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Abstract
The organization of highly failure tolerant, but effi-

cient storage clusters has not kept up with the increase
in their scale, which is about to reach exabyte storage ca-
pacity. We present here a technique that abstracts the data
layout of a two-failure tolerant storage system as a graph
coloring model. Through emulation, we show that such a
system scales to one million disks while providing an an-
nual durability of 99.999999% (eight nines) with a stor-
age overhead of only 20%. This durability is possible by
distributing the reconstruction of a failed disk over many
disks. In one emulation, for example, the work of re-
building a one terabyte hard drive was evenly distributed
across 459 disks and completed in less than four min-
utes with no disruption in service. This technique gives
system designers and administrators fine-grained control
to balance numerous system trade-offs. While we focus
here on data resilience, our technique can be applied to
optimize other system attributes such as load balancing
and power consumption.

1 Introduction

Large scale storage clusters and cloud based storage are
gaining widespread use as a result of the efficiencies and
simplicity that they provide the end user. Unfortunately,
most commercial clusters often rely on replication. The
overhead of replication (100% or more) requires many
extra disks relative to more efficient data encoding tech-
niques such as RAID’s parity striping. These extra disks
cost in terms of maintenance and power. On the other
hand RAID arrays provide some efficiencies with data
encoding, but they suffer from significant recovery times
to rebuild a failed disk and do not scale well as the num-
ber or size of the disks increases.

To address these issues we present, RESAR (Robust,
Efficient, Scalable, Autonomous Reliability) a technique
for managing large scale distributed resources. We use

RESAR to manage parity encoding techniques across
clusters from 250,000 to one million disks and are able
to provide a resilence that is better than duplication and
RAID6 with an overhead of only 20%. RESAR pro-
vides fast recovery from disk loss by distributing the
work for recovery across hundreds of disks. In our em-
ulations RESAR was able to recover from the loss of
a one terabyte disk in under four minutes. In addition
RESAR provides the ability for fine grained control of
parity overhead while maintaining reliability guarantees
that exceed most commercial systems that use replica-
tion.

In RESAR we divide each disk into a fundamental unit
of data that we call a disklet (e.g. one terabyte could be
divided into 51 20 GB disklets). Using these disklets,
RESAR abstracts the data layout to a graph model where
vertices represent parity and edges represent data. We
then reduce the mapping of these disklets to specific hard
disks to a graph coloring problem where we have as
many colors as we have disks. The coloring algorithm
is designed to distribute the work of rebuilding a failed
hard disk across as many nodes as possible.

For example, in our emulations to recreate each failed
disklet, nine systems (eight reliability group members,
and one destination disk) would work in parallel stream-
ing the 20 GB to calculate and store the data for each of
the 51 lost disklets, for a total of 459 machines that are
involved in the recovery of one disk dailure. The result
is that while a RAID array may take hours to recover
from a single disk failure in our emulations our RESAR
cluster recovered from disk failure in under four min-
utes. As long as the cluster is large enough to distribute
the recovery (typically more than a thousand disks) the
expected recovery time is directly proportional to the se-
lected disklet size and independant of the number or size
of the disks in the cluster. In addition to fast recov-
ery RESAR also provides the ability to do layout that
is aware of multiple levels of resilience (e.g. disk, server,
rack, site) and the ability to exercise fine grained control
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over how many data disks participate in a parity disklet.
The rest of the paper is organized as follows. Section

2 details RESAR. In sections 3 we present our emula-
tion environment. Section 4 follows with the results from
these emulations. Section 5 and 6 present a theoretical
analysis. We discuss related and future work in sections
7 and 8 and conclude in section 9.

2 Design Distributed Data Resilience with
Graphs

Here we present the use of graph models for data layout
across a two-failure tolerant data encoding scheme. This
technique we call RESAR, is used to create a one million
disk storage cluster. We use disklets as the basic stor-
age allocation element. A disklet represents contiguous
storage on a disk, typically in the order of twenty to two
hundred gigabytes. We show how each disklet is grouped
into two reliability groups each with a parity disklet. We
abstract this encoding as a graph where parity disklets
are vertices and data disklets are edges of a graph, creat-
ing a multi-million node almost regular graph. We rep-
resent the assignment of a disklet to a disk as coloring
a graph vertex or edge with a color that represents the
disk. We find evaluating data layouts in terms of graph
coloring easier and scalable. Our constraints enable a
system to survive any two-element failure and distribute
the work of recovery as broadly as possible, resulting re-
covery times of a few minutes instead of hours.

