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Abstract—For over two decades the dominant means
for enabling portable performance of computational sci-
ence and engineering applications on parallel process-
ing architectures has been the bulk-synchronous par-
allel programming model. Code developers, driven by
performance considerations to minimize the number of
messages transmitted, have typically strived to increase
the size of each message through aggregation strategies.
Emerging and future architectures, especially those seen
as targeting Exascale capabilities, provide motivation and
capabilities for revisiting this approach. In this paper we
explore alternative configurations within the context of a
large scale complex multi-physics application and a proxy
which represents its behavior, with results demonstrating
some important advantages as the number of processors
increases in scale.

Index Terms—High performance computing; parallel
architectures; computational science and engineering.

I. INTRODUCTION

For more than two decades, the bulk-synchronous
parallel programming model (BSP) [21] has been
the dominant theoretical computational model for
the implementation of large scale, high-performance
computation science and engineering (CSE) appli-
cations. This has been aided in part by the stan-
dardization of the Message-Passing interface (MPI)
which have provided a stable, portable and largely
performance runtime for applications written to the
BSP paradigm.

As widely available parallel processing architec-
tures have evolved to focus on increasing inter-
connect bandwidth (relative to latency), application
developers have optimized their code to “bulk up”
inter-process communication — essentially choosing
to aggregate data from various structures into fewer,
single, larger messages [6]. Although many appli-
cations have continued to perform well up to peta-
scale [2], [9] using a bulk-message approach, for a
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variety of reasons including hardware design limi-
tations, increasing interconnect power consumption
and changes in software design, this situation is
expected to change in future machines [1], [20].

Our work is motivated and driven by our ex-
perience in running large-scale applications serv-
ing mission critical functions across a breath of
agencies including the United States Departments
of Energy and Defense. These experiences include
empirical characteristics observed in running many
applications at full machine scale where artifacts
such as messaging rate and interconnect bandwidth
can create significantly different behaviors than seen
at smaller runs [22]. The contribution of the work
described in this paper is to highlight the need to
revisit traditional application configuration strate-
gies. Specifically, we illustrate the benefits of careful
attention to logical-to-physical mappings of parallel
processes as a function of network topologies, and
then demonstrate the effectiveness of a message
passing strategy that greatly reduces the need for
message aggregation. We note that the outcomes
presented are at odds with the conventional ap-
proaches to communication optimization performed
over the past two decades but are in some sense
a sentinel for the strategies to come as machine
architectures are developed for Exascale-class com-
puting.

This paper is organized as follows. After a brief
discussion of the BSP model and related work, we
describe the platforms and methodology for our
experiments. Next we describe the experiments, pro-
gressing from the current implementation of a repre-
sentative well-known CSE application through some
reconfigurations using a proxy application intended
that enables rapid exploration of some alternative
configurations. We conclude with a summary of our



findings and a discussion of future work.

A. The Bulk Synchronous Parallel (BSP) Model

The BSP programming model is the predominant
“bridging model” in parallel computing for science
and engineering applications. It makes a clear dis-
tinction between computation and communication,
providing a clear distinction between hardware and
software. This approach has enabled continued and
improving performance of parallel applications in
spite of the rapid evolution of architectures and
enabling technologies.

By message aggregation we mean the gather-
ing of data from different computational regions,
from (presumably) non-contiguous memory loca-
tions, into a single user-managed message buffer.
The receiving process must then scatter the data
out into (again, presumably) non-contiguous data
locations, typically before computation can again
proceed. This reduces the number of inter-process
communication steps, exploiting the node inter-
connect bandwidth capabilities, while simultane-
ously avoiding message latencies. We abbreviate
this BSP supplemented with message aggregation
as BSPMA.

The BSPMA model incurs or exacerbates four
costs, none of which advances the computation: con-
sumption of memory (the message buffers), on-node
bandwidth (copying into and out of the buffers),
synchronization (once the data is transferred), and
interference with caching of the computation (and
potentially data transfer information). Further, from
an application development viewpoint, it interferes
with the natural mapping of algorithms to program-
ming languages. BSPMA also typically induces
intermediate data buffering requirements, subverting
the node interconnect capabilities designed specif-
ically to reduce the communication costs, inhibits
asynchronous movement of data, and interferes with
the networks’ ability to interleave data across the

topology.

