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Motivation

• Analyze an RF signal for frequency content

– Filter outputs are spectral power density integrated over the filter bandwidth

• Monolithic integration with active components such as lasers and 
modulators enables compact, highly functional photonic integrated 
circuits (PICs)
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Motivation

• Active ring resonators offer:

– Wavelength selectivity

– Compact size

– Low, or zero, back reflection

– Monolithic integration with lasers, modulators, SOAs etc.

– Gain elements can be used to compensate for waveguide losses

• Design Considerations:

– Bandwidth determined by:

• Coupler strength and optical loss

– Filter profile defined by:

• Coupler strengths and number of rings and internal net loss

– Extinction ratio influenced by:

• Noise from optical amplifiers and optical loss

– Tunability effected by:

• Size of tuning section and induced loss

→ Loss, couplers, and optical gain needs to be tightly controlled

gain of g dB/pass

loss of α dB/cm

field coupling κn
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Approach

• Couplers designed for 1-2 GHz linewidth
– Fractional coupling power of 6% for both couplers

• Integrated 60-µm-long SOAs in each ring
– Minimize loss through filter

– Active/passive integration achieved with quantum well intermixing

– Length and total gain designed for low noise



• Quantum well intermixing
– Metastable interface between well/barrier

– Add catalyst to enhance interdiffusion

– Reshaping increases the energy level

• Reduces the bandgap wavelength

– Capable >2 bandedges with same epitaxial base

Monolithic Integration Platform
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Buried Heterostucture Waveguides

• Waveguide definition process

– ASML projection stepper

• 0.6 µm resolution

– Dry etch

– MOCVD Regrowth

• InP cladding

• InGaAs contact layer

• Buried heterostucture
advantages

– Waveguide thickness defined by 
epitaxial material

– Semiconductor etch only defines 
guiding width and coupler gap

– Devices are essentially not 
affected by variations in etch 
depth

Waveguides in [011]

Waveguides in [011]



Low Loss Waveguides

• Low loss waveguides

– Loss and coupling define the 
bandwidth of the filter

• Scattering and Absorption 
Loss
– Modal overlap with InP p-type 

doping regions is a major 
source of loss

• 500 Å doping spike at the 
regrowth interface

– Compensates for Si 
contamination at the regrowth 
interface

• Doping of the regrown p-type 
cladding

– Waveguide loss was measured 
using Fabry-Perot cavity 
measurements

• 1.5 cm-1 at 1550 nm

Simulated p-type Doping Loss

Experimental Loss Measurements



Low Loss Waveguides

• Low loss waveguides

– Loss and coupling define the bandwidth of the filter

• Output coupling and waveguide loss

• Bend loss

– Tradeoff between loss and FSR

– 200 µm radius for 1 µm waveguide width 
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Low Loss Waveguides

• Waveguide width is very important to bend loss

• Lithographic bias can significantly effect bend losses

– Projection lithography/stepper used

– Dimensions verified by CD SEM measurements

• Monitors bias drift over time

• Done before waveguide etch allowing for rework.



Couplers

• Coupler design

– Couplers utilize 1 µm waveguides 
with 1 µm gap

– Coupling defined by length overlap 
region

– Lithography biases are constant

→ Consistency in coupler values 
within and between process runs

• Simulations used to predict 
coupling

– BPM simulation

• Includes waveguide bends

– Experiment shows lower coupling 
than predicted by BPM

• Waveguide widths and gap has a 
bias due to fabrication



Experimental results

• Scanning source measurement
– Wavelength swept on a tunable laser source

– 12 nm filter added to the ring output

• This filters out much of the ASE from the SOA



Experimental results

• Scanning source measurement
– Variation in SOA current from 0.1-1.0 mA

– >15 dB extinction

– 3.47 GHz to 2.16 GHz FWHM optical 
linewidth



Experimental results

• Optical spectrum analyzer measurement

– Broadband light source

– Ring output fiber coupled to OSA

– Better for larger wavelength scans

– ISOA1 = 2 mA

– Extinction ratio of >15 dB
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Simulation benchmarking