2.1 Disklets and Graph Representation
Data layout with RESAR involves two steps: First we
place each disklet with data (a data disklet) in two re-
liability groups, each with n data disklets and one at-
tached parity disklet. Parity is encoded as the exclusive
or (XOR) of all the data disklets in the reliability group.
Second, we assign disklets to disks in a manner that any
two disklets in a reliability group are never collocated in
the same disk. Note, we can also color with awareness to
other properties such as distinct servers or racks but for
this work we focus on disks.

In the language of Mathematical Design Theory, the
reliability groups are blocks, subsets of the set of all
disklets. We require that:
(1) Each disklet is in exactly two blocks.
(2) Each block contains exactly n elements.
(3) Two different disklets are in at most one block.
The last property is necessary to guarantee two-failure
tolerance. If two disklets were in two different reliability
groups, they would generate the same contribution to the
two parity disklets. Therefore, if both were to fail, there
is not enough data left to reconstruct the data in these
disklets. A set of blocks with these properties is called a
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Figure 1: Left: small two-failure resilient array Right: its
design-theoretical dual

configuration. The dual of a configuration is an n-regular
graph, which we use to argue about layout. In this dual
graph, the vertices are reliability groups and the edges
are the data disklets that belong to the group. As each
reliability group has exactly one parity disk, we achieve
our graph representation, where parity disklets are repre-
sented by vertices and data disklets by edges.

Figure 1 gives an example for a small two-failure re-
silient array and its design-theoretical dual. The grid on
the left shows data disklets numbered 1 to 16 and parity
disklets given by a through h. The reliability groups are
formed by the rows and columns. In the dual, the 8 par-
ity disklets are the vertices and the data disklets are the
edges. An edge connects two vertices if the correspond-
ing data disklets is in the two reliability groups.

For our experiments, we use reliability groups of eight
data disklets (i.e. n= 8). Correspondingly, the dual graph
is eight-regular. We use a grid on a 4-dimensional torus
for the graph. Our choice of n = 8 gives us a parity over-
head of 20%.

2.1.1 Graph Coloring

Placing concrete disklets on disks into reliability groups
is the same task as assigning abstract graph elements (the
edges and vertices) to a disk. We represent this as col-
oring the dual graph. Our colors represent disks. If we
want to survive rack failure or disk enclosure failures, we
represent the disks in the rack or enclosure as a palette, a
set of colors. Unlike classical graph coloring problems,
we are coloring vertices and edges, we have many col-
ors (as many as there are disks) and we want to use each
color the same number of times. Like classical graph col-
oring problems, we cannot color adjacent elements with
the same color. In fact, we strengthen this restriction
by requiring that graph elements (vertices or edges, i.e.
disklets) are not colored with the same color (or a color
of the same palette) if they are very close. If we color a
vertex with a color, we cannot reuse it on the edges ema-
nating from it, and if we color an edge, we cannot reuse
the color on its vertices nor on edges that share a vertex
with it. As a consequence, if we have to reconstruct data
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on a failed disk, no disk has to read more than a single
disklet, so that reconstruction workload is distributed.

While the coloring problem can be difficult for small
graphs, a major result of our emulations is the ease in
which a simple greedy algorithm that on occasion back-
tracks can solve it when we are having thousands of
disks. While not linear, our algorithm comes very close.

2.1.2 Recoloring

Large storage systems are far from being static. Disk fail-
ure becomes a more than daily occurrence and changes in
storage needs will change the number of disks and hence
disklets. Our colored graph representing the data layout
will change constantly. In response to these changes, we
have to recolor parts of the graph. For instance, if a disk
fails, then the data on the disklets in this disk need to
be moved to different disks. We assume a certain num-
ber of unassigned, spare disklets in the system. When
we recover the data on the disklets in the failed disk, we
place them in other disks. In our dual representation, this
corresponds to recoloring these disklets. The recoloring
needs to satisfy the same restrictions as the initial color-
ing.

While this article focuses on recovery from disk fail-
ures, the concept of recoloring facilitates the adminis-
tration of data movements for other reasons such as en-
ergy management (e.g. identifing stale data and collect-
ing them on disks that we then can turn off) or perfor-
mance (e.g. moving data from heavily used disks to save
bandwidth.) In all cases, the graph representation allows
the generation of simple algorithms that maintain two-
failure tolerance and support other system goals.

