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Why Alkaline Fuel Cells (AFCs)?

PEM FUEL CELL ALKALINE FUEL CELL
Electrical Current Electrical Current
=
=il el Hydrogenin |~ 4 Oxygen In
il Y] ﬁ e sl 1‘ > _<‘1=' %,
] H+ = -e- *
1- : H-0 . | T
L H+ :Ii v e e
Ha| | H#| I 4| o :_;3:.
' 2 H.O f—
HEI ST ? g i
Water and e T
Heat Out g o e
ructin |, | A in = Al
AnDdef | 1\Calhodev Anode" | \Cathode
Electrolyte Electrolyte
2H, — 4H* + 4e- O, + 4e + 4H* — 2H,0 2H, + 40H- — 4H,0 + 4e- O, + 2H,0 + 4e- — 40H-

» Reaction kinetics at both electrodes are more facile at high pH

» Higher operating voltages are possible (due to lower overpotentials)

* Alternative fuels (alcohols) are easier to oxidize at high pH

* Non-noble metal catalysts can be used (significant cost reduction)

* Not a new concept - AFCs were used in the Apollo spacecraft and early space
shuttle Orbiter vehicles. @ Sandia
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Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

Membranes requirements’:

1.

Backbone stability

«  Membrane must maintain mechanical integrity for up to 5000h at high pH.
«  Must be stable to MEA fabrication (hot and dry)

Stable cationic groups

*  Quaternary ammonium groups can be attacked by OH-.
Conductivity

OH- inherently 2-3x less mobile than H*

« Identity of anions (OH/CO4%/HCO;)

«  Conductivity at low RH

Water swelling

«  Physical stress on cell hardware due to expansion/compression.
«  Delamination of electrodes from membrane.

"From DOE Alkaline Membrane Fuel Cell Workshop, May 8-9 2011.
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PEM Materials
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The state of the art: Hydrocarbon membranes:
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'"W.Y. Hsu and T. D. Gierke, J. Membrane Sci., 13 (1983) 307. @ National
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':,ﬂ ' Cations on Anion Exchange

- Membranes (AEMs)

Typical functional groups with fixed positive charges in AEMs:

A Typical Commercially-available
AEM:

Crosslinked polystyrene with
benzyl trimethylammonium groups (BTMA)
Typically blended with PVC or a polyolefin
Cast on fabric support N
Used for electrodialysis
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< ) AEMs: The State of the Art

Radiation-grafting of functionalized poly(styrene) onto quorinated polymers?:
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Bromination of poly(2,6-dimethyl-1,4-phenylene oxide)?:
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Poly(ethylene)-based AEM from ROMP?3:

CH33
O OC Grubbs' 2nd gen. CH33
catalyst
'Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712. W

2Wu, Y.; Wu, C.; Xu, T.; Lin, X.; Fu, Y. J. Membr. Sci., 2009, 338, 51. _
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D; @ Sandia
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Alternative Cationic Groups

Poly(sulfone) with benzyltris(2,4,6-
trimethoxyphenyl) phosphonium groups'

trls(2 4,6- tr1meth0xypheny1)phosph1ne

Poly(sulfone) with benzylpentamethyl
guanadinium groups?
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Stable in 1M KOH at 60 °C for 48h'

'Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. Angew. Chem., 2009, 121, 6621.
2Wang, J.; Li, S.; Zhang, S. Macromol. 2010, 43, 3890. @ Sandia

Stable in 1M KOH at 60 °C for 48h?
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- )‘ Alternative Cationic Groups

Polyfluorene with pendant alkyl Poly(styrene)-co-(acrylonitrile) with
imidazolium groups’ benzyl imidazolium groups?
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Stable in 1M KOH at 60 °C for 400h’ Stable in 1M KOH at 60 °C for 1000h?

(BTMA version was not stable)

Lin, B.; Qiu, L.; Qiu, B.; Peng, Y.; Yan, F. Macromol., 2011, 44, 9642.
2Qiu, B.; Lin, B.; Qui, L.; Yan, F. J. Mat. Chem. 2012, 22, 1040.
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AEMs made at Sandia:
> /_’ Poly(sulfone)-Based Membranes

0
oLy = OO
(0]

K,CO3, NMP
175°C, 24 h

H-G-010)

NBS, benzoyl peroxide
80 °C, 3h

Br
(0]
i YAV as Vs S0,
Br

1) cast film
2) N(CH3)3, 25°C
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AEMs made at Sandia:
Poly(phenylene)-Based Membranes

ATMPP

Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316. @ ﬁa?_dial
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”‘l ATMPS & ATMPP Properties
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« ATMPS has larger water uptake than ATMPP at similar IECs.

 Both polymers have similar conductivity vs. IEC trends.

