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%‘ Background: Cavity Flows
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Cavity Flows Cavity Mode Shapes

« Have been an active research area for Over a half century of research has

=60 years... shown that mode shapes are a
* Resonance occurs through the complex function of cavity geometry
interaction of the shear layer and the and flow conditions.
cavity acoustic field. * Pressure measurements remain a
» The cavity frequencies can be reliable way to characterize the
predicted by the modified Rossiter acoustic loading in the cavity.
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# Background: Cavity-Store Interactions

Store Separation

» The type (i.e., open, closed) of cavity
flow affects store separation behavior
(Stallings 1987, 1991).

« Store’s trajectory is a function of
release time (Murray et al 2009).

» Store forces / moments correlate
strongly with cavity pressures (Coley
and Lofthouse 2012).

Cavity Ceiling Pressure and Store Pitch Moment Spectra
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Fluid-Structure Coupling

 Cavity pressure fluctuations can result
in significant structural damage (Shaw
and Shimovetz 1994).

» Despite the potential
consequences, little work has
focused on the fluid-structure
coupling mechanism responsible
for store vibrations during internal
carriage.

« Simultaneous acoustic loading and
store vibration measurements are
required.
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—— Store and Cavity Geometries

cavlty Cljt/oy't-~-»\ Trisonic Wind Tunnel

» Blowdown-to-atmosphere
» Test section: 305 mm x 305 mm

» Unless specified data for M., = 0.80,
Re =13 x 10%/m, q.. = 33 kPa

Cavity
« D=38mm (= 0.4 d)
«L/D =333,L/W=1

» Pressures along floor and aft-wall
with nine Kulites (XCQ-062)

Simplified Store

* Cylindrical geometry (0.5 D x 4.5 D)
* Fixed to 12.7 mm threaded rods

» Rods fixed to floor with hex nuts

cylindrical shell

_,_.-'—"'_'_'__H_FH_H_'_

e

support rods

Two main objectives for this simplified geometry:

1) Development of vibrational diagnostics including miniature accelerometers
and laser Doppler Vibrometry (LDV)

2) Discovery of the key physical parameters for future experiments
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%‘ Vibration Measurement Systems

Triaxial Accelerometers Laser Doppler Vibrometry (LDV)
| X
)Y store
= madel
flow .
/wmdow
miniature < 7 7 7 7] s
accelerometer
LDV prcbe
mirror
* Internal accelerometers (PCB » Polytec (PSV 400) single-
356A03) form one of two component, scanning LDV system
independent vibration measurement
» The system measures the surface
systems.

velocity of the target from the
* Frequency response of 8 kHz Doppler shift produced by the
interference between a reference

* Upstream and downstream beam and surface-scattered-light.

accelerations are compared along
all three axes. * Frequency response = 100 kHz
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# Objectives of Simultaneous Measurements

Cavity / Store in Test Section

- L - Longitudinal cavity modes
upper test section wall

provide the highest potential
— loading to drive store vibrations

i\ whose natural frequencies are a
function of its geometry.

_— - If a cavity mode matches a natural
longitudinal frequency of the store,
we expect that intense vibrations
will occur.

!Iuwerte'st sectionwall

What do we hope to learn from the simultaneous diagnostics

Some open questions include:

1. Ability of the cavity flow to excite additional structural modes
such as vertical and lateral modes?

2. The response of the store to spatially non-uniform loading?
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Mation of Vibration Measurement Systems

Model Store

/

\ / measurement location

LDV and accelerometer LDV Probe

Magnetic Shaker

Adapter Fixture (contains input accelerometer)

« The model store was mounted to a magnetic shaker with an adapter
fixture.

* The shaker generated a 0-7 kHz, pseudorandom motion along the y-
axis only.

