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Why Alkaline Fuel Cells (AFCs)?

• Reaction kinetics at both electrodes are more facile at high pH 
• Higher operating voltages are possible (due to lower overpotentials)
• Alternative fuels (alcohols) are easier to oxidize at high pH
• Non-noble metal catalysts can be used (significant cost reduction)
• Not a new concept - AFCs were used in the Apollo spacecraft and early space
shuttle Orbiter vehicles.

2H2 → 4H+ + 4e- O2 + 4e- + 4H+ → 2H2O           2H2 + 4OH- → 4H20 + 4e- O2 + 2H2O + 4e- → 4OH-



Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

Membranes requirements1:

1. Backbone stability
• Membrane must maintain mechanical integrity for up to 5000h at high pH.
• Must be stable to MEA fabrication (hot and dry)

2. Stable cationic groups
• Quaternary ammonium groups can be attacked by OH-.

3. Conductivity
• OH- inherently 2-3x less mobile than H+

• Identity of anions (OH-/CO3
2-/HCO3

-) 
• Conductivity at low RH

4. Water swelling
• Physical stress on cell hardware due to expansion/compression.
• Delamination of electrodes from membrane.

1From DOE Alkaline Membrane Fuel Cell Workshop, May 8-9 2011.



PEM Materials
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The state of the art:                                 Hydrocarbon membranes:
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1W. Y. Hsu and T. D. Gierke, J. Membrane Sci., 13 (1983) 307.



Cations on Anion Exchange 
Membranes (AEMs)
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Typical functional groups with fixed positive charges in AEMs:

A Typical Commercially-available
AEM:

• Crosslinked polystyrene with
benzyl trimethylammonium groups (BTMA)

• Typically blended with PVC or a polyolefin
• Cast on fabric support
• Used for electrodialysis



AEMs: The State of the Art

Radiation-grafting of functionalized poly(styrene) onto fluorinated polymers1: 

Bromination of poly(2,6-dimethyl-1,4-phenylene oxide)2:

1Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712.
2Wu, Y.; Wu, C.; Xu, T.; Lin, X.; Fu, Y. J. Membr. Sci., 2009, 338, 51.
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D.;
Coates, G. W. Macromol., 2010, 43, 7147.

Poly(ethylene)-based AEM from ROMP3:



Alternative Cationic Groups

Poly(sulfone) with benzyltris(2,4,6-
trimethoxyphenyl) phosphonium groups1

Poly(sulfone) with benzylpentamethyl
guanadinium groups2

1Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. Angew. Chem., 2009, 121, 6621.
2Wang, J.; Li, S.; Zhang, S. Macromol. 2010, 43, 3890.

Stable in 1M KOH at 60 oC for 48h1 Stable in 1M KOH at 60 oC for 48h2



Alternative Cationic Groups

Polyfluorene with pendant alkyl 
imidazolium groups1

Poly(styrene)-co-(acrylonitrile) with 
benzyl imidazolium groups2

1Lin, B.; Qiu, L.; Qiu, B.; Peng, Y.; Yan, F. Macromol., 2011, 44, 9642.
2Qiu, B.; Lin, B.; Qui, L.; Yan, F. J. Mat. Chem. 2012, 22, 1040.
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Stable in 1M KOH at 60 oC for 400h1 Stable in 1M KOH at 60 oC for 1000h2

(BTMA version was not stable)



AEMs made at Sandia:
Poly(sulfone)-Based Membranes
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AEMs made at Sandia:
Poly(phenylene)-Based Membranes

Mw = 60-80k

ATMPP

Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316.



ATMPS & ATMPP Properties

• ATMPS has larger water uptake than ATMPP at similar IECs.

• Both polymers have similar conductivity vs. IEC trends.

• At IEC > 2.6, ATMPS swells so much that the conductivity
begins to decrease.

• ATMPP with IEC between 2.2 and 2.4 has been the most 
useful composition for fuel cell testing, as both membrane 
and ionomer in electrodes. 
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Mechanical Stability

• Test conditions: 50 oC, 50% RH. 
• Poly(arylene ether sulfone) shows significant degradation.  It was too

brittle to test after conversion back to Br- form.
• Poly(phenylene) is weaker in OH- form, but there is no sign

of backbone degradation. 
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H2/O2 Performance of Alkaline
Membrane Fuel Cells

ATMPP

Membrane/ionomer

IEC = 1.8 meq./g

= 120 mS/cm

Thickness: 50 m

□ H2/O2 ATMPP membrane + Nafion-FA-TMG ionomer

■ H2/air ATMPP membrane + Nafion-FA-TMG ionomer

Δ H2/O2 ATMPP membrane + ATMPP ionomer

Catalyst: Pt black (3.4 mg/cm2) on anode, (6.5 mg/cm2) on cathode.

