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Abstract

Multiple-look fusion is quickly becoming more 
important in statistical pattern recognition. With 
increased computing power and memory one can make 
many measurements on an object of interest using, for 
example, video imagery or radar. By obtaining more views
of an object, a system can make decisions with lower 
missed detection and false alarm errors. There are many 
approaches for combining information from multiple looks 
and we mathematically compare and contrast the 
sequential probability ratio test, Bayesian fusion, and 
Dempster-Shafer theory of evidence. Using a consistent 
probabilistic framework we show how to transform results 
from one approach to the other and show results for an 
application in infrared video classification. 

1. Introduction

There have long been multiple competing approaches 
for accomplishing multiple look sensor fusion. By 
multiple look fusion we assume we can make multiple 
measurements on an object, as it passes through the field 
of view of the sensor. For example, multiple frames in an 
infrared video or the extraction of multiple high-
resolution-range profiles from ground-moving-target-
indicator radar.

Here, we will theoretically compare and contrast three 
data fusion approaches: sequential probability ratio test 
(SPRT), Bayesian, and Dempster Shafer (DS). To 
accomplish this we will use a common probabilistic 
framework that is useful in real-world pattern recognition 
problems in unconstrained environments. Our goal is not 
to say one is better than the other, but to find 
commonalities between the various approaches and use 
one approach to find insights into others.  This can
eventually lead to a unified approach in sensor fusion.

2. One Class Classifiers

A structure one might choose for a classification 

problem is based on a one-class classifier [1]. For one 

class classifiers, we are interested in one specific target 1

represented by the alternative hypothesis 1H , and the null 

hypothesis 0H represents the non-target 1 class. While 

this might seem like an over simplification, one could 
argue that for a multi-class problem with other targets of 
interest m ,...,2 one would design a one-class classifier 

for each of them. For the 1 one-class classifier we can 

further divide the nontargets into two groups: the other 
targets of interest m ,...,2 and the unknown class 0 .

This allows us to further distinguish between two types of 
false alarm errors: between-class and out-of-class. 
Between-class errors occur when alarming on another 

target m ,...,2 by calling it the target 1 . Out-of-class 

errors occur when alarming on an unknown signature 0

by calling it the target 1 . In making any decision, we 

want to control two types of errors: missed detection
errors and false alarm errors. Missed detection errors 
result from missing a target signature by calling it a 
nontarget, and false alarm errors result from alarming on a 
nontarget signature by calling it a target.

For example, suppose we are interested in classifying 
moving objects in infrared video as humans, vehicles, or 
unknown. Here, 1 would represent the human class and 

2 the vehicle class. The unknown class 0 would 

represent all moving objects not in 1 or 2 . This would 

be wind-blown objects (tumble weed, boxes, trash cans, 
etc.) or animals. These unknown moving objects, a 
possible source of the out-of-class errors, are a significant 
problem in real-world pattern recognition problems in 
unconstrained environments. A Bayesian classifier 
approach designed for the human vs. vehicle problem, 
while minimizing the between-class errors, would require 
models of all the possible objects that could be imaged by 
the sensor to control the out-of-class errors. Otherwise it 
would classify an animal as human or vehicle. Modeling 
“the whole world” of possible objects is untenable for 
most realistic systems deployed in unconstrained 
environments. Instead, we use a goodness of fit (GOF) 
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classifier to control the out-of-class errors, and power 
analysis [8] to model the unknown class.

Whereas Bayesian classifiers minimize the between-
class error, they do nothing to control the out-of-class 
errors. Figure 1 illustrates this potential problem. The 
figure shows a two-dimensional feature space, with 
samples from two targets: Target A represented by stars 
and Target B represented by filled circles. Assuming 
normal distributions and equal covariance matrices for the 
targets, the Bayes decision boundary has a linear form 
(Figure 1a). Whereas the Bayes classifier minimizes the 
between-class errors of the A and the B targets, it does not 
control the out-of-class errors caused by unknown objects 
represented by “x” symbols. Depending on which side of 
the boundary the nontarget falls, the classifier will assign 
the unknown to one of the known classes and make an 
out-of-class error. Figure 1b shows a GOF classifier that 
tries to surround the target class. Here, the unknown 
objects, that have widely differing features from the target 
class (“x” symbols), will be classified correctly. In 
general, the GOF classifier has improved out-of-class 
errors, but the between-class errors will increase, since it 
is not necessarily an optimal Bayes classifier. 

