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Abstract

Multiple-look  fusion is quickly becoming more
important in statistical pattern recognition. With
increased computing power and memory one can make
many measurements on an object of interest using, for
example, video imagery or radar. By obtaining more views
of an object, a system can make decisions with lower
missed detection and false alarm errors. There are many
approaches for combining information from multiple looks
and we mathematically compare and contrast the
sequential probability ratio test, Bayesian fusion, and
Dempster-Shafer theory of evidence. Using a consistent
probabilistic framework we show how to transform results
from one approach to the other and show results for an
application in infrared video classification.

1. Introduction

There have long been multiple competing approaches
for accomplishing multiple look sensor fusion. By
multiple look fusion we assume we can make multiple
measurements on an object, as it passes through the field
of view of the sensor. For example, multiple frames in an
infrared video or the extraction of multiple high-
resolution-range profiles from ground-moving-target-
indicator radar.

Here, we will theoretically compare and contrast three
data fusion approaches: sequential probability ratio test
(SPRT), Bayesian, and Dempster Shafer (DS). To
accomplish this we will use a common probabilistic
framework that is useful in real-world pattern recognition
problems in unconstrained environments. Our goal is not
to say one is better than the other, but to find
commonalities between the various approaches and use
one approach to find insights into others. This can
eventually lead to a unified approach in sensor fusion.

2. One Class Classifiers

A structure one might choose for a classification

problem is based on a one-class classifier [1]. For one
class classifiers, we are interested in one specific target 6,

represented by the alternative hypothesis H,, and the null

hypothesis H, represents the non-target 9_1 class. While
this might seem like an over simplification, one could
argue that for a multi-class problem with other targets of
interest 0,,...,0, one would design a one-class classifier

for each of them. For the O, one-class classifier we can
further divide the nontargets into two groups: the other
targets of interest 0,,...,0, and the unknown class 0, .

This allows us to further distinguish between two types of
false alarm errors: between-class and out-of-class.
Between-class errors occur when alarming on another
target 0,,...,0, by calling it the target 6,. Out-of-class

m

errors occur when alarming on an unknown signature 6,
by calling it the target 6,. In making any decision, we

want to control two types of errors: missed detection
errors and false alarm errors. Missed detection errors
result from missing a target signature by calling it a
nontarget, and false alarm errors result from alarming on a
nontarget signature by calling it a target.

For example, suppose we are interested in classifying
moving objects in infrared video as humans, vehicles, or
unknown. Here, 8, would represent the human class and

0, the vehicle class. The unknown class 6, would
represent all moving objects not in 6, or 6, . This would

be wind-blown objects (tumble weed, boxes, trash cans,
etc.) or animals. These unknown moving objects, a
possible source of the out-of-class errors, are a significant
problem in real-world pattern recognition problems in
unconstrained environments. A Bayesian classifier
approach designed for the human vs. vehicle problem,
while minimizing the between-class errors, would require
models of all the possible objects that could be imaged by
the sensor to control the out-of-class errors. Otherwise it
would classify an animal as human or vehicle. Modeling
“the whole world” of possible objects is untenable for
most realistic systems deployed in unconstrained
environments. Instead, we use a goodness of fit (GOF)
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classifier to control the out-of-class errors, and power
analysis [8] to model the unknown class.

Whereas Bayesian classifiers minimize the between-
class error, they do nothing to control the out-of-class
errors. Figure 1 illustrates this potential problem. The
figure shows a two-dimensional feature space, with
samples from two targets: Target 4 represented by stars
and Target B represented by filled circles. Assuming
normal distributions and equal covariance matrices for the
targets, the Bayes decision boundary has a linear form
(Figure la). Whereas the Bayes classifier minimizes the
between-class errors of the 4 and the B targets, it does not
control the out-of-class errors caused by unknown objects
represented by “x” symbols. Depending on which side of
the boundary the nontarget falls, the classifier will assign
the unknown to one of the known classes and make an
out-of-class error. Figure 1b shows a GOF classifier that
tries to surround the target class. Here, the unknown
objects, that have widely differing features from the target
class (“x” symbols), will be classified correctly. In
general, the GOF classifier has improved out-of-class
errors, but the between-class errors will increase, since it
is not necessarily an optimal Bayes classifier.
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Figure 1: Comparison of Bayes and goodness of fit (GOF)
classifiers. (a) Bayes classifier. (b) GOF classifier.