B. Related Work

For a breadth of CSE application programs, inter-
process communication is captured within higher
level interfaces [6]. Our focus herein is on the inter-
process communication strategies that we expect to
be effective on future architectures. Toward that end,

the capabilities of the Cray XE6 are seen to be rep-
resentative of the sorts of architectural capabilities
that might be exploited while minimizing the impact
to the huge investment in application codes. Hagar,
Jost, and Rabenseifner [12] illustrate the effects of
process topologies on the performance of the NAS
Parallel Benchmarks [4] configured for OpenMP
MPI hybrid on clusters of multi-core SMP nodes.
Both of these studies were based on the Cray XT4
and XTS5 (and an IBM Power5 from Bull). Yu,
Chung, and Moreira performed related studies on
the BlueGene L architecture [23]. Hoefler et al [15]
describe the new topology interface in MPI 2.2,
which could provide a portable interface for the
processor mapping we found effective.

II. EXPERIMENTAL PLATFORMS

In this study, we employed three high performance
computing platforms that span a set of processors,
interconnects, and interconnect topologies of inter-
est to the NNSA/ASC program and wider HPC
community: Cielo, a Cray XE6, a ASC capabil-
ity platform; Chama, an Intel/Infiniband capacity
cluster, and Cascade, a Cray XC. We selected
these machines for their diversity of some important
characteristics yet with similarity in other areas
that allow for some important interpretations. A
summary of some important specifications is shown
in Table 1.

Before proving additional detail on these plat-
forms, we begin with some terminology. Message
injection rate is the ability of a node to place
messages onto the network interconnect card (NIC).
Injection bandwidth measures the ability of the NIC
to put data onto the interconnect. Global bandwidth
measures the ability of the interconnect to move data
between nodes.

Cielo, an instantiation of a Cray XE6, is com-
posed of AMD Opteron Magny-Cours oct-core pro-
cessors, connected using a Cray custom interconnect
named Gemini, and a light-weight kernel operating
system called Compute Node Linux (CNL). The
system consists of 8,944 dual socket compute nodes,
for a total of 143,104 cores. Each processor is di-
vided into two four processor core memory regions,
called NUMA nodes (illustrated in Figure 1(a)),
connected using HyperTransport version 3.



Platform Cielo Chama Cascade
Processor AMD Opteron Magny-Cours | Intel Xeon Sandy Bridge | Intel Xeon Sandy Bridge
Nodes 8,518 1,232 2,048
Sockets/node 2 2 2
Cores/socket 8 8 8

Total number of cores 136,288 19,712 32,768

Clock speed (GHz) 2.4 2.6 2.6

Memory per node (GB) 32 32 32/64/128
Memory DDR4 1333 MHz DDR3 1600 MHz DDR3 1600 MHz
Socket Connection HyperTransport PClIe Gen2 / QPI PCIe Gen3
Interconnect Gemini 3D-torus Qlogic QDR Fat tree Cray Aries, Dragonfly

TABLE 1

KEY ARCHITECTURE PARAMETERS

AMD
Magny-Cour
8-core

Gemini

AMD
Magny-Cour
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Fig. 1. Node Architectures

Nodes are connected using Cray’s Gemini 3-D
torus interconnect. A Gemini ASIC supports two
compute nodes. The X and Z dimensions use twice
as many links as the Y dimension (24 bits and 12
bits respectively) and introduces an asymmetry to
the nodes in terms of bandwidth in the torus. This
needs to be taken into account when configuring a
system in order to balance the bisection bandwidth
of each dimensional slice in the torus. Cielo is
configured as an 16 x 12 x 24 3-D torus. Injection
bandwidth is limited by the speed of the Opteron
to Gemini HyperTransport link, which runs at 4.4
GT/s. Links in the X and Z dimensions have a peak
bi-directional bandwidth of 18.75 GB/s, and the Y
dimension peaks at 9.375 GB/s.