2.2 Recovery

To recover a failed drive we must recover each of the
disklets in the drive. Data disklets are in two different
reliability groups. If all the disklets in either are avail-
able (or can be recovered), we can recover the data in the
lost disklet. If both of them are available, we can decide
which we want to use. We do not currently exploit this
for optimization. Data in a lost parity disklet is regener-
ated by all data disklets in the reliability group.

In the graph representation, a disklet on a failed disk is
marked as failed within the graph until the data is recov-
ered when the disklet is given a new color corresponding
to the location of the rebuilt disklet. Figure 2(a) shows
a failed parity disklet and four data neighbours that are
used to rebuild the parity disklet. On the right it shows
how a failed data disklet has two possible choices for re-
building, one for each reliability group. As long as the
corresponding disks are available (or can be recovered),
there is no data loss.

f1

(a) (b)

f2

Figure 2: Left: failed parity disklet with its neighbours Right:
failed data disklet with its neighbour
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Figure 3: Cascading recovery of multiple failures in RESAR.

2.2.1 Recovery Patterns

Because of the highly interconnected nature of a RESAR
cluster it turns out that in the vast majority of cases it can
recover from the failure of more than two disks. A com-
plete discussion is left to Section 5 but we show here how
RESAR enables a cascade of recovery from failures. Fig-
ure 3 shows a case with four failures (marked f1– f4) that
requires a cascade of recovery. In subfigure (a) the first
two of these failures ( f1 and f2) are data disklets that are
reconstructed with the disklets labeled r1 and r2 result-
ing in subfigure (b). Then to recover f3 disklets labeled
r3 are used. Finally in subfigure (c) we can calculate the
parity disk labeled f4 resulting in a complete recovery
from four failures.

Arguments about failure tolerance are much easier in
the graph than in the original primary design, as was pre-
viously observed [6]. Disk and sector failure induce a
failure pattern in the graph. In spite of this well con-
nected network there are still some patterns that are ir-
reducible. These irreducible failure patterns describe in-
stances of data loss. For an edge to be a part of an irre-
ducible failure pattern, either the end-vertices also failed
or at least one of the adjoining edges has also failed and is
irreducible, or both. Therefore, minimal irreducible fail-
ure patterns are either a chain, Figure 4(a,b), or a cycle,
Figure 4(c,d). The chain is a walk starting and ending at
a failed vertex connected with failed edges in between.
The cycle is and edge cycle in the sense of graph the-
ory. The smallest minimal failure patterns are the bar-
bell (Figure 4(b)) and the triangle (Figure 4(d)).

While these worst case scenarios may seem trouble-
some the truth is that RESAR’s approach enables a
strongly interconnected network of resilience across re-
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Figure 4: Irreducible failure patterns.

(a) (b)

Figure 5: RESAR graphs (a) as compared to RAID6 (b).

liability groups. As we showed above a RESAR cluster
can recover from a large number of failures in a cascade
of disklet recovery. This is because RESAR enables a
broader distribution of reliability groups across the com-
plete cluster. Figure 5 shows the graph dual of a RESAR
(a) and RAID6 (b) array with three node failures. In this
case RESAR can recover but RAID6 would see data loss.
When comparing this to the graphs of a RESAR cluster
it is visually apparent why a RESAR cluster offers much
greater resilience and more efficient use of resources in a
distributed system.

2.3 RESAR System Dynamics

The two key parameters of a RESAR system are the total
number of disks and the disklet size in the cluster. We
now discuss how these parameters affect system dynam-
ics.

For this work we focus on systems with disklets from
20 GB to 200 GB running on 1 TB hard disks, and clus-
ters ranging from 250,000 to one million disks. If we
assume that disks can sustain a read rate of 128 MB/s,
a recovery of a 100 GB disklet will take approximately
800 seconds. If we recover all disklets on a failed disk
in parallel and can neglect the time needed to discover
the failure, then we only need 800 seconds to recover
completely from the disk failure. If we have 1 TB hard
drives (and use a 4 dimensional grid as a graph), then we
recover 10 disklets, reading from 80 different disks and
writing to 10 additional disks. If we shrink the disklet
size to 20 GB, then we have to recover 51 disklets, read
from 408 different disks, and write to 51 disks, but use
only 160 seconds to do so.