3. Probabilistic Framework

We will use the same probabilistic framework for
comparing and contrasting the fusion algorithms. We start
by assuming a stream of observations represented as
random variables x,,x,,.... These samples result from the

best match scores in the GOF metric. We also assume
knowledge of the functions p(x,. |T ) and p(x[ |f ) which
represent the probability density function (PDF) of an
observation x,, given the target 7’ and the nontarget T,
respectively. The PDF’s can be discrete or continuous and
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be determined through theoretical means or empirical
modeling.

The PDF p(xl.|T ) is usually straight forward to

determine, since one has knowledge of the target of
interest. This information can come from data collections
or modeling and simulation using CAD descriptions and a
physics-based sensor signature prediction software such as

Irma [9]. The PDF p(x[ |T ) is usually more problematic.

One approach for modeling the nontarget class uses
statistical power analysis [8] to model the worst case
nontarget. The approach has some similarities to that
taken by [1] for modeling composite hypotheses by
determining the least favorable choice. Power analysis
assumes the tested effect is linear and the measured effect
size (small, medium or large) is known. Typically, power
analysis allows the statistician to determine if enough
samples were collected to give the test a high power.
While the exact form depends on p(x,|T), we show an
example from [5] where p(x,.|T ) is N(0,1). This is
convenient in problems where the central limit theorem
can be applied. In [5], it was shown that the worst case
nontarget PDF is N(u,.l). Here the location parameter
u, represents the smallest acceptable effective difference
between the target and nontarget.

4. Sequential Probability Ratio Test

One approach for combining decisions as they become
available is to use the Wald sequential hypothesis test or
SPRT [11]. After n observations the likelihood ratio is:

T _ ST
A(”)_l;[)'n l[_ﬁﬁ; (1

Often it is more numerically convenient to work with the
log-likelihood:

- _N oo [P IT)

2(n) =log(A() =32, 7= 1og(p T J @)
The SPRT uses two decision boundaries (a,b) to make a
decision:

Reject H,, IfZ(n)2a
AcceptH, fZm<b . 3)

Getmore data Ifb<Z(n)<a

One desirable property of the SPRT is that the decision
boundaries can be determined from the chosen error rates.
Thus, these decision boundaries can be obtained using the

desired false alarm rate, « , and the missed detection rate,
B
1—
a :log—ﬂ and b:logi . @)
a l-a
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It has been shown that the SPRT, on average, uses the
smallest number of observations to make a decision [11].
It is interesting to note that the a-priori probabilities p(T )

and p(f ) do not appear in the log-likelihood ratio (2).

5. Bayesian Fusion

A sequential update formula can be derived from Bayes

formula:
p(T|x)= p(D)p(x,|T)

p(T)p(x, | T)+(1- p(M)plx, | T)

©)

The quantity p(T | xl) is the likelihood of target after one
observation x, . By substituting p(T | xl) for the prior p(T )
and a new observation x, for x, in (5) we get the likelihood
of a target after two observations as:

p(Mp | DpCe|T)
(D) p(x, | TYp(x, | T)+ (1= p(T)pl, I T Jplx, | T)

(6)

Using B(n) to represent the Bayesian likelihood after n
observations or p(T'|x,...x,) we get
AoA(n
Vny=- 20 (7)
AoA(n)+1
where A(n) is the Wald likelihood ratio in (1) and A,
represents the a-priori likelihood ratio:
p(7)
(1))
The Bayesian likelihood is always between 0 and 1. By (1)
and the definition of a PDF 0<A(m)<o, so as
A(n) —> oo then Y(n) —> 1 and if A(n)=0 then Y(n)=0.
Also if the PDF’s are discrete then we can compute a
Bayesian probability of a target. We can use the SPRT
stopping conditions to determine thresholds on the
Bayesian likelihood. If
a=1log(A) and b =log(B) )
then A4 and B are the upper and lower stopping
conditions for A(n), respectively. Thus the Bayesian

0

stopping rule becomes:

Reject H,, IfY(n)>C
Accept H,, IfY(n)<D (10)
Getmore data IfC<Y(n)<D
where
C= )*0 A= )*0 (1_[3) (11)
1+ 4, 1+, «a
and
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gk B "
1+2, 1+, 1-a
Note the A,/(14+4,) basically tweaks the threshold

according to the a-priori information. For A, >1 the

thresholds will go lower to make target calls slightly more
probable and if A, <1 the thresholds will go higher to
make nontarget calls slightly more probable.