Chama, constructed by Appro, Inc., is designed
for production capacity computing by the NNSA
ASC Trilabs. The system consists of 1,232 com-
pute nodes, connected by a QLogic Infiniband fat
tree, using 12000 series switches and 7300 series
adapters. Each node is composed of two oct-core
Intel Xeon E5-2670 Sandy Bridge processors, illus-
trated in Figure 1(b), for a total of 19,712 cores,
running a RHEL operating system.

The Cray XC Cascade system is composed of
Intel Xeon Sandy Bridge oct-core processors, con-
nected using a Cray Aries custom interconnect [3]
named Dragonfly [17], and CNL. The system con-
sists of 2,048 dual socket compute nodes, for a total
of 32,768 cores.

III. A REPRESENTATIVE APPLICATION

CTH, used throughout the United States DOE com-
plex, and within the US Department of Defense’s
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Fig. 2. CTH shaped charge simulation: time progresses left to right.

(DoD) High Performance Computing Moderniza-
tion Program (HPCMP) [10], is a multi-material,
large deformation, strong shock wave, solid me-
chanics code developed by Sandia National Lab-
oratories [14]. The code solves the Lagrangian
equations using second-order accurate numerical
methods and mesh remap to reduce dispersion and
dissipation including models for multi-phase, elastic
viscoplastic, porous and explosive materials.

Studies involving several distinct problem sets
show that their behavior, in terms of the boundary
exchange, is consistent [5], allowing us to focus
on one common configuration. The “shaped charge”
problem, in three dimensions on a rectangular mesh,
is illustrated in Figure 2.

The domain is divided into three dimensional
regions which are mapped to parallel processes.
Each MPI rank can have a maximum of six commu-
nication neighbors; for these problems that number
is reached (for some ranks) once 128 ranks are
employed. Boundary data (two dimensional “faces”)
is exchanged 19 times each time step. For the
shaped charge problem set, each exchange aggre-
gates data from 40 arrays, representing 40 variables,
resulting in an average message size of 4.1 MBytes,
illustrated in Figure 3(a). Collective communica-
tion, called 90 times each time step, is typically
a reduction (MPI_Allreduce) of small counts.
Computation is characterized by regular memory
accesses, is fairly cache friendly, with operations
focusing on two dimensional planes.

IV. EXPERIMENTS

We begin with a study demonstrating the importance
of mapping MPI ranks to the physical topology
of the interconnect. Once effectively addressed, we
explore an alternative communication strategy, de-
signed for our exascale explorations.

do 1 = 1, num_tsteps
| -
. —
num_vars . ’

¢ Multi- ®
N

MBytes .
do j » 1, num vars
compute
end do
end do
(a) BSPMA

do i = 1, num tsteps

do j = 1, num_vars

H-i=i—R

compute
end do
end do
(b) SVAF

Fig. 3. MiniGhost halo exchange strategies

A. Mapping processes to processors

CTH has performed well in a variety of comput-
ing environments over a long period of time [16],
[18], [19]. However, a recent study involving high
processor counts revealed significant scaling degra-
dation in the nearest neighbor communication strat-
egy employed in CTH [5]. The performance of a
miniapp, called miniGhost [8] from the Mantevo
project [13], configured to represent the communi-
cation requirements of CTH [7], began degrading
at 4,096 processors, and was out of control by
131,072 processors (illustrated in Figure 4(a)). Note
that the MPI reduction operations (typically global
summation of a double precision scalar) scale well
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Fig. 4. CTH and miniGhost performance on Cielo

regardless of the process mapping, one indication of
a quality MPI implementation.

The tractable nature of miniGhost enabled us to
trace the problem to the communication in the z
direction, illustrated in Figure 4(b). The problem
was caused by the manner in which logical pro-
cesses, organized as a logical three dimensional grid
by CTH, were assigned to physical processors and
mapped onto the torus. The combination of very
large process counts and very large messages led to
increasing contention. (We see similar behavior with
the OpenMP+MPI implementation, where fewer but
even larger messages are transmitted.)

The number of hops (referred to as the Manhattan
distance) required to communicate with = and y
neighbors stays small as the number of processes
increases, but the number in the z direction starts to
grow rapidly after 2048 processes. Neighbors in the
x direction required a maximum of one hop and in
the y direction a maximum of two hops. This com-
bined with the very large messages of a typical CTH
problem set (e.g. for the “shaped charge” problem,
40 three dimensional state variable arrays generated
message lengths of more than 5 MBytes) resulted in
poor scaling beginning at 8,192 processes, a trend

that accelerated after 16,384 processes.