Figure 1: Comparison of Bayes and goodness of fit (GOF) 
classifiers. (a) Bayes classifier. (b) GOF classifier. 

3. Probabilistic Framework

We will use the same probabilistic framework for 
comparing and contrasting the fusion algorithms. We start 
by assuming a stream of observations represented as
random variables ,, 21 xx . These samples result from the 

best match scores in the GOF metric. We also assume 

knowledge of the functions  Txp i | and   Txp i | which 

represent the probability density function (PDF) of an 

observation ix , given the target T and the nontarget T , 

respectively. The PDF’s can be discrete or continuous and 

be determined through theoretical means or empirical 
modeling.

The PDF  Txp i | is usually straight forward to 

determine, since one has knowledge of the target of 
interest. This information can come from data collections 
or modeling and simulation using CAD descriptions and a
physics-based sensor signature prediction software such as 

Irma [9]. The PDF  Txp i | is usually more problematic.

One approach for modeling the nontarget class uses 
statistical power analysis [8] to model the worst case 
nontarget. The approach has some similarities to that 
taken by [1] for modeling composite hypotheses by 
determining the least favorable choice. Power analysis 
assumes the tested effect is linear and the measured effect 
size (small, medium or large) is known. Typically, power 
analysis allows the statistician to determine if enough 
samples were collected to give the test a high power. 

While the exact form depends on  Txp i | , we show an 

example from [5] where  Txp i | is )1,0(N . This is 

convenient in problems where the central limit theorem 
can be applied. In [5], it was shown that the worst case 
nontarget PDF is )1,( NN  . Here the location parameter 

N represents the smallest acceptable effective difference 

between the target and nontarget.

4. Sequential Probability Ratio Test

One approach for combining decisions as they become 
available is to use the Wald sequential hypothesis test or 
SPRT [11]. After n observations the likelihood ratio is:
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Often it is more numerically convenient to work with the 
log-likelihood:
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The SPRT uses two decision boundaries ),( ba   to make a 

decision:
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One desirable property of the SPRT is that the decision 
boundaries can be determined from the chosen error rates. 
Thus, these decision boundaries can be obtained using the 
desired false alarm rate, , and the missed detection rate, 
 :
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It has been shown that the SPRT, on average, uses the 
smallest number of observations to make a decision [11]. 

It is interesting to note that the a-priori probabilities  Tp

and )(Tp do not appear in the log-likelihood ratio (2).

5. Bayesian Fusion

A sequential update formula can be derived from Bayes 
formula:

 TxpTpTxpTp

TxpTp
xTp

|))(1()|()(

)|()(
)|(

11

1
1


 (5)

The quantity  1| xTp is the likelihood of target after one 

observation 1x . By substituting  1| xTp for the prior  Tp

and a new observation 2x for 1x in (5) we get the likelihood 

of a target after two observations as:

   TxpTxpTpTxpTxpTp

TxpTxpTp

||))(1()|()|()(

)|()|()(

2121
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Using B(n) to represent the Bayesian likelihood after n

observations or )|( 1 nxxTp  we get

1)(
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where )(n is the Wald likelihood ratio in (1) and 0

represents the a-priori likelihood ratio:

))(1(

)(
0

Tp

Tp


 . (8)

The Bayesian likelihood is always between 0 and 1. By (1)
and the definition of a PDF  )(0 n , so as 

 )(n then 1)( nY and if 0)(  n then 0)( nY . 

