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2D-crystals offer new scope of material

* Various two-dimensional (2D) crystals

Monolayer h-BN
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NbOg © Graphene
Titanium Niobate http://en.wikipedia.org/wiki/Graphene
Boron nitride Osada et al., Adv. Funct. Mater. 21, 3482 (2011)

Mo|ybdenum disulfide Kim et al., Nano Lett., 12, 161 (2012)
Lee et al., Advanced Materials, 24, 2320 (2012)
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* Hybrid 2D-solids can be realized
- Combining materials
- Emerging properties
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) Graphene/BN superlattice
Graphene on BN Haigh et al., Nature Materials 11, 764 (2012)

2D-based heterostructure Dean et al., Nature Physics 7, 693 (2011)
Novoselov et al., Nature 490, 192 (2012)

How would 2D-crystals interact electronically with each other?
- We examine Twisted Bilayer Graphene (TBG)assembled via transfer process




How does misorientation manifest itself in

bilayer graphene?

» Bernal stacked graphene: strong interlayer interaction

Freitag, Nature Physics 7 596 (2011)



How does misorientation manifest itself in

bilayer graphene?
* What about twisted graphene?

STS indicates van Hove
singularities (VHs)
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Raman shows resonant transition
due tO vHs OI’ paraIIeI states Li et al., Nature Physics 6, 109 ( 2010)
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Microscopic and atomic view of Twisted Bilayer Graphene (TBG)
* Interacting Dirac cones through moiré periodic potential
 Tunable optical C(bSOI"pTIOH band and the emergence color domain
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LEEM/PEEM and ARPES
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We make TBG by transfer

* Transferring CVD graphene onto epi-graphene (on SiC) yields large
TBG domaing with 8GI"IPOUS twist angl;leg P Y J

A B  C D, E F
N —
! . I i N /
CVD grown Spin coat photoresist Etch off Cu foil Place PR/CVD-graphene on epi- Dissolve PR and
graphene on Cu foil (PR) on CVD- graphene grown on SiC clean the surface
graphene/Cu with H2

- Monolithic epi-graphene
- Large-domain CVD graphene (>100um-size domain)

01) CVD graphene ¥ Y :‘

Bostwick et al., Nature Phys. 3, 36 (2007)



TBG shows characteristic electron reflectivity

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC
- Low energy electron microscopy (LEEM) measurement

BG on C-layer
i - | Graphene
Epi-bilayer on C-
ayer terminated SiC C-layer
termination

TBG on H-
terminated SiC

Electron reflectivity (a.u.) o
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LEEM image of TBG c 4 8
Electron energy (eV)

Ohta et al., PRB, 85, 075415 (2012)



TBG has long-range atomic ordering

» Diffraction patterns from TBG with a small and a large twist angles
- Diffraction spots due to moiré

Real-space moiré vectors

© Underlayer diffraction spots

© Qverlayer diffraction spots

- Minimum damage of graphene is confirmed using Raman spectroscopy
+ Please see PRB, 85, 075415 (2012) for detail



TBG has two sets of Dirac cones

* Electronic dispersion is measured using PEEM (photoemission electron
microscopy) and ARPES (angle-resolved photoemission spectroscopy)

- Upper (blue hexagon) and lower (red hexagon)
graphene sheets create two sets of Dirac cones

Li et al., Nature Physics 6, 109 ( 2010)
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Two Dirac cones display anti-crossing

» Departure from the simple Dirac cone picture
- Twist angle, 8 = 11.6°
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* Two cones' interaction leads to mini-gap
and van Hove sinqgularities
- Match very well with DFT calculation
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Additional Dirac cone emerges

* Anti-crossing is found b/w the original and the additional Dirac cone
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Moiré periodic potential produces Dirac cones

* Umklapp scattering by moiré periodic potential
- Similar to moiré-induced Raman band and LEED spots
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Superlattice changes electronic dispersion

» Substrate or neighboring material provides periodic potentials

Surface superlattice Graphene superlattice

Mini-bands & gaps formed in Surface state on Au(322)
inversion layer of vicinal Si vicinal surface
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Moiré is ubiquitous in hybrid 2D-crystal stacks with misorientation!