 Although the store is subjected to much more complicated motions
under cavity flows, the shaker tests provide a good method for
comparison of the two independent vibration systems.
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%‘Evaluation of Vibration Measurement Systems

Comparison of vertical accelerations given by the accelerometer and the LDV

Shaker Test Wind Tunnel Test at Mach 0.83
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agreement between the . :I'he acgelerometert a;nd LD;/ al;e
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}‘ High-Frequency Bending Modes

4.9-kHz Bending Mode Movie
Shaker Test //
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© » Shaker test is useful for measurement
comparisons and illustration of natural
o frequencies but...

102163104 . The presence Of the adapter plate and
f (Hz) the shaker make it difficult to truly
determine the true store modes.

« A 27-point-scan was used to reveal
the mode shapes associated with
the peaks in the frequency response

function. Sandia
@ National
Laboratories

* Look to modal hammer tests for
accurate natural frequencies.
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%‘ Modal Hammer Tests

* Interpretation of the vibration data « Aforce transducer on the
requires knowledge of the store’s hammer tip measured the
natural frequencies. input.

* Modal hammer tests were * The output was measured
performed to measure the store with the two internal
response up to about 10 kHz. accelerometers.

Modal Hammer Test - Bench top foam tests provided

detailed mode information for
frequencies up to 4 kHz.

« Natural frequencies greater
than 4 kHz were measured
with the model installed in the
wind tunnel only.

<— cavity ZuEaN
floor A | - Compared to the tunnel test,
i the bench top test gave more

mode shape information.




Modal Hammer Tests

* The store response in the wind
tunnel was similar to the perfectly
fixed case

 How will the store respond to the
cavity flow at its wall-normal and
spanwise natural frequencies?

Structure Modes

Fixed Fixed Wind Tunnel Wind Tunnel Mode
Mode Frequency, Damping, Frequency, Damping, % Description
kHz % kHz
Z1 1.49 0.38 1.52 1.46 z-post-bending
Z2 1.62 0.20 1.64 0.40 z-post-twisting
X1 2.10 0.20 not detected not detected  x-post-bending
Y2 not measured N/M 4.24 2.44 y-store-bending
(N/M)
Y3 N/M N/M 5.16 1.27 z-store bending
Z3 N/M N/M 6.64 0.32 y-store-bending
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} Empty Cavity Pressures (Mach 0.80)

Floor Pressures: Streamwise Variation Aft-Wall Pressures: Spanwise Variation
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- Pressures at aft-end of the cavity * Little variation with span.

are 2-4 times greater than at the « Measured mode frequencies are
fore-end. within 15% of those predicted by
Heller and Bliss (1975).




e Empty Cavity Scaling and Repeatability

Scaling with Dynamic Pressure
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* Pressures scale with q.., a result
expected from previous works
(e.g., Tracy and Plentovich 1993,
Murray et al 2009)
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The pressure spectra were very
repeatable.

Empty cavity flow well
characterized.

What about with a store?




Pressures with a Model Store
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* Previous studies
(e.g. Dix and Bauer
2000, Lee 2010)
have shown
modified cavity
acoustics with a
store installed.

Observations

* The model store
results in significant
changes in the cavity
acoustics.

* The second, third and
fourth modes are all
sharpened with
shifted frequencies.

» Ongoing work looking
at other Mach #s

 How does the store respond to these cavity pressures?
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} Simultaneous Measurements

Wall-Normal Response of Upstream Accelerometer

180 Mokt secaerion yio' | Clearpeaksin
i ] the wall-normal
i 1. - accelerations
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160 M1 i store’s high-
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# Simultaneous Measurements

Streamwise Response of Upstream Accelerometer

: :  Peak at wall-
3 Streamwise Acceleration _ 2
180 Centerline Pressure E 10 normal store

i mode Y2 is
I 410 observed, which
! M1 ] likely indicates

160 |- M2 M3 1400 coupling between

x- and y- store
modes.

* The store
responds to all
four cavity
modes M1-M4.