Cell temp. 80°C. Catalyst: ionomer weight composition (9:1, not

optimized); MEAs were prepared from direct painting.

Nafion-FA-TMG

Ionomer (IEC = 0.74 meq./g,  = 20 mS/cm)

Kim, D. S.; Fujimoto, C. H.; Hibbs, M. R.; Labouriau, A.; Choe, Y.-K.; Kim, Y. S. 
Macromol., 2013, 46, 7826-7833.
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Cation Stability

• Test conditions: 4M NaOH (aqueous), no stirring.
• AHA is “base stable” electrodialysis membrane – crosslinked polystyrene.
• A poly(sulfone) AEM (ATMPS) became too brittle to handle after 1-2 days.
• After 9 days at 90 oC, IEC of ATMPP decreased by 10%.
• Model studies indicate decreasing stability as hydration decreases.1

1Chempath, S.; Einsla, B. R.; Pratt, L. R.; Macomber, C. S.; Boncella, J. M.; Rau,

J. A.; Pivovar, B. S. J. Phys. Chem. C Lett. 2008, 112, 3179.

Both membranes have
benzyl trimethylammonium
cations:
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Cation Stability

• In NaOH test, conductivity initially increases due to ion exchange and water uptake.
• Decline in conductivity over 100 h is due to degradation of BTMA cation.
• Fuel cell testing was done at 60 oC, 0.3 V, with Pt/C catalyst on both electrodes.
• Decline in current density is also presumably due to BTMA degradation.

Fujimoto, C.; Kim, D.-S.; Hibbs, M. R.; Wrobleski, D.; Kim, Y. S. J. Membr. Sci. 2012,
423-424, 438.

Treatment in aqueous NaOH                                                Durability in H2/O2 fuel cell



Resonance-Stabilized Cations
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Decomposition of Benzyl PMG Cations

after NaOH treatment
(1M, room temp., 24 h)

before NaOH treatment

b
a

c

d
e

• The relative areas of b and c peaks 
decrease drastically after NaOH.   
But b:c area ratio does not change.  

• The probable mechanism is 
nucleophilic attack by hydroxide 
ion at the benzylic carbon:



KOH Stability Test
Resonance-Stabilized Cations

Test conditions: Membranes immersed in 4M KOH at 90 oC.

• Conductivities were measured with membranes in Cl- form in 25 oC water.

• Hydroxide conductivity is generally 2-3x higher than chloride conductivity.

• Benzyl imidazolium and benzyl guanidinium cations are much less stable 
than BTMA.
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Stability of Alkyl 
Trimethylammonium Groups

Alkylene spacers can increase stability1

Tested for 30 days in 100 oC water (OH- form):

IEC (after/before)

Benzyltrimethylammonium (n = 1)        79 %

Tetramethylene spacer (n = 4)                 92 %

1 Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H. J. Appl. Polym. Sci. 1997, 
64, 1161.

2 Long, H.; Kim, K.; Pivovar, B. S. J. Phys. Chem. C 2012, 116, 9419.

A recent computational study2 by Pivovar at NREL concluded that n-
alkyltrimethylammonium groups are more stable than BTMA when n > 3.  
• Steric shielding of the β–hydrogens when n > 3
• Increased susceptibility to SN2 attack at the methylene carbon in BTMA 

(n = 1).

n = 4



Poly(phenylene) AEM with 
Sidechains

N(CH3)3 (H3C)3N

(H3C)3N N(CH3)3

1st generation Sandia AEM (ATMPP)

MDAPP

O

COOH

40-50% yield 2 steps 2 steps

DAPP

O

2 steps 3 steps

2nd generation Sandia AEM (TMAC6PP)

N N

N

commercially available

• DAPP is easier to make than MDAPP, with higher 
molecular weights.

• Synthesis of DAPP has been scaled up to ~1kg.



