

100
101
102
103
104
105
106
107
108
109
110
111
112
113

One-Class Multiple-Look Fusion: A theoretical comparison of different approaches with examples from infrared video

150
151
152
153
154
155
156
157
158
159156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Abstract

Multiple-look fusion is quickly becoming more important in statistical pattern recognition. With increased computing power and memory one can make many measurements on an object of interest using, for example, video imagery or radar. By obtaining more views of an object, a system can make decisions with lower missed detection and false alarm errors. There are many approaches for combining information from multiple looks and we mathematically compare and contrast the sequential probability ratio test, Bayesian fusion, and Dempster-Shafer theory of evidence. Using a consistent probabilistic framework we show how to transform results from one approach to the other and show results for an application in infrared video classification.

128
129
130

1. Introduction

There have long been multiple competing approaches for accomplishing multiple look sensor fusion. By multiple look fusion we assume we can make multiple measurements on an object, as it passes through the field of view of the sensor. For example, multiple frames in an infrared video or the extraction of multiple high-resolution-range profiles from ground-moving-target-indicator radar.

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

Here, we will theoretically compare and contrast three data fusion approaches: sequential probability ratio test (SPRT), Bayesian, and Dempster Shafer (DS). To accomplish this we will use a common probabilistic framework that is useful in real-world pattern recognition problems in unconstrained environments. Our goal is not to say one is better than the other, but to find commonalities between the various approaches and use one approach to find insights into others. This can eventually lead to a unified approach in sensor fusion.

2. One Class Classifiers

A structure one might choose for a classification

problem is based on a *one-class* classifier [1]. For one class classifiers, we are interested in one specific target θ_1 represented by the alternative hypothesis H_1 , and the null hypothesis H_0 represents the non-target $\bar{\theta}_1$ class. While this might seem like an over simplification, one could argue that for a multi-class problem with other targets of interest $\theta_2, \dots, \theta_m$ one would design a one-class classifier for each of them. For the θ_1 one-class classifier we can further divide the nontargets into two groups: the other targets of interest $\theta_2, \dots, \theta_m$ and the unknown class θ_0 . This allows us to further distinguish between two types of false alarm errors: *between-class* and *out-of-class*. Between-class errors occur when alarming on another target $\theta_2, \dots, \theta_m$ by calling it the target θ_1 . Out-of-class errors occur when alarming on an unknown signature θ_0 by calling it the target θ_1 . In making any decision, we want to control two types of errors: *missed detection errors* and *false alarm errors*. Missed detection errors result from missing a target signature by calling it a nontarget, and false alarm errors result from alarming on a nontarget signature by calling it a target.

For example, suppose we are interested in classifying moving objects in infrared video as humans, vehicles, or unknown. Here, θ_1 would represent the human class and θ_2 the vehicle class. The unknown class θ_0 would represent all moving objects not in θ_1 or θ_2 . This would be wind-blown objects (tumble weed, boxes, trash cans, etc.) or animals. These unknown moving objects, a possible source of the out-of-class errors, are a significant problem in real-world pattern recognition problems in unconstrained environments. A Bayesian classifier approach designed for the human vs. vehicle problem, while minimizing the between-class errors, would require models of all the possible objects that could be imaged by the sensor to control the out-of-class errors. Otherwise it would classify an animal as human or vehicle. Modeling “the whole world” of possible objects is untenable for most realistic systems deployed in unconstrained environments. Instead, we use a goodness of fit (GOF)

200 classifier to control the out-of-class errors, and power
 201 analysis [8] to model the unknown class.

Whereas Bayesian classifiers minimize the between-class error, they do nothing to control the out-of-class errors. Figure 1 illustrates this potential problem. The figure shows a two-dimensional feature space, with samples from two targets: Target *A* represented by stars and Target *B* represented by filled circles. Assuming normal distributions and equal covariance matrices for the targets, the Bayes decision boundary has a linear form (Figure 1a). Whereas the Bayes classifier minimizes the between-class errors of the *A* and the *B* targets, it does not control the out-of-class errors caused by unknown objects represented by “*x*” symbols. Depending on which side of the boundary the nontarget falls, the classifier will assign the unknown to one of the known classes and make an out-of-class error. Figure 1b shows a GOF classifier that tries to surround the target class. Here, the unknown objects, that have widely differing features from the target class (“*x*” symbols), will be classified correctly. In general, the GOF classifier has improved out-of-class errors, but the between-class errors will increase, since it is not necessarily an optimal Bayes classifier.

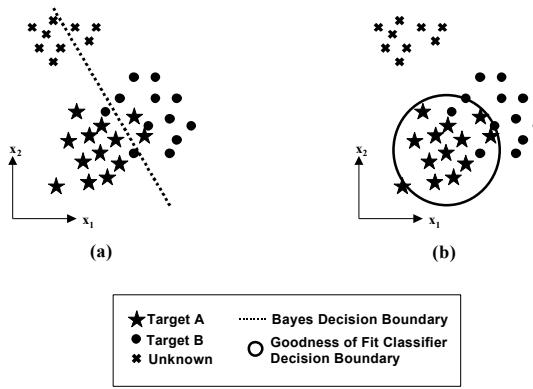


Figure 1: Comparison of Bayes and goodness of fit (GOF) classifiers. (a) Bayes classifier. (b) GOF classifier.

