad request analysis, unless otherwise
noted (via *). Note that we were not able to measure
clicks for all providers due to the format of their ad
requests (for example, those with chunked HTTP en-
coding). Also note that inmobi does not include a user
identifier in their ad requests.

impressions, clicks, and unique user identifiers is sum-
marized in Table 2. Because our network capture was
lossy, we were not able to record significant click results
from the trace, as we could only measure clicks when
the ad request, server response, and then click request
did not experience any loss.

5.2 Application Client ID Extraction

While extracting client IDs from HTTP traffic gen-
erated by Android applications is highly accurate, ex-
tracting them automatically from Android applications
themselves may not be as reliable, because client IDs
may be provided in several different ways, some of which
are unfriendly to program analysis (Section 4). There-
fore, we would like to evaluate the accuracy of our client
IDs extraction from Android applications. However, it
is difficult to determine the ground truth, because doing
so would require us to manually review all the applica-
tions, which is prohibitive given our large number of
applications. One might suggest that we run each ap-
plication in an emulator to extract the client IDs from
its HTTP traffic. However, an application may con-
tain multiple ad libraries, so we may not observe the
client IDs from all these libraries during the execution
of the application. Moreover, some ad libraries would
not send ad requests when they find that they are run-
ning in emulators. TODO: it says that some ways of
specifying client IDs are unfriendly to program analysis
but after reading methodology it seems like we got them
all — the challenges are commented out.

Instead, we take advantage of the client IDs extracted
from HTTP traffic to estimate a lower bound of the ac-
curacy of our client ID extraction from applications. For
each ad provider AP, let Dap be the set of client IDs
extracted from our application databases, and Nap be
the set of client IDs extracted from our captured HTTP
traffic. The network coverage, [Nap N Dap|/|Dapl|, es-
timates a lower bound of the true positive rate of our

fairly high, indicating that our application database
represents a significant portion of all ad-supported An-
droid applications that are used in the geographic area
where we collected the trace.

6. FINDINGS

6.1 Properties of Apps in Clone Clusters

There are a number of questions that come to mind
when investigating our clone clusters: Which markets
do apps in the clusters belong to? Which markets have
the highest proportion of apps involved in cloning? What
categories are most represented in the clusters? What
advertising libraries do cloners prefer? In this section
we seek to answer these questions by investigating com-
mon features of apps in our clone clusters.

6.1.1 Market Characteristics

Figure 3 shows which Android markets are most preva-
lent in our clone clusters. A significant percentage of
apps in our clone clusters are from Google Play; in-
tuitively this makes sense as Play is the most popular
Android market. To compensate for this observation,
we computed what percentage of all applications in our
database from the market are present in a clone clus-
ter. In this context, Play does not stand out more than
other markets, but a number of other markets such as
Androidsoft, and the Chinese markets Androidonline,
Goapk, and Appchina, have more than a quarter of
their apps in our clone clusters. To better understand
the cloning relationship between markets, we calculated
the number of similar apps between each pair of mar-
kets in a clone cluster. Specifically, for the apps in given
clone cluster and a pair of markets (I, .J):

MarketSimepyster (I, J) = min(apps from I, apps from J)

Then, to get a global view of the amount of simi-
lar applications between markets we calculate the total
MarketSim(I,J) as follows:

MarketSim(I,J) = Z MarketSim.(I,J)

ceclusters

In Figure 4, we plot the results of this calculation in
an undirected graph. To reduce the complexity of the
graph, we only show an edge between markets whose
MarketSim value is over 300.