Head of Rack

Storage Node Head of Rack

Storage Node

Master Node

Rack 1 Rack n

Figure 6: Physical layout with racks and servers

There are three reasons to use a lower bound for
disklet size. First, if disklets are smaller, then there are
many more of them and the administrative overhead of
them increases. Second, fitting large resources like files
into small containers (the disklets) becomes more diffi-
cult and the small spaces in a disklet that cannot be used
because no resource fits into them will add up. Third,
the number of different disks involved in a recovery is
inversely proportional to the disklet size and has to be
much lower than the total number of disks in the system
for our coloring algorithm to work well.

In this work, we focus on systems with disklet sizes
between 20 GB and 200 GB and scaling to a million 1 TB
disks to reach an exabyte of total storage. For large clus-
ters we intended to develop techniques for distributed
coloring and administration.

3 Emulations

To better understand how RESAR would work at scale
we used Sandia’s Megatux platform [16] to emulate a
RESAR cluster of over one million disks. Megatux was
designed to use lightweight virtualization to study large-
scale system behaviors. Its uses virtualization to emu-
late only the hardware and run the actual software stack.
This approach gives us high-fidelity emulations and has
proven very effective in large-scale system experimenta-
tion. Using high performance runs on the Jaguar super-
computer Megatux has been able to run as many as 4.5
million Linux VMs.

For this work we used a more modest cluster that em-
ulated between 5,000 and 20,000 RESAR storage nodes.
Each storage node emulates 50 one terabyte hard drives
with read speeds of 128 MB/s.

3.1 Initial Layout

Currently we use a centralized algorithm for coloring the
graph that runs on a single server called the Master Node.
The Master node’s responsibilities are storage node reg-
istration, layout creation and layout distribution. When
a storage node starts it registers itself with the head of
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rack and the head of rack then forwards registrations to
the master node. This allows us to scale registrations to
hundreds of thousands of servers. Once the master has all
the storage node registrations the one time layout process
can be started.

Transmitting the whole layout does not scale very
well. Instead to ensure each storage node can coordinate
any needed recovery they are given the layout informa-
tion of all of their disklets and the layout for all of the
reliability group members of their disklets. In the graph
dual this means a sever knows of all of it’s disklets and
every adjacent edge or vertex. This also avoids single
point of failure and distributes the administration over-
head for recovery. Distribution of layout is also aggre-
gated by each head of rack. In our emulation each rack
had 50 servers. The heads of racks receive the layout for
all the storage nodes on the rack and then forwards the
layout to each of them. On a storage server with 50 one
terabyte drives with 20 GB disklets (2,550 disklets total)
the layout is less than 1.5 MB of data. As a result the re-
quirements on the storage nodes are independent of the
cluster size and depend on how many disks the storage
node has, this allows us to scale.

3.2 Recovery Process

The system is designed for scaling, parallelization and
distribution. The recovery process is built around each
disklet. When a disk fails a recovery process for every
disklet is initiated. The load is then distributed to all sur-
viving members in the reliability group.

When recovering a disklet, the storage node that owns
it pseudorandomly chooses a recovery manager out of all
the members of the disklets in the reliability group. The
recovery manager requests up the chain to its head of
rack what the new destination will be, builds a pipeline
between the nodes and then informs each group member
(and itself) which of the disklets must be used in the re-
covery and where to send it. Once a transfer request is
completed the neighboring node informs the the recov-
ery manager. When all neighbors finish and the disklet is
written on its new location then the recovery manager in-
forms up the chain to the head of rack and consequently
to the master node that the recovery has finished.

By design the layout process ensures that when a disk
fails every disk involved in the recovery has only one
disklet to read. This means that for any failed disk we
can recover as fast as we can read a disklet from the
slowest hard drive involved. With 20 GB disklets on a
1 TB hard drive with reads of 128 MB/s, 459 disks will
recover have an expected recovery of approximately 2
minutes and 40 seconds. 100 GB disklets will expect to
recover in approximately 13 minutes and 20 seconds.