Also if the PDF’s are discrete then we can compute a 
Bayesian probability of a target. We can use the SPRT 
stopping conditions to determine thresholds on the 
Bayesian likelihood. If

)log(  and  )log( BbAa  (9)

then A and B are the upper and lower stopping 
conditions for )(n , respectively. Thus the Bayesian 

stopping rule becomes:
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Note the )1/( 00   basically tweaks the threshold 

according to the a-priori information. For 10  the 

thresholds will go lower to make target calls slightly more 

probable and if 10  the thresholds will go higher to 

make nontarget calls slightly more probable.

6. Dempster-Shafer Theory of Evidence

The Dempster Shafer (DS) theory [10] is a 
mathematical theory of evidence that allows combining
evidence from different sources to arrive at a degree of 
belief. It models uncertainty by not requiring one to assign 
all of one’s belief to a proposition.

The main assumption we make is that evidence is 
consonant. This allows us to use the probabilistic 
framework that we established in section 3. Shafer defines 
consonant evidence as evidence that points in a single 
direction and only varies in the precision of focus [10]. 
This fits well with the GOF metric. The GOF describes the 
difference between stored knowledge, for example a 
template of the target, and the measured data. Thus it 
points only in the direction and focus of the hypothesis 
represented by the stored knowledge.

For the one-class problem the frame of discernment is 

},{ TT . From [10] the support function for the target 

T is  

1
)|(
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(13)

and the support for the nontarget T is

1
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Txp
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x

x

x

. (14)

where  m represents the DS basic probability assignment 

(BPA) function and )(xm represents the amount of 

uncertainty in the observation x .

For what we want to show it is simpler to work with 
DS’s weight of evidence. If m(A) represents the BPA for 
the proposition A then weight of evidence w(A) is:

))(1  log()( AmAw  . (15)
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In terms of weight of evidence equation (13) becomes:
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and equation (14) becomes
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Using equation (2)

1
)|(

)|(
  if

)(

0)(










Txf

Txf

zTw

Tw

x

x (18)
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where z represents the log-likelihood ratio in the SPRT. As 
long as we separate the evidence and combine only 
evidence supporting the same proposition, then we have 
the homogenous weight of evidence combination rule 
where the weights of evidence combine additively. For the 

total support of the target class T , let w represent the 
total amount of positive weight of evidence. Similarly 

define w for the total support for the non-target class T . 
Here
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Combining conflicting weights ( w and w )  of evidence
cannot be done by simple addition. From [10] the weight 

of evidence for the contradictory propositions T and T
becomes:
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Using (15) in reverse we can get the corresponding BPA 

for propositions T and T

1
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ee
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The DS uncertainty is the BPA assigned to  or

1

1




 ww ee
)m( (26)

Since 1))  m(Tm(m(T) for a one-class classifier. Note 

the uncertainty of the system’s belief is driven down to 0 

as evidence is collected or as w and/or w increase. Thus 

high but equal w and w would give low uncertainty, but 
an uninformed decision.

The most obvious decision rule is

otherwise

0)(If
    

  Decide

  Decide  Tww(T)

T

T
(27)

For the one-class problem, this turns out to be equivalent 
to the three unambiguous decision rules proposed by Kim 
in [4]. After some algebraic manipulation one can show 
that (27) is equivalent to

otherwise

0If
    

  Decide

  Decide   ww

T

T
(28)

This is equivalent to a forced SPRT decision if one is 
unwilling or unable to wait for any more observations.

7. Results

We show results on a one-class problem for video 
motion classification (VMC). The target class T
represents upright-human dismounts and the nontarget 

class T is any other mover detected by the video motion 
detection (VMD) algorithm. The imager is an uncooled 
DRS E3500 infrared camera with 240320 resolution and 
8-bit precision. VMD was accomplished with background 
subtraction [1] and tracking with an alpha-beta tracker. 
The features for VMC were histograms of oriented 
gradients (HOG) [2] and the GOF metric was based on a 
multinomial pattern matching (MPM) [6].

Figure 2 shows a mosaic of chips (subimages 
containing the detection) collected of a runner at about 
135 meters. The chips are of size 2429 which is very 
small, on the order of 100 pixels on target. Performance on 
only one observation per frame is mediocre, especially 
when the runner is obscured by a brighter object as seen in 
the first row of chips in the mosaic.