* At IEC > 2.6, ATMPS swells so much that the conductivity
begins to decrease.

* ATMPP with IEC between 2.2 and 2.4 has been the most
useful composition for fuel cell testing, as both membrane

and ionomer in electrodes.

/7~ ATMPS
poly(sulfone)

ATMPP
poly(phenylene)
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» Test conditions: 50 °C, 50% RH.

* Poly(arylene ether sulfone) shows significant degradation. It was too
brittle to test after conversion back to Br- form.

 Poly(phenylene) is weaker in OH- form, but there is no sign
of backbone degradation. @ Sandia
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H,/O, Performance of Alkaline
Membrane Fuel Cells
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Catalyst: Pt black (3.4 mg/cm?) on anode, (6.5 mg/cm?) on cathode.
Cell temp. 80°C. Catalyst: ionomer weight composition (9:1, not
optimized); MEAs were prepared from direct painting.

Kim, D. S.: Fujimoto, C. H.; Hibbs, M. R.; Labouriau, A.; Choe, Y.-K.; Kim, Y. S. @ Sandia

National
Macromol., 2013, 46, 7826-7833. Laboratories
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Cation Stability

IEC (meq/g)

0.5 1

A Sandia ATMPP, 60 C
DOTokuyama AHA, 60 C
A Sandia ATMPP, 90 C

* Test conditions: 4M NaOH (aqueous), no stirring.
* AHA is “base stable” electrodialysis membrane — crosslinked polystyrene.

10 15
Time (days)

Both membranes have
benzyl trimethylammonium
cations:

~/ 3

o

* A poly(sulfone) AEM (ATMPS) became too brittle to handle after 1-2 days.

« After 9 days at 90 °C, IEC of ATMPP decreased by 10%.

« Model studies indicate decreasing stability as hydration decreases.’

'Chempath, S.; Einsla, B. R.; Pratt, L. R.; Macomber, C. S.; Boncella, J. M.; Rau, _
J.A.: Pivovar, B. S. J. Phys. Chem. C Lett. 2008, 112, 3179. @ Sandia

National
Laboratories



Conductivity (mS/cm)
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* In NaOH test, conductivity initially increases due to ion exchange and water uptake.

* Decline in conductivity over 100 h is due to degradation of BTMA cation.

* Fuel cell testing was done at 60 °C, 0.3 V, with Pt/C catalyst on both electrodes.
* Decline in current density is also presumably due to BTMA degradation.

Fujimoto, C.; Kim, D.-S.; Hibbs, M. R.; Wrobleski, D.; Kim, Y. S. J. Membr. Sci. 2012,

423-424, 438.
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- ) Resonance-Stabilized Cations
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i Decomposition of Benzyl PMG Cations

O
% Q O o—Ar—s—Ar% after NaOH treatment
ﬂ (1M, room temp., 24 h)

~ * c (Y
' ?!5 TI.EI EI.E E:ﬂ 5',5 5'.0 ; zl_u ' ppmI H
- The relative areas of b and ¢ peaks : -
decrease drastically after NaOH.
But b:c area ratio does not change.
before NaOH treatment
- The probable mechanism is © d
nucleophilic attack by hydroxide | .|J
ion at the benzylic carbon: ........... sin—
75 T.0 6.5 60 55 5.0 . 3 i 20 ppm
' 2|8 Elg

-

~~nNe
A
T T \NJ\N/ Sandia
| | National
Laboratories



KOH Stability Test
Resonance-Stabilized Cations

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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 Conductivities were measured with membranes in Cl- form in 25 °C water.

« Hydroxide conductivity is generally 2-3x higher than chloride conductivity.

« Benzyl imidazolium and benzyl guanidinium cations are much less stable _
Sandia
than BTMA. @ National
Laboratories



Stability of Alkyl
=~ Trimethylammonium Groups

Alkylene spacers can increase stability’

Tested for 30 days in 100 °C water (OH- form):

IEC (after/before)

A\

/

Benzyltrimethylammonium (n = 1) 79 %

\ %5 Tetramethylene spacer (n = 4) 92 %

A recent computational study? by Pivovar at NREL concluded that n-
alkyltrimethylammonium groups are more stable than BTMA when n > 3.
« Steric shielding of the B—hydrogens when n > 3

* Increased susceptibility to S,2 attack at the methylene carbon in BTMA
(n=1).

1Tomoi, M.; Yamaguchi, K Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H. J. Appl. Polym. Sci. 1997,
64, 1161.