The network bandwidth requirements on the nodes de-
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Figure 7: Top left: failed data disklet and one of its reliabil-
ity groups. Bottom left: destination disklet. Right: recovery
pipeline

pends on where in the pipeline the node is located. In
Figure 7 the bandwidth requirement for nodes 2, 7 is
three times the slowest read speed (2 inbound streams
and 1 outbound), nodes 3, 9 and 10 need double the slow-
est read speed (1 inbound and 1 outbound). For all other
nodes the network bandwidth is simply the slowest disk
speed. Where each node sits on the pipeline is decided by
the recovery manager based on the physical layout and
available resources. If two nodes in the recovery process
are on the same rack then they will form an edge on the
pipe (nodes 8 and 3 could be on the same rack). We envi-
sion a system that would load balance and allows nodes
that are already very loaded to participate as leaf nodes
(nodes 8, 6, 5, 4 only have to transfer the contents and
does not need to XOR), requiring them only to forward
their data.

To recover a 1 TB drive in 2 minutes and 40 seconds
the total bandwidth on the system would be 51 GB/s
(eight recovery edges at 128 MB/s× 51 disklets). With 1
million drives in 20,000 servers grouped in 400 racks, as-
suming an even work distribution each rack would have
a bandwidth requirement of 130.6 MB/s. In short, mod-
est data center interconnect could easily handle these re-
quirements.

The size of the disklets should be dimensioned accord-
ing to the expected size of the infrastructure but it is not
a hard requirement. If the storage system has small num-
ber of drives compared to the total required to recovery
from a failure the layout process would relax its restric-
tion on using all different disks to recover from a disk
failure. Essentially slowing down the recovery process
to as fast as the entire system allows.

3.2.1 Drives

In our emulations we accounted for disk reads during re-
covery assuming a 128 MB/s IO rate. We looked at on-
line reviews of hard drives performance and found sev-
eral products that meet our assumption. A Seagate Bar-
racuda 1 TB 3.5 inch Hard Drive can sustain rates of
more than 128 MB/s for less than 100 USD. In order to
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Figure 8: System wide time between failures on 500,000 disks.

speed up the emulation the actual reading time is simu-
lated and depends on the current emulation clock multi-
plier. Each emulated hard drive handles its own read re-
quests. If during the emulation multiple failures required
to read the same drive we assumed a worst case where
each request would have to wait until the previous one is
served.

Every 200 ms to 2 seconds each storage server goes
through all the disks he manages and decides based on
pseudo randomly drawn numbers if a given disk should
fail. The probability of a disk dying between the last time
it was checked the the current check is a uniform prob-
ability throughout the year. The whole system behaves
like a poisson process with exponential times between
failures as shown in Figure 8. Pinheiro et al. [20] show
failure rates between 2% and 8% changing with the hard
drive age. Given that our simulation run for months at a
time or at most one year, we simplified our failure model
to a flat 4% annual disk failure rate.

3.3 Emulation Clock

We used a clock multiplier to enable our emulations to
cover system behavior over longer periods of time. Typ-
ically, we use a multiplier of 30 (i.e. 1 second or wall
clock accounts for 30 seconds of emulation time) but in
one case, a clock multiplier of 600 (i.e. 1 second covers
10 minutes) to enable experiments that cover over a year
of system behavior. As our clock multiplier grew our em-
ulations incurred an additive error because of the work-
load on the busy emulation nodes. The result is that our
emulated recovery times shows a recovery time greater
than what one would expect in real life. Figure 9 shows
emulated recovery times as the time multiplier varies, as
the multiplier approaches a value of one we see the av-
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Figure 9: Average recovery time over 100 failures as the emu-
lation time multiplier increases with 95% confidence intervals.

erage recovery approach to the expected optimal recov-
ery time and we see less variance. The reason behind
this emulation error is that at a high clock multiplier,
each time a storage node takes a few extra hundred mil-
liseconds to finish processing the recovery notification
messages the emulation clock would see a whole extra
minute. Even so these worst case recovery times are still
orders of magnitude better than the recovery of compa-
rable RAID systems.

4 Results

Here we present the results of our emulations of RESAR
storage clusters. Our emulations spanned many key sys-
tem parameters and showed that RESAR presents a sta-
ble system that can efficiently distribute data recovery
across many disks enabling recovery from a one terabyte
disk failure in under four minutes. We show how recov-
ery time is linear with disklet size for reasonable disklet
sizes. Our bemulations of RESAR clusters that show
over a year of stable behavior and scales of up to one
million disks.