We define a market as a “cloning hub” if it shares an
edge with many different markets in the graph. Play

Ad Provider Unique client IDs Network coverage | Database coverage
from databases \ from network

admob 51,434 19,718 21.2% 55.4%
airpush 8,728 8,829 36.9% 36.5%
inmobi 514 487 28.6% 30.2%
millennial 786 2,030 32.6% 12.6%
mobclix 2,994 1,781 38.0% 63.9%
adfonic 59,170 318 0.0% 0.0%
greystripe 59,616 212 0.3% 68.4%
jumptap 8 78 0.0% 0.0%
smaato 0 144 n/a 0.0%

Table 1: Percentage of extracted client IDs we observed in network traffic and percentage of observed network client
IDs we also extracted from the application database, broken down by provider. The lower group of providers are ones
which we did not include in our study because they did not have significant overlap with our application database.

is the largest cloning hub among all the markets, as it
has a significant cloning relationship with almost every
other market. Similarly, Androidonline is a cloning hub
among the Chinese markets. The existence of these
cloning hubs implies one of two things: either plagia-
rists prefer cloning from apps on these markets, or that
plagiarists prefer these markets to publish their cloned
apps. Since we do not speculate on which app in a clus-
ter is the original, we leave the determining which of
these cases is true to future work.

6.1.2 Category Characteristics

We now investigate what app categories are popular
among apps in our clone clusters, so that we can better
understand what types of apps are involved in cloning.
One difficulty with comparing categories among apps
from different markets is that different markets use dif-
ferent category names to refer to the same type of ap-
plication. To avoid this problem, we chose 21 meta-
categories that represent the spectrum of different cat-
egories observed across all our markets (our mapping
from category strings to meta-categories is presented in
the Appendix). Figure 5 presents the number of appli-
cations in our clone cluster that belong to each meta-
category. As we did for markets, we normalize the num-
ber of cloned apps in each category with the number of
all apps in our database for that category to determine
what percentage of apps in the category are involved in
cloning. Interestingly, Games is the most popular cate-
gory among apps in the clone clusters, but also has the
highest prevalence of apps involved in cloning. Thus,
markets that care about application cloning should fo-
cus on apps categorized as Games. Additionally, as-
suming that the original app and the clone belong to
the same category, this implies plagiarists prefer ap-
plications categorized as Games. We hypothesize that
this is because Games are relatively complex, popular
among Android users, and are often run for long pe-

riods of time, allowing more advertising revenue to be
generated.

6.1.3 Ad Library Characteristics

Figure 6 gives a breakdown by ad provider of the ap-
plications in our clone clusters, as well as normalized
across our entire application database. Admob is the
most popular provider among cloned applications, but
is also the most popular among all applications, and
thus does not have a higher percentage of cloned apps
compared with other providers. On the other hand, for
our Chinese ad providers, Wooboo and Youmi, cloned
applications represent a larger subset of the total appli-
cations that use these providers. Nonetheless, an alarm-
ingly large percentage of applications for each provider
are in our clone clusters, meaning that they either are
clones of another app, or are a legitimate app that has
been cloned. Note that we do not consider what per-
centage of ad traffic was generated by our clone clusters
for each ad provider, as we do not speculate which app
is the original and want to avoid any assumptions re-
garding how much traffic for a provider is a result of app
plagiarism. In Section 6.2, we estimate a lower bound
for how much advertising revenue cloning siphons from
legitimate applications.

6.2 Comparing Clones and Non-clones

In previous sections we examined a number of proper-
ties of apps in our cloned clusters without distinguishing
the “original” apps from the clones. In this section, we
wish to gain insight into the impact of cloning on devel-
opers. Specifically, we investigate the effects of cloned
apps on the original developers ad revenue and user in-
stall base. However, before these may be examined, the
original app in the cluster must be determined, which
is surprisingly nontrivial.

6.2.1 Determining Original App

344
609 brothersoft \
1460

144

androidonline 549

~e_

—~— 6

slideme

132

29/

8
& gfan
396 —_—

eoemarket

751

onemobile

Figure 4: Markets which have a significant cloning relationship. The thickness of an edge represents the magnitude
of the cloning relationship between the markets, and the height of a node is proportional to the sum of the edge
weights for a given market. Markets with nodes colored blue are US-based markets whereas markets with nodes

colored red are Chinese-based markets.