• Complete simulation of dynamic range and noise of active InGaAsP multi-ring 
filters

– Include gain distortions and spontaneous emission noise

• Time dependent rate equation method

– Gain and spontaneous emission modeled as function of injection current at all 
wavelengths simultaneously

• Fit experimental bandwidth of drop and extinction of bus to extract net round 
trip loss and coupling fraction

– 6% coupler with 1.4 cm-1

Red & black data

Blue & green data



Simulation
• Tuning and loss from benchmarked 

from filter tuning data

• Effects of tuning induced loss on 
FWHM linewidth

• 0.9 dB of additional loss caused by 
tuning current 

– reduces peak power 5 dB

– Increase FWHM by 1.6 GHz

• Loss can be compensated for by 
increase in SOA gain
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Conclusions and Future Work

• Fabricated and demonstrated 
tunable ring filter

– Process compatible with monolithic 
integration of lasers and modulators 

– >15 dB extinction

– 56 GHz free spectral range

– 2.17 GHz passband

• Future work will focus on:

– Integration with lasers and 
modulators

– Measure insertion loss and bus 
channel characteristics

– Exploring offsetting loss with SOA 
gain to maintain constant peak 
power

• Look at SNR and dynamic range
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Simulation benchmarking



Full PIC design

Tunable laser
with gain, 
optical phase, 
mirror bias inputs

HS Optical 
Modulator

Wavelength Tracking Filter

Channelizing Filters

RF Input

Optical Outputs

Rib/BH Coupler

Filter λ tune pad

Filter gain pad



InP Active 2-ring Filter

– ASE source and OSA

• Higher extinction

– SOA-ASE goes is correct wavelength ‘bin’

– Tunable laser and photodiode

• Lower extinction 

– off resonance measurement includes SOA-ASE from all wavelengths

• A filter (~5 nm) will give results similar to OSA

– This can be external for testing

– On a monolithic chip we need to add additional filtering

need bigger font
on fig



Channel-Dropping Filters

• Analyze an RF signal for frequency content

– Filter outputs are spectral power density integrated over the filter bandwidth

• Monolithic integration with active components such as lasers and 
modulators enables compact, highly functional photonic integrated 
circuits (PICs)
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Monolithic Integration and Loss-Limited Filter 
Response

• Optical waveguide losses dominate the filter performance

• Useful passive ring resonant filters are typically made of glasses 
or undoped semiconductors with very low optical loss.

• Ring Filters with losses commonly seen in doped InGaAsP 
waveguides for active PICs have too little optical transmission to 
be useful as GHz-class filters
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A Small Amount of Gain 
Offsets Losses

• SOAs enable monolithic integration

• Introduce an ideal loop gain to each 
filter

– No noise in model, yet

• Ring waveguide loss
– 4 dB/cm

• Loss-less filter achieved 
– 0.5 dB/pass gain element0.3 0.4 0.5 0.6 0.7
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Active Rings : Experimental

Broadband Light 
Source

+
+

polarizer

Optical
Spectrum
Analyzer

• Dual-ring filters
• > 30 dB extinction ratio

• 2.5 GHz linewidth

– ISOA1 = ISOA2 = 1 mA

– Extinction ratio of >30 dB

– Filter loss of 1.7 dB

• Loss defined as total power on resonance compared 
to total power off resonance

• OSA measurement
– Broadband light source

See paper OThW2
Thur. @ 4 pm



Active filter modeling

•Time domain travelling wave 
model of single and multi-ring 
filters

•Semiconductor Optical Amplifier 
(SOA) embedded in each ring

•Local gain and spontaneous 
emission modeled as functions of 
injection current and optical 
power
– Time-dependent rate-equation approach

•Complete power spectra 
computed at each time step



Fraction of SOA spontaneous emission coupled into 
waveguide mode
• Amplified spontaneous emission 