4.1 Initial Data Points

Initially to demonstrate the system behavior we present
our emulations of a RESAR cluster running with 500,000
disks and a disklet size of 20 GB. Figure 10 shows the
recovery time for disk failures across this emulation. We
used a clock multiplier of 30 and ran this emulation for
20 days of emulation time. This graph shows a recovery
that is typically well under four minutes. These results
show that our data layout algorithm was successful in
distributing the workload of disk recovery.
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Figure 10: Disk recovery time on a system with 500,000 disks
and 20 GB disklets, with a clock multiplier of 30.

4.2 Disklet Size and Recovery
Next we explored how variations in disklet size impact
recovery times. To examine this we emulated a system
of 500,000 disks with disklet sizes of 20 GB, 50 GB and
100 GB. Figure 11 shows the recovery times as disklet
size varies. Each data point represents an emulation of
a RESAR cluster for running for one week of emula-
tion time at a clock multiplier of 30. This figure in-
cludes error bars that represent 95% confidence intervals
(barely discernible due to negligible variance). These re-
sults closely track our theoretical models and show how,
for reasonable parameters, disk recovery time is directly
proportional to disklet size. Additional data for emula-
tions of a cluster with 200 GB disklet was consistent with
this these results but was left out to make the graph more
readable.

As disklet size is reduced we are able to distribute re-
covery across more disks causing a faster recovery. In
practice as disklet sizes become smaller factors such as
network bandwidth and number of disk in the system
would come into play. As mentioned before, for this
work we focus on reasonable disklet sizes from 20 GB–
200 GB where disk I/O is the dominant factor.

4.3 Scale and Long Term Behavior
To look at RESAR across large scales and longer term
behavior we ran emulations that covered over a year of
emulated time and clusters of 250,000, 500,000 and one
million disks. For these tests we used a clock multiplier
of 600 (e.g. one second covers 10 minutes) and a disklet
size of 100 GB. Figures 12 through 14 show the recovery
behavior of these system as we double the storage capac-
ity. In all emulations, the disk recovery time clustered in
a range between 17 minutes and 34 minutes for 100 GB
disklets regardless of the number of disks on the system.
The expected recovery time for 100 GB disklets is 13
minutes 20 seconds. The recovery time in Figures 12
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Figure 11: Disk recovery times on a cluster of 500,000 disks
with a clock multiplier of 30. Error bars (barely discernible due
to negligible variance) show 95% confidence intervals and each
data point represents one week of emulation time.
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to 14 consistently bottoms out at the expected theoretical
recovery rate. From these graphs and the clock multiplier
discussion on Section 3.3 we can conclude that the wider
range of recovery times is simply a result of additive er-
ror from the clock multiplier.

Finally, we note that a system with four times as many
disks saw a four times as many disk failures as illustrated
by the higher density of data points in figure 14. Our
RESAR cluster show a consistent behavior across this
increase in failures and shows stable behavior for one
year in each emulation.

5 Failure Resilience

Comparison of failure tolerance among different organi-
zations is difficult [8], and calculation of expected an-
nual loss rate is beyond our mathematical capabilities
at least for RESAR itself. To yield comparable results,
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Figure 13: Disk recovery time on a system with 500,000 disks
and 100 GB disklets for one year, with a clock multiplier of
600.
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Disk Recovery Performance (500K drives with 100 GB disklets) Figure 14: Disk recovery time on a system with 1,000,000
disks and 100 GB disklets for one year, with a clock multiplier
of 600.

we restrict ourselves to calculating the robustness, i.e.
the probability of not suffering dataloss, given three disk
failures in the ensemble. To make numbers comparable,
we assume the same usable storage capacity.

The simplest to administer, but also the most costly
means of achieving failure tolerance is replication. If we
replicate, then we have 2n disks and loose data if a pair
of mirrored disks has failed. Among the

(2n
3

)
patterns of

three lost disks, we get to pick a pair of mirrored disks (n
possibilities) and an additional disk (2n−2 possibilities)
giving us the probability of data loss of

pDL Dup =
n(2n−2)(2n

3

)
The formula for triplication is simpler, as we get to pick
just one set of mirrored disks:

pDL Tri =
n(3n
3

)
If we use error-control codes, then the simplest organi-

zation is a distributed RAID Level 6, where we partition

0 200 000 400 000 600 000 800 000
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Figure 15: Robustness (number of nines) against simultaneous
failure of three disks as a function of the usable storage capac-
ity, given by the number of disks.