How does the band renormalization affect the
properties of TBG?

* Patches of "colored grain” observed in
optical microscope

- TBG on SiQ,/Si substrate A

50
1008088088

Robinson et al., ACS Nano, 7, 637 (2013) & Science 152, 374 (2013)



Emerging absorption band is responsible for

"Colored grain”
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Optical absorption depends on the twist angle
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Map of LEED pattern orientations

across the sample surface gg 9.6(15,-11)
* LEED correlates the color to the twist angle .« i
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Moon & Koshino, arXiv:1302.5218
(2013)

- Confirmed theoretically




Interlayer overlap and characteristic energy

v.-Ak dictate band renormalization

* The energy scale of interlayer overlap integral (y,*) and the
characteristic energy (v, Ak) crossover at twist angle, 6 = ~3°
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Moiré influences the electronic structure of TBG and 2D-solids
Twisted Bilayer Graphene (TBG) can be produced using transfer approach
Electronic dispersion is altered by moiré (long-range periodicity)

Optical properties can be tuned by the twist angle
Moiré is ubiquitous feature in 2D-solids: handle to tailor electronic properties
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For details of our work, please see the following publications:

+ T. Ohta, T. E. Beechem, J. Robinson, G. L. Kellogg, Long-range atomic ordering and variable interlayer interactions
in two overlapping graphene lattices with stacking misorientations, Phys. Rev. B, 85, 075415, 2012.

+ T. Ohta, J. T. Robinson, P. J. Feibelman, A. Bostwick, E. Rotenberg, T. E. Beechem, Evidence for interlayer
coupling and moiré periodic potentials in twisted bilayer graphene, Phys. Rev. Lett. 109, 186807, 2012.

- J. T.Robinson, S. W. Schmucker, C. B. Diaconescu, J.P. Long, J. C. Culbertson, T. Ohta, A. L. Friedman, T.
Beechem, Electronic Hybridization of Large-Area Stacked Graphene Films, ACS Nano, 7, 637, 2013.

* Graphene in Color, Science 152, 374, 2013 "editor's choice."
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Following include supplemental slides



Two graphene lattices form moiré

* Two layers of graphene stacked with an azimuthal (in-plane)

misorientation
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TBG shows characteristic electron reflectivity

of bilayer graphene

» Two dips in electron reflectivity spectra: bilayer graphene on SiC

- Low energy electron microscopy (LEEM) measurement

- BG on C-layer
3 inated SiC < | Graphene
)
=l Epi-bilayer on C-
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"""" o i OO O G—
Epi-bilayer on H- : :
w -
terminated SiC H-termination
LEEM image of TBG o 4 8

Electron energy (eV)

- Diffraction experiments and dark-field
imaging show large domain each with an
unique twist angle

Ohta et al., PRB, 85, 075415 (2012)



Umklapp scattering due o moiré periodic

potential produces additional Dirac cones
» Similar to moiré-induced LEED spots
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We confirmed the twist angle using LEED

* Twist angle was determined by comparing LEEM pattern orientation
and the information of thickness using optical image

- LEED is sensitive to only the top layer
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TBG gains color by electronic hybridization

» Optical microscope images of TBG on SiO,/Si substrate
- Blue: 8y, = 11°, red: 6,4 = 13°, yellow: 8,,,,, = 15°
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Postdoc opportunities at Sandia National Labs

LEEM-PEEM research program

- Properties of 2D-crystals and their stacked structures
- Understanding defects in indium gallium-nitrides for lighting appluca‘nons

* New capability: energy-filtered LEEM-PEEM

- Real-time surface imaging and diffraction
- Electronic structure study using EELS and ARPES

For details, please contact
Taisuke Ohta (tohta@sandia.gov)
Gary Kellogg (glkello@sandia.gov)