1= <3
=} =
8 - —— Number of cloned apps o
™ —e— Percentage of apps that are clones o
[%]
g
- 7§ 5
g T 9
9 o o
@ 87 I
T S L ®
g « -2 £
c S =
o 0
o — Q.
Y— Q.
o © @®
- & N
= o
o 3 ©
Q o (9]
E S g
> e ©
28 FS ©
S = 2
o [)
[N
o -5
gy A A SN N R
c = o
e ce5 8382255583580
S g =005 =99 028 52 8c
T § E o 829 8 95 30T
= 8 < E EDS 2F £ a2 CC
n = = o O = 2 2 35 o © X =
o o o < T 8 g p © 2 3
= = c © s O
S o o O S 2 = S 8 T
= g 3 k=l
© 2 <]
°
5]
Market

Figure 3: Plot showing the popularity of different app
markets in our clone clusters. The absolute number of
cloned apps from each market is represented by the axis
labelled “Number of cloned apps”, whereas the axis la-
belled “Percentage of apps that are clones” represents
the popularity of each market in our clone clusters nor-
malized over the total number of apps from that market
in our database.

o ~
=] >
S —s— Number of cloned apps o
© —— Percentage of apps that are clones N

(7]
g
o -2 8

2 8 | Q©

g 3 o

@ [

° o =

X ®©

0 -5 £

=]

L3 0

o 8- %

= g

o < ©

N - —

[g ©°

£ g
o

5 g4 8

Z & LR GC)

o o
=
[0
a8
> -8
USSR
c c cC NG UL T o
s EE8S 920003020832
EcCEERGR2R2RICE32808%5
8c2PBN5LZS2SaFET> 50580
] TR S [g <£=
£ @c@ o 2 5 O»
9] o] S =
5 3 § &
o (@]
Category

Figure 5: Plot showing the popularity of different app
categories in our clone clusters. The absolute number
of cloned apps in each category is represented by the
axis labelled “Number of cloned apps”, whereas axis
labelled “Percentage of apps that are clones” represents
the number of cloned apps in each category normalized
over the total number of apps in that category in our
database.

1= <3
Q =
8 7 —e— Number of cloned apps rwm
N —— Percentage of apps that are clones ®
7]
S o
o —o <
g 8 8
a 3]
a °
N X o
& 8 3
N
o 8 =
o
0 S X 5_-5
c 0 FS =
o ISY)
o o
Q.
- o RS
o 5 -3 _fE
5 5 ©5
o ()
£ S o
S ®
2 = 2
o
= Q
o o O
n L X =
-
o -5
T
- = = ®
s £ 2 5 5§ 5 8 2 ® & ¢
E E 2 8 3 &8 € = ® 5 &
b= L = <] > Q9 c Qe E E T
© = ® = E = ©&© & 3 ©
[=
= o
Ad Library

Figure 6: Plot showing the popularity of different ad li-
braries among apps in our clone clusters. The absolute
number of cloned apps with each library is represented
by the axis labelled “Number of cloned apps”, whereas
axis labelled “Percentage of apps that are clones” repre-
sents the number of cloned apps with each library nor-
malized over the total number of apps with that library
in our database.

10

There are a number of approaches one could use de-
termine which application among a cluster of similar ap-
plications is the original. Unfortunately, most of these
initial approaches are flawed. For example, one could
use:

e Date first uploaded to market

e Application popularity by number of installs or
rating

e Code size by number of methods, instructions, or
other metric

The date an application was first uploaded to the
market is difficult to know as an external observer. Each
market knows when the application was first uploaded,
but unless an external observer has been crawling mar-
kets since their creation in both the free and paid sec-
tions, she cannot know for sure which app came first.
Additionally, there have been cases where beta releases
have been taken and uploaded to markets before the
original developer.Application popularity may sometimes
differentiate the clone from the original, for example in
the case of Angry Birds. However, for less popular ap-
plications, users may be just as likely to download the
clone as the original. Further, application popularity
by both number of installs and ratings is vulnerable to
sybil attacks which would be relatively easy to perform
as most market accounts require only a valid email ad-
dress. Lastly, the code size of applications can easily
be distorted by plagiarists to make the plagiarized app
appear larger or smaller.