the disks into reliability groups each one with k data disks
and two parity disks. This gives us a total of n(k+2)/k
disks. We suffer data loss if all three of the failed disks
are located in the same reliability group. This gives us

pDL DR6 =
n
k

(
k+2

3

)(
n(k+2)/k

3

)−1

We are using RESAR with a graph that is based on a grid
in a four-dimensional torus. To maintain comparibility,
we assume that the disklets take up the whole disk. The
only three-failure pattern is the barbell, since in such a
graph, there are no cycles consisting of three edges. The
number of barbells is equal to the number of data disks.
The total number of disks is n(k+2)/k, as it has the over-
head of the distributed RAID Level 6.

pDL RESAR = n
(

n(k+2)/k
3

)−1

For the same storage overhead, a RESAR layout is 15
times more robust than the distributed RAID Level 6 lay-
out. We compare the robustness against three simulta-
neous failures in Figure 15, where we give the number
of nines of the probability of all data surviving in the
y-axis and the usable storage capacity measured in the
number of disks in the x-axis. As we can see, RESAR
is about half-way between triplication and distributed
RAID Level 6. This comparison is however heavily bi-
ased against the more storage efficient layouts, since they
have many fewer disks that can possibly fail.

6 Failure Distribution

To gain insight into the number of failed disks in a large
disk array, we can use a Markov model that makes the
simplifying assumptions of constant failure rates and re-
pair times. We characterize the system by the states 0,
1, etc..., where the number indicates the number of disks
currently failed. To simplify, we assume that failed disks
are replaced (“repaired”) at a constant rate ρ and that
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Table 1: Predicted probability of having a certain number of
disk failures in a cluster with 250,000, 500,000, 1,000,000 and
10,000,000 disks of 1TB capacity organized as a RESAR lay-
out with 100 GB disklets.

Failures 250,000 500,000 1,000,000 10,000,000
0 77.6% 60.2% 36.3% 0.0%
1 19.7% 30.6% 36.8% 0.0%
2 2.5% 7.8% 18.7% 0.2%
3 0.2% 1.3% 6.3 % 0.7%
4 0% 0.1% 1.6 % 1.7%
5 0% 0% 0.3 % 3.5%
6 0% 0% 0% 6.0%
7 0% 0% 0% 8.6%
8 0% 0% 0% 10.9%
9 0% 0% 0% 12.4%

10 0% 0% 0% 12.5%
11 0% 0% 0% 11.5%
12 0% 0% 0% 9.7%
13 0% 0% 0% 7.6%
14 0% 0% 0% 5.5%
15 0% 0% 0% 3.7%

disks fail at a constant rate λ . The total number of disks
is n. The state transitions are failure transitions from
State s to State s + 1 taken with rate (n− s)λ and re-
pair transitions from State s to State s− 1 with rate sρ .
We assume that we do not have failure transitions, so that
the model is an Erlangian birth-death system. We are in-
terested in the probabilities pi to be in State i when the
system is in equilibrium. We have the Kolmogorov equa-
tions for the steady state

nλ p0 = ρ p1

(n− s+1)λ ps−1 +(s+1)ρ ps+1 = ((n− s)λ + sρ)ps

We can deduce (and prove by induction) that

ps =
n− s+1

s
λ

ρ
ps−1

Since the ratio κ = λ/ρ is quite small as disks lasts for
long time and replacement is relatively quick, the ps con-
verge quickly to zero for s→ ∞, giving us excellent nu-
meric solutions even though no simple closed form ex-
pression exists.

We give the predicted probabilities of the system hav-
ing currently a certain number of disk failures in Tabel 1.
As we can see, a large enough system will almost always
have a certain number of disks under repair. The median
for the expected number of failures is λN−ρ

λ+ρ
, as we can

see from the recurrence relation. The fraction of disks
used in recovery work approaches asymptotically κ

1+κ
,

which for reasonable disk repair and failure rates is close
to κ .