Poly(phenylene) AEM with 
Sidechains

Hibbs, M. R. J. Polym. Sci. B., Polym. Phys. 2012, 000, 000–000



Poly(phenylene) with 
Alkyl Side Chains without Ketone

BrKC6PP (CD2Cl2)

BrC6PP (CD2Cl2)
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TMAC6PP Attributes (1)

ATMPP              TMAC6PP         

DABC6PP                      TMAKC6PP 

Test conditions: Membranes immersed in 4M KOH at 90 oC.
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• TMAC6PP shows the greatest stability in high pH 
test.

• The ketone adjacent to the phenyl ring destabilizes 
the side chains.

• Quaternized DABCO on hexyl sidechains with no 
ketone are less stable than BTMA.



TMAC6PP Attributes (2)

• AEMs with sidechains show better
mechanical properties.

• With samples of similar molecular
weights, TMAC6PP has over twice 
the elongation at break as ATMPP.

• Elasticity (lack of brittleness), 
especially when dry, is an important 
property for membrane-electrode 
assembly fabrication.

• This testing was performed at 50%
relative humidity and 50 oC.
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TMAC6PP Attributes (3)

ATMPP

TMAC6PP

• Water uptake and hydroxide 
conductivity values show very
similar trends.

• No evidence that ion channel
formation is any easier with 
cations on flexible tethers.

• TMAC6PP is not expected to 
change fuel cell performance 
relative to ATMPP, but the
lifetime of the cell will be 
increased. 

• Fuel cell testing with TMAC6PP
membranes is in progress at UNM
and CSM. 



Instability Due to Ketone

Base

Base

• Formation of enolate might begin pathway to cation degradation.
• Mechanisms that involve a 5- or 6-membered ring as an intermediate would be 

particularly likely.
• A longer sidechain would eliminate 5- and 6-membered ring intermediates.

Schemes drawn by Sean Nunez (PSU)      



Stability of 10-Carbon Sidechain

• 10-Carbon chain without ketone
shows stability similar to TMAC6PP.

• 10-Carbon chain with ketone
shows stability similar to
TMAKC6PP.

• Enolate probably does play key role 
in degradation but not by intra-
molecular attack at the terminal 
ammonium group.
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Ionomers for Alkaline Fuel Cells

• Within the catalyst layer, we want to 
maximize transport of fuel, ions, and electrons 
(3-phase boundary).

• Usually the ionomer is the same as the 
membrane, although this isn’t ideal. 

• Yu Seung Kim at LANL developed an 
ionomer to pair with Sandia’s ATMPP 
membranes to maximize power output (power 
density ~580 mW/cm2, H2/O2).

• The LANL ionomer is a perfluorinated 
backbone (from Nafion precursor) with 
pendant guanidinium groups.

• We want to develop a hydrocarbon-based 
ionomer to pair with TMAC6PP membranes.

AEM

LANL Ionomer



New Ionomer for TMAC6PP

• Our new ionomer, TMAC6PPC6, is designed to be compatible with TMAC6PP while 
allowing for better transport properties.

• Flexibility of poly(phenylene alkylene) backbone is intended to improve permeability 
without sacrificing durability. (no permeability measurements yet)

• Dry DAPP Tg > 350 oC
Dry DAPPC6 Tg ~ 200 oC

• In hydrophilic ionomer form, water acts as a plasticizer to further reduce Tg.



Pt/C/Zoltek, 1M CH3OH, 80 C, 0.5 ml/min – TMAC6PP – Pt/C/Etek, O2, 80 C, 0.2 L/min 

Alkaline DMFC Performance (CSM)
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Pt/C/Zoltek, xM CH3OH+ xM KOH, 80 C, 0.5 ml/min – TMAC6PP – Pt/C/Etek, 
O2, 80 C, 0.2 L/min 

Alkaline DMFC Performance (CSM)
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Pt/C/Zoltek, CH3OH+ KOH, 80 C, 0.5 ml/min – TMAC6PP – UNM-Gen-2/Etek, O2, 
80 C, 0.2 L/min 

IV- Current-Voltage
PD – Power density
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CONCLUSIONS

• Poly(phenylene)s are much more suitable for alkaline fuel cell 
membranes than poly(arylene ether sulfone)s.

• Resonance-stabilized cations are less stable on the 
poly(phenylene) than BTMA.

• Alkyl trimethyl ammonium sidechain-type cations offer the best 
alkaline stability to date.

• New ionomers allow easier MeOH transport at the anode and 
have led to DMFC power densities >50 mW/cm2.

• Further improvements in cation stability and electrode design 
are critical to push the development of alkaline fuel cells.
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