Rather than rely on one of these flawed approaches,
we instead use an approach that guarantees a lower
bound on our findings. Specifically, for each cluster we
deem the developer with the most observed impressions
to be the original developer and all other developers
are treated as clones. In some cases, we will mislabel
the original app as a clone but this is acceptable since
we are trying to determine a lower bound. Clearly, if
we count the number of impressions received by the
original app as siphoned impressions and the clone app
received more than the original app, we still ensure a
lower bound on the number of impressions siphoned by
the real clones. This key difference between this ap-
proach and the flawed application popularity approach
described above is that one cannot guarantee a lower
bound using the above approach.

6.2.2 How much revenue do clones siphon from the
original developers?

In order to determine how much advertising revenue
cloned applications siphon from the original application,
we first observe that hard dollar amounts are difficult
to determine when looking at advertising network traffic
alone. This is because an impression does not explic-
itly indicate how much it is worth in an ad request, as

% of clusters

% of clusters

40

100

‘
‘
e T T T T 1

0 20 40 60 80 100

% of lost revenue

Figure 7: CDF of lost revenue per clone cluster.

100

80

60

40

20

I I ! T ;
0 20 40 60 80 100

% of lost users

Figure 8: CDF of lost users per clone cluster.

11

1.0

o
8

o _| '

o

©

o

<

o

N

o

o : ‘

IS f f

Revenue Users

Figure 9: Box plot of lost revenue and lost users for our
clone clusters.

the ad provider does not want to disclose how much
it or its affiliated developers are making. Instead, we
will show what percentage loss developers experience
by comparing the ratio of impressions that belong to
cloned applications compared with the total number of
impressions we observed belonging to applications in
our clone clusters. The percent revenue lost for a single
cluster is calculated as:

imps for clone apps

PercImpsLost yster = (1)

sum of all impressions

Figure 7 shows a CDF of the percentage of lost rev-
enue across our clone clusters. Notably, 28% of the
clusters have exactly 50% lost revenue, which we deter-
mined resulted from clusters of two applications which
had applications that shared a client ID, but not de-
veloper account or signature. Regardless, we can see
that many of the clusters had a significant percentage
of lost revenue. Figure 9 gives a boxplot of the lost rev-
enue per cluster. Alarmingly, the mean percentage of
lost revenue averaged across the PercImpsLost iyster
values is 52%.

6.2.3 How much of the user base do clones divert
from the original app?

To show the total number of users of cloned apps, we
will sum the number of unique users for every cloned
app in every cluster. Note that this is the total of unique
users for given apps, not a total number of unique peo-
ple. If a user has n cloned apps on their phone, this
method will count her as n users. We choose this count-
ing method because different ad libraries create user

identifiers differently, making merging users across apps
and ad libraries impossible. See [17] for a more thorough
treatment of how ad libraries create user identifiers.

To demonstrate the average percent diverted user
base we present a similar CDF as the one described
in the previous section. For each cluster:

unique users for clone apps
PercUsersLost yster =

sum of all unique users

The CDF of these values is presented in Figure 8.
Like lost impressions, the estimated percentage of lost
users is alarmingly high, the mean of the PercU sersLost
values is 49%.

7. DISCUSSION
7.1 Challenges Determining Authorship

7.2 Potential Steps to Reduce Cloning

A primary goal of our effort to gain insight into the
current state of Android app cloning is to protect An-
droid developers and users. Technical solutions such
as the automatic plagiarism detection methods used for
this work [4] should be employed by markets to improve
the speed with which clones are caught and removed
from markets. Reducing the lifetime of clones on mar-
kets limits their downloads and thus their impact.