In response, we implemented a means by which
the parallel processes could be logically re-ordered
to take advantage of the physical locality induced
by the communication requirements. In the nor-
mal mode, CTH (and miniGhost) assigns blocks
of the mesh to cores in a manner which ignores
the connectivity of the cores in a node. On Cielo,
as with other Cray X-series architectures, cores
are numbered consecutively on a node, and this
numbering continues on the next node. Blocks of the
mesh are assigned to cores by traversing the blocks
of the mesh in the x direction of the mesh starting
at one corner of the mesh. Once those blocks are
assigned, the next block assigned is the block one
over in the y direction of the mesh from the first
block assigned. The mesh is again then traversed
in the z direction and blocks are assigned to cores.
This process is continued until there are no more
blocks in the y direction. The next block assigned
is then the first block in the z direction from the
first block assigned. The blocks of the mesh with
this z value are then assigned as the first blocks
were assigned. This process is then repeated until
all blocks in the mesh have been assigned to cores
in the machine.

For example, the original approach logically maps
128 parallel processes onto a 4 x 8 x 4 grid of
processes, illustrated in Figure 5(a). The result is

(a) Original mapping (b) Re-ordered mapping

Fig. 5. CTH logical processor mapping on Cielo

that the communication partners in the z direction
are 1 away from the diagonal, those 4 away are
the y neighbors, and those 32 away are the z
neighbors. Our re-ordering algorithm assigns blocks
of the mesh to the processor cores of the machine



by groups. Illustrated in Figure 5(b), the re-ordered
problem maps 2 x 2 x 4 blocks to each node. Here
the communication partners that are 1 or 15 away
are the = neighbors, those 2 or 30 away are the y
neighbors, and those 30 away are the 2z neighbors.
Since there are only four processor cores in the z
direction and four processor cores in the z direction
of the block on each node, there is only one z
diagonal. In the case where there are more than four
processor cores in the problem in the z direction,
there would be another diagonal for z neighbors.
The result is a slight increase in the average hop
counts in the = and y directions, but a significant
decrease in the average hop count in the z direction,
as seen in Table II.

Number of Original Order Re-ordered
MPI ranks X Y Z X Y Z

16 00 00| 00 | 00 00| 0.0
32 00| 00| 00 | 00]00] 0.0
64 0000 | 03 |00 03] 0.0
128 0000]| 1.0 | 00| 05 ] 0.0
256 00 00| 1.0 | 00| 05| 03
512 00011] 20 |00] 06|04

1024 00 03] 21 |02 10| 07
2048 00103] 27 |03 ]12]12
4096 0003 ] 37 |03 ]12] 12
8192 00105] 51 |02]11]20
16384 00| 05| 49 | 02| 1.1 ] 22
32768 00 |05] 56 |02]11]25
65536 00 | 1.1 ] 102 | 02 | 1.6 | 2.8
131072 00| 1.1 ] 101 | 02| 16| 3.1

TABLE 1I
MINIGHOST AVERAGE HOP COUNTS ON CIELO

Consider the largest CTH problem set run:
131,072 processes, configured as a 32 x 64 x 64
logical grid, each with a local domain of 160 x
96 x 80, for a global domain of dimension 5120 x
6144 x 5120. Over the course of execution, 770, 048
messages are transmitted, of size 2.57 Mbytes, 4.25
Mbytes, and 5.08 Mbytes in the z, y, and z di-
rections, respectively, for a total volume of 3.06
TeraBytes of data. Table III shows the percentage
of messages sent off-node, in each direction, for
the original and re-ordered process execution. At
the expense of a 16-times increase in the number
of off-node message in the x direction, traveling a
short distance, the number and distance of off-node
messages in the farther y and even farther z direc-
tions are reduced by more a factor of two and four,

% off-node
Original | Re-ordered
x direction 3.23 48.39
y direction 100 49.21
z direction 100 23.81
Total 68.09 40.43
TABLE IIT

CTH OFF-NODE MESSAGE TRAFFIC ON CIELO
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Fig. 6. CTH and miniGhost performance on on Chama

respectively. The number of stalls seen between the
nodes and the NIC correlates with the hop count,
indicating contention, but further analysis is ongoing
in order to make stronger conclusions.