6. Dempster-Shafer Theory of Evidence

The Dempster Shafer (DS) theory [10] is a
mathematical theory of evidence that allows combining
evidence from different sources to arrive at a degree of
belief. It models uncertainty by not requiring one to assign
all of one’s belief to a proposition.

The main assumption we make is that evidence is
consonant. This allows us to use the probabilistic
framework that we established in section 3. Shafer defines
consonant evidence as evidence that points in a single
direction and only varies in the precision of focus [10].
This fits well with the GOF metric. The GOF describes the
difference between stored knowledge, for example a
template of the target, and the measured data. Thus it
points only in the direction and focus of the hypothesis
represented by the stored knowledge.

For the one-class problem the frame of discernment is
©={T,T} . From [10] the support function for the target
Tis

m (T)=0

T =1_P(XIT) e 2T 13
O [N e (9
()21 D)

’ p(x|T)

and the support for the nontarget T is

m(7)=1——p(x|z)

' p(x|T) T
m(T)=0 i POID (14)
(@) = 21D Pl

' p(x|T)

where m() represents the DS basic probability assignment
(BPA) function and m (®)represents the amount of
uncertainty in the observation x .

For what we want to show it is simpler to work with
DS’s weight of evidence. If m(4) represents the BPA for
the proposition 4 — ® then weight of evidence w(A4) is:

w(A)=—log(1-m(A4)). (15)
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In terms of weight of evidence equation (13) becomes:

w.(T)=0
PACIED)
w,(T) =1og( S (x| T)

>1 (16)

f(xIT)

and equation (14) becomes

) = log L&) 7
wX(T)=1og( ) o S(x[T)
DI ey

f(xIT)J

>1 (17)

w (T)=0
Using equation (2)

WX(T):O}if JGID (18)
w,()=z] [f(x|T)
and
wx(7)=—z}if fGIT) 19)
w(T)=0 S(&x|T)

where z represents the log-likelihood ratio in the SPRT. As
long as we separate the evidence and combine only
evidence supporting the same proposition, then we have
the homogenous weight of evidence combination rule
where the weights of evidence combine additively. For the
total support of the target class 7, let w* represent the
total amount of positive weight of evidence. Similarly
define w~ for the total support for the non-target class T.
Here
N N N S(xIT)
w=>w (IN=) z, for —>1or z,>0
R ST

and

wo :wa’(Y_“): z,, for ACIED >lorz;<0 (21)
i=1

=1 S(x[T)
Combining conflicting weights (w* and w™ ) of evidence
cannot be done by simple addition. From [10] the weight
of evidence for the contradictory propositions 7 and T’

becomes:

MT):log(”f‘lJ @)
and

wmzlog(%J. (23)

Using (15) in reverse we can get the corresponding BPA
for propositions 7 and T

eH)'f _ 1
”(T') = W+ W— (24)
e +e" -1
and
_ eHF _1
ml)=— (25)
e +e" -1

The DS uncertainty is the BPA assigned to ® or
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m@)=—— ! (26)
e

+e" -1
Since m(THm(T)+m@)=1 for a one-class classifier. Note
the uncertainty of the system’s belief is driven down to 0
as evidence is collected or as w" and/or w~ increase. Thus

high but equal w*and w~ would give low uncertainty, but
an uninformed decision.

The most obvious decision rule is
Decide T If w(T) - w(T) >0 @7
Decide T otherwise
For the one-class problem, this turns out to be equivalent
to the three unambiguous decision rules proposed by Kim
in [4]. After some algebraic manipulation one can show
that (27) is equivalent to
Decide T If w" —w 20

_ 28
Decide T otherwise (28)
This is equivalent to a forced SPRT decision if one is

unwilling or unable to wait for any more observations.

7. Results

We show results on a one-class problem for video
motion classification (VMC). The target class 7T
represents upright-human dismounts and the nontarget
class T is any other mover detected by the video motion
detection (VMD) algorithm. The imager is an uncooled
DRS E3500 infrared camera with 320x240 resolution and
8-bit precision. VMD was accomplished with background
subtraction [1] and tracking with an alpha-beta tracker.
The features for VMC were histograms of oriented
gradients (HOG) [2] and the GOF metric was based on a
multinomial pattern matching (MPM) [6].