However, as Android apps are straightforward to de-
compile, modify, and resubmit to markets, we do not
believe technical solutions alone are sufficient. Detec-
tion tools can always continue to be improved, but it is
unlikely that a tool can catch every clone, whether it’s
due to lack of access to every app across every market or
significant code obfuscations. Instead, we believe reduc-
ing economic incentives is a more effective way to limit
app cloning. For example, if all markets began charg-
ing at least a nominal registration fee then cloners would
have to make back the registration cost from their clones
before the account is banned or they will lose money.
This also disincentives a plagiarist from creating many
developer accounts, possibly making plagiarism detec-
tion easier. Similarly, ad providers could also charge a
registration fee or delay ad revenue payout for some pe-
riod of time to allow the developer’s apps to be vetted.
By increasing the time and/or cost to create developer
accounts or sign up with ad providers, legitimate de-
velopers may be slightly affected but cloners wishing to
create many developer or ad provider accounts can be
significantly impeded.

We offer these potential solutions with caution, as
one of the great advantages of the Android ecosystem
is its openness and low barrier to entry. The associated
costs must be carefully weighed to reduce cloning while
not discouraging legitimate developers.

(2)

12

8. RELATED WORK

Previous work on illict behavior in Android applica-
tions includes privacy concerns from information leak
within an application [7] and between applications [6],
as well as privacy issues regarding third party libraries,
especially advertising libraries [10, 15, 14, 17]. Addition-
ally, research has been done investigating and character-
izing Android malware [22]. Tools to detect cloned An-

droid applications include DroidMOSS [21] and DNADroid

[4].
Previous underground economy work primarily fo-
cuses on fraud which is detrimental to the user, such as

clustega ke anti-virus software [19], keyloggers [11], and spam [18].

By contrast, application cloning detriments the devel-
opers who originally created the application by taking
away potential users of their application. Online adver-
tising fraud has been heavily studied in the literature [5,
9, 20], however as long as users are still viewing the ad-
vertisements, application cloning does not necessarily
imply advertising fraud.

9. CONCLUSION

As the first step towards understanding the economic
incentives of application plagiarism on Android mar-
kets, we characterized application plagiarism and its
impact on developers. Towards this goal, we crawled
304,275 free applications from 19 Android markets around
the world and detected clones among them, captured
live HTTP traffic generated by mobile applications at
a tier-1 US cellular carrier for 12 days, and extracted
client IDs from both applications and network traces to
correlate them. Based on the data, we first examined
properties of the cloned applications, including their
distribution across different markets, application cate-
gories, and ad libraries. Next, we examined how cloned
applications affect the origin developers. We estimated
a lower bound on the revenue that cloned applications
siphon from the original developers, and the user base
that cloned applications divert from the original appli-
cations. To the best of our knowledge, this is the first
large scale study on the characteristics of cloned appli-
cations and their impact on the original developers.

10. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corpo-
ration, for the U.S. Department of Energys National
Nuclear Security Administration under contract DE-
AC04-94AL85000.

References
(1]

Jason Ankeny. Feds seize Android app marketplaces Ap-
planet, AppBucket in piracy sting. 2012. URL: http://wuw.

fiercemobilecontent.com/story/feds-seize-android-

3]

[4]

[6]

7]

(8]
[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17)

(18]

(19]

20]

app-marketplaces-applanet-appbucket-piracy-sting/
2012-08-22.

(21]

AppBrain. Number of available android applications. Nov.
2012. URL: http://www.appbrain.com/stats/number-of-
android-apps.

Brut.alll. Android-Apktool. URL: http://code . google .
com/p/android-apktool.

J. Crussell, C. Gibler, and H. Chen. “Attack of the Clones:
Detecting Cloned Applications on Android Markets”. In:
Computer Security-ESORICS 2012 (2012), pp. 37-54.

N. Daswani et al. “Online advertising fraud”. In: Crime-
ware: Understanding New Attacks and Defenses (2008).

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wal-
lach. “Quire: lightweight provenance for smart phone op-
erating systems”. In: USENIX Security. 2011.