Figure 3 shows the result of multilook fusion using the 
SPRT, Bayesian Fusion, and DS on the outputs of the 
MPM GOF classifier. Since the MPM is designed to 
produce )1,0(N scores for HOG features from a target,

 Txp i | is set to )1,0(N . As discussed in Section 3 we use 

)1,( NN  for  Txp i | where N is empirically set to 5. 

The desired error rates  and  are set to 3101  .
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Figure 2: Infrared detections of a runner tracked in an uncooled 
infrared video imager.

Figure 3: Results of different multilook fusion algorithms of the 
runner GOF scores from runner chip sequence.

The black line in Figure 3 shows the SPRT cumulative 

log likelihood )(nZ (2) normalized by the upper SPRT 

threshold a (4). This puts the SPRT on the same scale as 
the Bayesian likelihood and DS BPA and gives a target / 

nontarget declaration when  anZ /)( passes 1/1  (since 

ba  ) . The green line shows the Bayesian likelihood 

B(n) (7) with 0 set to 1 (equal priors). The DS BPA is 

shown by three curves. The red curve is the BPA for the 

T class )(Tm , the blue curve is )Tm( , and the magenta 

curve represents the uncertainty of the belief )(m . 

Note that as the uncertainty )(m goes to zero the 

Bayesian likelihood B(n) approaches )(Tm . Also when 

the current SPRT likelihood points to a nontarget or 

0)( nZ then ))( Tm(Tm  and then for )(nZ >0 

))( Tm(Tm  . This supports the result in (28) that SPRT 

and DS make the same forced decision. There is also a 
similar relation between the Bayes likelihood B(n) and 

)(nZ . When 0)( nZ , 5.0B(n) , and 0)( nZ , 

5.0B(n) . This becomes evident from (7) when 10 

and the knowledge that 0)( nZ corresponds to )(n =1.

It is interesting to note that between observation 30 and 
40 the DS uncertainty )(m is close to 0, but so is the 

SPRT log-likelihood. Any decision at this point would be 

an uninformed decision at low uncertainty. When anZ /)(

goes above the threshold of 1, then we can make a high 
confidence decision that corresponds to low error rates of 

 and  set to 3101  . Also note the Bayesian likelihood 

of B(n) and D.S. BPA )(Tm of a target are very close to 1.

Figure 4 shows a mosaic of a chicken tracked by the 
system. The chip size is 3451 . Even though the chip size 
is different than that of the runner the use of the HOG 
features with the same number of horizontal and vertical 
blocks gives a system that is scale invariant.

Figure 4: Infrared detections of a chicken tracked in an uncooled 
infrared video imager.

Figure 5 shows the multilook fusion results for the 
tracked chicken against the upright-human dismounts 
classification system. When the SPRT log likelihood 

anZ /)( falls below the threshold of -1, we can make a

nontarget decision with low error rates. Also B(n) and 

)Tm( go to zero indicating a nontarget.
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Figure 5: Results of different multilook fusion algorithms of the 
chicken GOF scores.

8. Conclusion

One of the main conclusions is that the sequential 
probability ratio test (SPRT), Bayesian fusion, and 
Dempster Shafer (DS) theory of evidence all make the 
same the forced decision for the one-class problem when 
the consonant evidence is represented by probability 
density functions and there are equal priors for the target 
and nontarget classes. This is rather surprising, since 
Dempster Shafer incorporates the uncertainty of a belief in 
its belief combination rule.

While a one-class classifier approach may seem 
severely limiting one could solve the multi-class problem 
by designing a one-class classifier for each class.

Each fusion approach brings a different element to the 
problem of multiple look fusion. The SPRT approach 
allows one to select decision thresholds that control the 
two main errors used to measure a system’s performance: 
the probability of missed detection and the probability of 
false alarm. Bayesian likelihoods become probabilities if 
the PDF’s are discrete. Dempster Shafer incorporates 
belief uncertainty into evidence combination rule. 

By theoretically analyzing each under a common 
probabilistic framework we are able to mathematically 
transform one into another and use or improve the best 
features of each.
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