7 Related Work

Overcoming the restricted bandwidth of a single disk was
the original driving force behind disk arrays. For exam-
ple, Cray research striped files over disks in the eight-
ies [12]. Redundant Arrays of Inexpensive (later Inde-
pendent) Disks (RAID) added a single, distributed parity
disk to striping [4, 7, 18, 19]. To shorten recovery times,
disk arrays of that time usually included one or more
spare disks that allowed instant recovery once a failure
was detected. Distributed sparing distributes not only
the parity disk but also the spare disk [13]. Researchers
quickly realized that increasing the number of disks gives
opportunities for additional failure resilience. Declus-
tering forms virtual RAID Level 4 stripes from blocks
(corresponding to our disklets) on different disks [10, 11,
14, 15, 17, 21]. In the case of a disk failure, declustering
distributes the reconstruction workload equally among
all disks, giving better performance in the presence of
a failed disk, leading to shorter recovery time and thus
closing the window of vulnerability [24] where an addi-
tional failure results in data loss. The problem of lay-
ing out a disk array with a moderate number of disks
(fewer than 100) translates into problems of Combinato-
rial Design theory, a branch of Combinatorics. A variety
of layouts have been proposed, which achieve optimality
in some sense [1, 2, 22, 23].

The possibility of additional disk failures during the
window of vulnerabilities, and especially the impact of
“bad blocks” discovered only during data recovery oper-
ations has fueled research into using erasure codes with
two parities or placing a disk block into two different re-
liability stripes. The earliest proposal of the latter type
comes from Hellerstein et al. [9]. Erasure codes that use
only exclusive-or operations have also been developped
such as Even-Odd [3], X-codes [25], Row-Diagonal Par-
ity (RDP)-codes [5], among others. This type of work
continues.

8 Future Work

We presented RESAR and explored its failure tolerance.
A large number of important issues are left unexplored.
In the area of reliability, disk failures are not the only
source of data loss. Latent sector faults are often only
discovered when disks are accessed for recovery pur-
poses and can lead to data loss. We did not model this
yet. Second, disks are not the only components that can
fail. It is certainly reasonable to protect against tempo-
rary or complete loss of all disks in a rack or an enclosure
unit, because vibration, lack of cooling, etc. can damage
all disks in it.

The fact that all data is protected by two different relia-
bility groups allows us to use two disjunct sets of disks in

9



order to recover a disklet. As disks experience accesses
by clients, the two ways of recovering a disklet (and the
many different ways of recovering the data in a lost disk)
do not have the same costs.

The graph representation gives a more intuitive ab-
straction for programming tasks such as creating zero
traffic disks that can be turned off for energy savings or
that can be decomissioned, integrating new disks into the
cluster, or redistributing disk load for better client access
times and to manage network load. However, we have
not programmed and emulated these actions.

Currently, our emulations use a single command mod-
ule. As storage systems scale towards exabytes, control
needs to be distributed and itself protected against fail-
ure. While this task seems to be simple engineering, we
have not performed and tested it. Additionally, we intend
to enhance our emulations to include IO workloads and
examine write performance.

An architecture based on a distributed RAID Level 5
or 6 lends itself to more efficient forms of parity logging
as the updates perculate only within the RAID group.
In our layout, parity logging is more challenging. An
efficient implementation might need to have the par-
ity disklet become virtual so that an update to a data
disklet yields a relocation of the two corresponding par-
ity disklets, or for a busy parity disklet to live in RAM.
These aspects has not yet been sufficiently considered in
our work.

9 Conclusions

We have presented RESAR, a technique for dealing with
large scale distributed resource management and have
shown how this technique can be used to create a re-
silient and efficient storage cluster scaling from thou-
sands of disks to millions of disks. Our model for ex-
pressing data layout as a graph coloring problem present
great promise for large cluster efficiencies with fine grain
control over parameters for reliability and overhead. Our
analysis shows of how a RESAR cluster would compare
to the reliability of techniques like replication and RAID.
Mathematically RESAR is 15 times more resilient than
RAID 6 with the same storage overhead and nearly as
resilient as triplication with far less overhead. RESAR
by it’s intrinsic nature provides a more resilient structure
for reliable large scale data. In addition this system of-
fers great potential for fine grained control of numerous
system parameters such as parity overhead and reliability
guarantees.

Using Megatux emulation system we have run the ac-
tual software stack that would manage a RESAR cluster
and have shown the system to be efficient in compute
and memory requirements. Our emulations verified our
analytical results for a stable and scalable system a range

of cluster and disklet sizes. The distributed and paral-
lel nature of the recovery mechanism allows the system
to recover from a disk failure in as little as four minutes.
Far ahead of recovery times for systems with comparable
overhead.
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