William Enck, Landon P. Cox, and Jaeyeon Jung. “Taint-
Droid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones”. In: (2010).

Jesus Freke. Smali/Baksmali. URL: http://code.google.
com/p/smali.

Mona Gandhi, Markus Jakobsson, and Jacob Ratkiewicz.
“Badvertisements: Stealthy click-fraud with unwitting ac-
cessories”. In: Online Fraud, Part I Journal of Digital
Forensic Practice, Volume 1, Special Issue 2. 2006.

M.C. Grace, W. Zhou, X. Jiang, and A.R. Sadeghi. “Un-
safe exposure analysis of mobile in-app advertisements”.
In: Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks. ACM. 2012,
pp. 101-112.

T. Holz, M. Engelberth, and F. Freiling. “Learning more
about the underground economy: A case-study of keylog-
gers and dropzones”. In: Computer Security-ESORICS 2009
(2009), pp. 1-18.

Eric Lafortune. Proguard. URL: http://proguard.sourceforge.
net.

H. Liu, C.N. Chuah, H. Zang, and S. Gatmir-motahari.
“Evolving Landscape of Cellular Network Traffic”. In: Com-
puter Communications and Networks (ICCCN), 2012 21st
International Conference on. IEEE. 2012, pp. 1-7.

P. Pearce, A.P. Felt, G. Nunez, and D. Wagner. “AdDroid:
Privilege separation for applications and advertisers in An-
droid”. In: Proceedings of AsiaCCS. 2012.

S. Shekhar, M. Dietz, and D.S. Wallach. “Adsplit: Separat-
ing smartphone advertising from applications”. In: CoRR,
abs/1202.4030 (2012).

Signing Your Applications. Dec. 2012. URL: http://developer.
android.com/tools/publishing/app-signing.html.

R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
“Investigating User Privacy in Android Ad Libraries”. In:
IEEE Mobile Security Technologies (MoST), San Fran-
cisco, CA (2012).

B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. “The
underground economy of spam: A botmasters perspective
of coordinating large-scale spam campaigns”. In: USENIX
Workshop on Large-Scale Exploits and Emergent Threats
(LEET). 2011.

B. Stone-Gross et al. “The underground economy of fake
antivirus software”. In: Fconomics of Information Security
and Privacy IIT (2011), pp. 55-78.

B. Stone-Gross et al. “Understanding fraudulent activities
in online ad exchanges”. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement confer-
ence. ACM. 2011, pp. 279-294.

22]

13

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. “Detecting
repackaged smartphone applications in third-party android
marketplaces”. In: Proceedings of the second ACM confer-
ence on Data and Application Security and Privacy. ACM.
2012, pp. 317-326.

Y. Zhou and X. Jiang. “Dissecting android malware: Char-
acterization and evolution”. In: Security and Privacy (SP),
2012 IEEE Symposium on. IEEE. 2012, pp. 95-109.

APPENDIX Table 3: Mapping between meta-categories and market
categories

Meta-category | Market category
Business | Business
Enterprise
Communication | Communication
Communications
Education | Education
Educational / Reference
Entertainment | Comics
Entertainment
Finance | Finance
Games | Arcade & Action
Brain & Puzzle
Cards & Casino
Casual
Fun & Games
Games
Racing
Sports Games
Health | Health
Health & Fitness
Medical
Lifestyle | Lifestyle
Music | Music
Music & Audio
News | News
News & Magazines
Other | Developer / Programmer
Home & Hobby
Other
Religion
Personalization | Personalization
Wallpapers
Photography | Photography
Reference | Books & Reference
E-books
Ebooks & Reference
Reference
Shopping | Shopping
Social | Collaboration
Social
Social Responsibility
Sports | Sports
Travel | Transportation
Travel
Travel & Local
Utility | Email & SMS
Libraries & Demo
Location & Maps
Productivity
System
Tools
Utilities
Video | Media & Video
Multimedia
14 Weather | Weather