SPL (dB/vVHz)
Y
Q

120

» Largest
vibration levels
correspond to
cavity mode M3
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# Simultaneous Measurements

Spanwise Response of Upstream Accelerometer

* |In comparison to
other axes, the
spanwise

Spanwise Acceleration
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Simultaneous Measurements

All Three Components with Aft-Wall Pressure

Streamwise Acceleration
Spanwise Acceleration
Vertical Acceleration
Centerline Pressure
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* The streamwise

and wall-normal
accelerations
are greatest at
cavity modes.

 The spanwise
response is
dominated by
the store’s
structural
dynamics.

 These data
emphasize the
importance of
characterizing
the structural
modes of the
store.
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# Upstream and Downstream Accelerations

Streamwise Accelerations at Store-Ends Wall-Normal Accelerations

A1, Streamwise Acceleration A1, Wall-Normal Acceleration
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 The streamwise accelerations at opposite store ends are nearly identical.

 The wall-normal accelerations are similar at opposite ends, but there are
small differences between locations that are further confirmed with the LDV
measurements (made at the location of A1).
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# Upstream and Downstream Accelerations

Spanwise Accelerations at Opposite Store-Ends e Unlike the other

A1, Spanwise Acceleration two axes, the

101 = —_———— A2, Spanwise Acceleration accelerations are
: greatest
downstream
where the
pressure
fluctuations are
the highest.

10°
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# Scanning LDV Data (Mach 0.90)

Wall-Normal Accelerations at Five Locations Alonq
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Scanning LDV Data (Mach 0.90)

From 2 through 5.5 kHz

LDV, L = 0.08 (A1 Location)
LDV, /L =0.29
LDV, xL = 0.50
LDV, WL =0.72
LDV, x/L = 0.93 (A2 Location)
---------------------- A1, Wall-Normal Acceleration
—_———— A2, Wall-Normal Acceleration
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Inset from 3.8 through 4.6 kHz

Y2

LDV, L = 0.08 (A1 Location)
LDV, /L =0.29
LDV, xL = 0.50
LDV, WL =0.72
LDV, x/L = 0.93 (A2 Location)
A1, Wall-Normal Acceleration
A2, Wall-Normal Acceleration
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4 42
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4.4 46

multiple store locations.

» Accelerations are a function of streamwise position and frequency. The
scanning LDV data show the importance of making measurements at

» Such data are valuable for store-response models with non-uniform
loading, and show the need for acoustic loading data on the store.
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Scaling of Store Vibrations

Runs with Varying Dynamic Pressure
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» Like the cavity pressures, the store accelerations also scale

with q.,

Sandia
National
Laboratories



s — G
%‘ Conclusions

« To understand the complex fluid-structure interactions that occur during
internal store carriage, an experimental program has been developed to
simultaneously measure the acoustic loading and store vibrations.

« Acoustic loading data, provided by fast response pressure sensors, showed
that the presence of the store significantly altered the cavity acoustics.

« Store vibration measurements were provided by triaxial accelerometers and
laser Doppler Vibrometry (LDV)

 The scanning LDV provided offered the advantage of increased spatial
resolution.

« The accelerometers offered the advantage of providing three-dimensional
measurements, which proved highly valuable in making physical
observations.

* In the streamwise and wall-normal directions, the store response was
dominated by fluid-forcing.

* In contrast, the spanwise loading was primarily driven by the structural
dynamics of the store, which demonstrated the need for modal tests to

.. properly characterize the store natural frequencies. Sand
naia
@ National
Laboratories
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B Future Work

Spanwise Response of Upstream Accelerometer

* To understand how the
180 Spanwise Acceleration 2102 store-response varies
Centerline Pressure 3 . -

] with aeroacoustic
loading, additional
experiments will be
performed over a wide
range of Mach
numbers.

160

» Such data will provide
the store response to a
wide range of cavity
modes.
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120 * In particular, tests will

be conducted for the
case of a cavity mode
matching a structural
mode, where the
greatest vibrations are
expected.
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