2Long, H.; Kim, K.; Pivovar, B. S. J. Phys. Chem. C 2012, 116, 9419. @ Sandia
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Poly(phenylene) AEM with
Sidechains

/©/\COOH

l 40-50% yield 2 steps

& @
(HsC)sN N(CHs);

2 steps
T

commercially available

- DAPP is easier to make than MDAPP, with higher 2" gereration Sandia AEM (TMACEPF)
molecular weights. Sandia
« Synthesis of DAPP has been scaled up to ~1kg. @ National
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Poly(phenylene) AEM with
Sidechains

- 0 .
1) cast film from CHCI3

2) soak in trimethylamine (aq)
3) soak in NaOH (aq)

N
N\ TMAC6PP

Hibbs, M. R. J. Polym. Sci. B., Polym. Phys. 2012, 000, 000-000

Sandia
National
Laboratories



Poly(phenylene) with
Alkyl Side Chains without Ketone

Br
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TMACGPP Attributes (1)

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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« TMACG6PP shows the greatest stability in high pH

test.

+ The ketone adjacent to the phenyl ring destabilizes
the side chains.

* Quaternized DABCO on hexyl sidechains with no
ketone are less stable than BTMA. ﬁ%ﬂﬂﬁau
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- c TMACG6PP Attributes

(2)

* AEMs with sidechains show better
mechanical properties.

» With samples of similar molecular
weights, TMACGPP has over twice
the elongation at break as ATMPP.

» Elasticity (lack of brittleness),
especially when dry, is an important
property for membrane-electrode
assembly fabrication.

* This testing was performed at 50%
relative humidity and 50 °C.
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- ' TMACG6PP Attributes (3)
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Instability Due to Ketone

enol cyclization products:

O
0 I\I/lfeMe Me
N (N\M — + l\ll
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L ketone
abbreviated polymer _ o _
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S,
Base e ~ o . ketone

pKa ~ 24--will O H enol dealkylation:

deprotonate . ) Me
in aqueous base — N.
fo \ (: NZ Me Me
Me” @ Me Me

some extent

phenyl-dimethylamine
ketone

traditional pathways (e.g., substitution, Hofmann,

+ Formation of enolate might begin pathway to cation degradation.

* Mechanisms that involve a 5- or 6-membered ring as an intermediate would be
particularly likely.

* Alonger sidechain would eliminate 5- and 6-membered ring intermediates.

Sandia
Schemes drawn by Sean Nunez (PSU) @ l”fﬁ},‘i';ﬁ',nes
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| ":’c Stability of 10-Carbon Sidechain

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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lonomers for Alkaline Fuel Cells

« Within the catalyst layer, we want to
maximize transport of fuel, ions, and electrons
(3-phase boundary).

* Usually the ionomer is the same as the
membrane, although this isn’t ideal.

* Yu Seung Kim at LANL developed an
ionomer to pair with Sandia’s ATMPP
membranes to maximize power output (power
density ~580 mW/cm?, H,/O,).

» The LANL ionomer is a perfluorinated
backbone (from Nafion precursor) with
pendant guanidinium groups.

* We want to develop a hydrocarbon-based
ionomer to pair with TMAC6PP membranes.

Anode AEM Cathode GDL

//

Carbon
0 (20-50 nm}

MeOH
+
HZO
co,
Electro- lonomer
catalyst (2-10nm)
/ - : 50-400 pLm
1-20 tm  20-200 ptm
F2 F CH:

FoF F; F; II
[o-c c 0-C -C c-H-@—n-c' OH
CH,N-CH

t:|=3| 3
CH,

LANL lonomer Sandia
National
Laboratories



1,9-decadiyne DAPPC6 TMAC6PPC6

» Our new ionomer, TMACG6PPCG, is designed to be compatible with TMAC6PP while
allowing for better transport properties.

* Flexibility of poly(phenylene alkylene) backbone is intended to improve permeability
without sacrificing durability. (no permeability measurements yet)

* Dry DAPP T, > 350 °C
Dry DAPPC6 T, ~ 200 °C

National

* In hydrophilic ionomer form, water acts as a plasticizer to further reduce Tg. @ Sandia
Laboratories
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= Alkaline DMFC Performance (CSM)
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Pt/C/Zoltek, 1M CH,OH, 80 °C, 0.5 ml/min — TMAC6PP — Pt/C/Etek, O,, 80 °C, 0.2 L/min @ Sandia
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Alkaline DMFC Performance (CSM)
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Alkaline DMFC Performance (CSM)
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CONCLUSIONS

Poly(phenylene)s are much more suitable for alkaline fuel cell
membranes than poly(arylene ether sulfone)s.

Resonance-stabilized cations are less stable on the
poly(phenylene) than BTMA.

Alkyl trimethyl ammonium sidechain-type cations offer the best
alkaline stability to date.

New ionomers allow easier MeOH transport at the anode and
have led to DMFC power densities >50 mW/cm?.

Further improvements in cation stability and electrode design
are critical to push the development of alkaline fuel cells.
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