Figure 2 shows a mosaic of chips (subimages
containing the detection) collected of a runner at about
135 meters. The chips are of size 29x24 which is very
small, on the order of 100 pixels on target. Performance on
only one observation per frame is mediocre, especially
when the runner is obscured by a brighter object as seen in
the first row of chips in the mosaic.

Figure 3 shows the result of multilook fusion using the
SPRT, Bayesian Fusion, and DS on the outputs of the
MPM GOF classifier. Since the MPM is designed to

produce N(0,1) scores for HOG features from a target,
p(x,. |T ) is set to N(0,1) . As discussed in Section 3 we use
N(u,y,1) for p(x[ |T) where p, is empirically set to 5.

The desired error rates o and S are setto 1x107.
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Figure 2: Infrared detections of a runner tracked in an uncooled
infrared video imager.

Evidence
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Figure 3: Results of different multilook fusion algorithms of the
runner GOF scores from runner chip sequence.

The black line in Figure 3 shows the SPRT cumulative
log likelihood Z(n) (2) normalized by the upper SPRT
threshold a (4). This puts the SPRT on the same scale as
the Bayesian likelihood and DS BPA and gives a target /
nontarget declaration when Z(n)/a passes 1/—1 (since
a =|b|) . The green line shows the Bayesian likelihood
Bm) (7) with A;set to 1 (equal priors). The DS BPA is
shown by three curves. The red curve is the BPA for the
T class m(T), the blue curve is m(I), and the magenta
curve represents the uncertainty of the belief m(®).

Note that as the uncertainty m(®) goes to zero the
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Bayesian likelihood B(n) approaches m(7T). Also when
the current SPRT likelihood points to a nontarget or
Z(n)<0 then mT)<m@) and then for Z(n)>0

m(T)>m(T). This supports the result in (28) that SPRT
and DS make the same forced decision. There is also a
similar relation between the Bayes likelihood B(n) and
Z(m). When Z(n)<0, Bm)<0.5, and Z(n)>0,
B(n)>0.5. This becomes evident from (7) when A, =1
and the knowledge that Z(n) =0 corresponds to A(n)=1.

It is interesting to note that between observation 30 and
40 the DS uncertainty m(®) is close to 0, but so is the
SPRT log-likelihood. Any decision at this point would be
an uninformed decision at low uncertainty. When Z(n)/a
goes above the threshold of 1, then we can make a high
confidence decision that corresponds to low error rates of
aand B settolx107. Also note the Bayesian likelihood

of B(n)and D.S. BPA m(T) of a target are very close to 1.

Figure 4 shows a mosaic of a chicken tracked by the
system. The chip size is 51x34. Even though the chip size
is different than that of the runner the use of the HOG
features with the same number of horizontal and vertical
blocks gives a system that is scale invariant.

Figure 4: Infrared detections of a chicken tracked in an uncooled
infrared video imager.

Figure 5 shows the multilook fusion results for the
tracked chicken against the upright-human dismounts
classification system. When the SPRT log likelihood
Z(n)/a falls below the threshold of -1, we can make a

nontarget decision with low error rates. Also B(n) and

m(T) go to zero indicating a nontarget.
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Figure 5: Results of different multilook fusion algorithms of the
chicken GOF scores.

8. Conclusion

One of the main conclusions is that the sequential
probability ratio test (SPRT), Bayesian fusion, and
Dempster Shafer (DS) theory of evidence all make the
same the forced decision for the one-class problem when
the consonant evidence is represented by probability
density functions and there are equal priors for the target
and nontarget classes. This is rather surprising, since
Dempster Shafer incorporates the uncertainty of a belief in
its belief combination rule.

While a one-class classifier approach may seem
severely limiting one could solve the multi-class problem
by designing a one-class classifier for each class.

Each fusion approach brings a different element to the
problem of multiple look fusion. The SPRT approach
allows one to select decision thresholds that control the
two main errors used to measure a system’s performance:
the probability of missed detection and the probability of
false alarm. Bayesian likelihoods become probabilities if
the PDF’s are discrete. Dempster Shafer incorporates
belief uncertainty into evidence combination rule.

By theoretically analyzing each under a common
probabilistic framework we are able to mathematically
transform one into another and use or improve the best
features of each.
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