(ASE) noise from SOAs creates a 
noise floor on filter spectra

• ASE noise computation in two steps

• Spontaneous emission 
recombination event

• Coupling of spontaneous emission 
into guided mode of ring

• The spontaneous emission factor 
influences the noise floor due to 
ASE



Model of Active Ring

• Variation of SOA injection current

– Insertion loss drops and bandwidth narrows as SOA current is increased

Radius: 200 um
Couplers: 17% power cross-coupling
Passive guides: 3 cm-1

SOA: 60 um long
7 QW centered, 25C
1 um wide BH
current flow only in the MQW
Spontaneous Coupling: 0.0037

0.1 mW
1.54 +/-Δ um

Bus

Drop

J = 830 A/cm2

I = 0.5 mA

Increasing 
gain

Increasing 
gain



Model of Active Ring

• Operation at very high gain (SOA injected current)

– Negative insertion loss achievable, but very noisy

Radius: 200 um
Couplers: 17% power cross-coupling
Passive guides: 3 cm-1

SOA: 60 um long
7 QW centered, 25C
1 um wide BH
current flow only in the MQW
Spontaneous Coupling: 0.0037

0.1 mW
1.54 +/-Δ um

Bus

Drop

J = 1.67 KA/cm2

I = 1.0 mA



Single Ring Active Filter:
Simulation Benchmark to Experiment

• Complete simulation of dynamic range and noise of active 
InGaAsP multi-ring filters

– Include gain distortions and spontaneous emission noise

• Time dependent rate equation method

– Gain and spontaneous emission modeled as function of injection 
current at all wavelengths simultaneously

Red & black data

Blue & green data



3-ring active filter simulations

I = 2.25 mA

I = 0.5 mA

• For 3-ring maximally flat filters simulate 

– Linewidth, Insertion loss

– Dynamic range and Noise floor

• SOA gain and power saturation depend on key factors

– Number and configuration of QWs and Injected current

– Simulate case of both 3 and 7 QW SOA



InP Filter Dynamic Range

• Active InGaAsP filter shows improved filter transmission compared to passive SiON
design over >30 dB dynamic range

• Spontaneous emission noise in SOAs limits SNR at lowest input optical powers

• SOA saturation causes compression of filter S21 at resonance at high end of input 
power

Compare to passive, SiON filter
loss = 0.2 dB/cm
ideal input coupling
-3 dB input coupling3 rings

3 QW SOAs
Maximally-flat design

Noise floor from SOA 
spontaneous emission

Filter S21 compression
due to SOA gain compression
at high circulating 
optical power



Summary

• Time domain model of active ring with 
SOAs developed

– SOA model includes gain saturation and ASE

• 3-ring filter with 3 and 7 quantum well gain 
sections simulated

– Optical linewidth
– Noise floor
– Linearity and dynamic range of S21 versus input power

• InP active filters show promise for 
frequency-domain signal processing in 
monolithic integrated photonic integrated 
circuits

– 50 dB input dynamic range
• Output compressed at high power

– 0 dB loss in mid range accessible for 1 GHz filters
– Filters with power gain are possible but quickly become limited 

by noise
– Possible methods to improve dynamic range

• Reduce optical confinement factor
– Balance against lower gain or more complex offset 

active lasers in remainder of PIC

• Wider SOAs
• More pump current



Best Fit to C20G10S100, EW1858

• 8 QW offset

• 100 um SOA

• K2 = 0.03

• Loss = 1.4 
cm-1

• P in = 0.005 
mW

• I SOA model
– 0.31 mA

• I SOA exp
– 1 mA

Simulation data is in SOA100_K03_alpha14_8mqw_offset.xls and .mat



Detail Fit to C40G10S20, EW1858

• 8 QW offset

• 20 um SOA

• K2 = 0.06

• Loss = 1.4 
cm-1

• P in = 0.005 
mW

• I SOA model
– 0.12 mA

• I SOA exp
– 0.2 mA

– Pin exp
– 0.2 mW

Simulation data is in SOA20_K06_alpha14_8mqw_offset.xls and .mat

Try a small adjustment 
Spontaneous emission here