Similar experiments were performed on Chama,
shown in Figure 6. Again we see the benefit of
the re-ordering scheme, as informed by miniGhost.
What is not yet clear is the behavior that would
be seen for significantly higher processor counts.
However, the trends suggest that this approach is
also viable for this architecture.

Export control restrictions on CTH preclude exe-
cution on the Cascade system, but we are confident
that miniGhost is sufficiently representative of CTH,
as seen below.

B. Single variable boundary exchange

The BSPMA strategy adheres to an effective
means for managing data movement. However, in-
terconnect architects are telling us that exascale
goals, especially with regard to power consumption,
are causing significant changes in interconnects ca-
pabilities. In particular, injection rate and injection
bandwidth are increasing proportionally more than
global bandwidth. These changes are hinted at by
Cielo, providing an early opportunity to explore
alternative strategies.
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Fig. 7. miniGhost BSPMA and SVAF Scaling

We configured miniGhost so that boundaries are
exchanged as soon as computation on a variable is
completed. Illustrated in Figure 3(b), we refer to this
as “single variable aggregated faces” (SVAF). This
means that, for the shaped charge problem, (up to)
six messages, one to each neighbor, are transmitted
for each variable update each time step.

This results in 39 more messages for each bound-
ary exchange, each of which is 1/40 the size of
the BSPMA messages. The expectation was that
this would result in a significant degradation of
overall performance on current architectures, but
might hint at improvements on higher scales on
future systems. Instead, as illustrated by the graph in
Figure 7(a), the (process re-ordered) SVAF approach

out-performed (process re-ordered) BSPMA.

Chama performance is shown in Figure 7(b).
First, we note some apparent anomalies, which we
attribute to system noise in spite of the dedicated en-
vironment. Further, the SVAF strategy is again more
effective than BSPMA (excepting what appears to
be an anomaly at 8,192 cores).

Cascade results, illustrated in Figure 7(c), are
less distinguished, but it is apparent that there is
no meaningful penalty in using SVAF. Effective
process mapping was used for each of the results
shown. The Aries CE (“collective engine”) provides
special support for reduction and barrier operations,
here demonstrated to provide a critical service.

V. SUMMARY

Expected architecture changes, driven by energy
consumption and other constraints, compelled us to
revisit some traditional and well-accepted strategies
for sharing inter-process boundary data in PDE-
based application programs. Herein we demon-
strated an alternative to the ubiquitous BSPMA.
Designed to exploit the capabilities of expected
future architectures, the SVAF method provides a
more natural coding style (data is sent as soon as it
changes, maintaining stronger data coherence across
the parallel processes), better use of available mem-
ory and bandwidth, and better scaling characteristics
at high processor counts. Adding this strategy to
CTH will require significant modification, so it is
thus far untested in a full application. However,
miniGhost has been demonstrated to represent CTH
boundary exchange characteristics [7]. Its also worth
noting that programming convenience has led some
application developers (including those for CTH)
to include the halo data for each variable in each
exchange, often data is included that has not been
modified. The SVAF strategy would eliminate this
unnecessary data movement as the exchange is
directly associated with the computation.

We also continue to see that in spite of improved
interconnect technologies, process placement based
on specific communication patterns is essential to
exploiting the capabilities of the architecture. Simi-
lar experiments on different architectures, including
a 6-core based XE6 (Hopper at NERSC) as well
as the host-device configuration of the Cray XK®6,
also show benefits of this work, to be presented in



future publications. Experiments using OpenMP for
on-node computation reduces the overall message
traffic, but the resulting messages are larger and thus
also cause contention that adversely impacts scaling
performance.

Future work includes a miniGhost implemen-
tation designed to test the ability of computing
platforms to hide communication costs through ex-
plicit computational overlap strategies, using MPI
functionlity as well as Fortran co-arrays. More
complex computations are being incorporated into
miniGhost in order to represent a broader set of
codes, including those based on AMR. Our work is
also informing the development of a more general
process mapping capability [11], useful to a broader
set of applications.
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