3. Probabilistic Framework

We will use the same probabilistic framework for comparing and contrasting the fusion algorithms. We start by assuming a stream of observations represented as random variables x_1, x_2, \dots . These samples result from the best match scores in the GOF metric. We also assume knowledge of the functions $p(x_i | T)$ and $p(x_i | \bar{T})$ which represent the probability density function (PDF) of an observation x_i , given the target T and the nontarget \bar{T} , respectively. The PDF's can be discrete or continuous and

be determined through theoretical means or empirical modeling. 29
29

The PDF $p(x_i | T)$ is usually straight forward to determine, since one has knowledge of the target of interest. This information can come from data collections or modeling and simulation using CAD descriptions and a physics-based sensor signature prediction software such as Irma [9]. The PDF $p(x_i | \bar{T})$ is usually more problematic. One approach for modeling the nontarget class uses *statistical power analysis* [8] to model the *worst case nontarget*. The approach has some similarities to that taken by [1] for modeling composite hypotheses by determining the *least favorable choice*. Power analysis assumes the tested effect is linear and the measured effect size (small, medium or large) is known. Typically, power analysis allows the statistician to determine if enough samples were collected to give the test a high power. While the exact form depends on $p(x_i | T)$, we show an example from [5] where $p(x_i | T)$ is $N(0,1)$. This is convenient in problems where the central limit theorem can be applied. In [5], it was shown that the worst case nontarget PDF is $N(\mu_N, 1)$. Here the location parameter μ_N represents the smallest acceptable effective difference between the target and nontarget.

4. Sequential Probability Ratio Test

One approach for combining decisions as they become available is to use the Wald sequential hypothesis test or SPRT [11]. After n observations the likelihood ratio is:

$$\Lambda(n) = \prod_{i=1}^n \lambda_i, \quad \lambda_i = \frac{f(x_i | T)}{f(x_i | \bar{T})} \quad (1)$$

Often it is more numerically convenient to work with the log-likelihood:

$$Z(n) = \log(\Lambda(n)) = \sum_{i=1}^n z_i, \quad z_i = \log\left(\frac{p(x_i | T)}{p(x_i | \bar{T})}\right) \quad (2)$$

The SPRT uses two decision boundaries (a, b) to make a decision:

$$\begin{array}{ll}
 \text{Reject } H_0 & \text{If } Z(n) \geq a \\
 \text{Accept } H_0 & \text{If } Z(n) \leq b \\
 \text{Get more data} & \text{If } b \leq Z(n) \leq a
 \end{array} \quad . \quad (3)$$

One desirable property of the SPRT is that the decision boundaries can be determined from the chosen error rates. Thus, these decision boundaries can be obtained using the desired false alarm rate, α , and the missed detection rate, β :

$$a = \log \frac{1-\beta}{\alpha} \text{ and } b = \log \frac{\beta}{1-\alpha}. \quad (4)$$

300 It has been shown that the SPRT, on average, uses the
 301 smallest number of observations to make a decision [11].
 302 It is interesting to note that the a-priori probabilities $p(T)$
 303 and $p(\bar{T})$ do not appear in the log-likelihood ratio (2).

305 5. Bayesian Fusion

306 A sequential update formula can be derived from Bayes
 307 formula:

$$309 \quad p(T|x_1) = \frac{p(T)p(x_1|T)}{p(T)p(x_1|T) + (1-p(T))p(x_1|\bar{T})} \quad (5)$$

310 The quantity $p(T|x_1)$ is the likelihood of target after one
 311 observation x_1 . By substituting $p(T|x_1)$ for the prior $p(T)$
 312 and a new observation x_2 for x_1 in (5) we get the likelihood
 313 of a target after two observations as:

$$318 \quad \frac{p(T)p(x_1|T)p(x_2|T)}{p(T)p(x_1|T)p(x_2|T) + (1-p(T))p(x_1|\bar{T})p(x_2|\bar{T})} \quad (6)$$

321 Using $B(n)$ to represent the Bayesian likelihood after n
 322 observations or $p(T|x_1 \dots x_n)$ we get

$$324 \quad Y(n) = \frac{\lambda_0 \Lambda(n)}{\lambda_0 \Lambda(n) + 1} \quad (7)$$

326 where $\Lambda(n)$ is the Wald likelihood ratio in (1) and λ_0
 327 represents the a-priori likelihood ratio:

$$329 \quad \lambda_0 = \frac{p(T)}{(1-p(T))}. \quad (8)$$

331 The Bayesian likelihood is always between 0 and 1. By (1)
 332 and the definition of a PDF $0 \leq \Lambda(n) < \infty$, so as
 333 $\Lambda(n) \rightarrow \infty$ then $Y(n) \rightarrow 1$ and if $\Lambda(n) = 0$ then $Y(n) = 0$.
 334 Also if the PDF's are discrete then we can compute a
 335 Bayesian probability of a target. We can use the SPRT
 336 stopping conditions to determine thresholds on the
 337 Bayesian likelihood. If

$$339 \quad a = \log(A) \text{ and } b = \log(B) \quad (9)$$

340 then A and B are the upper and lower stopping
 341 conditions for $\Lambda(n)$, respectively. Thus the Bayesian
 342 stopping rule becomes:

$$343 \quad \begin{aligned} \text{Reject } H_0 & \quad \text{If } Y(n) \geq C \\ 344 \quad \text{Accept } H_0 & \quad \text{If } Y(n) \leq D \\ 345 \quad \text{Get more data} & \quad \text{If } C \leq Y(n) \leq D \end{aligned} \quad (10)$$

346 where

$$348 \quad C = \frac{\lambda_0}{1+\lambda_0} A = \frac{\lambda_0}{1+\lambda_0} \frac{(1-\beta)}{\alpha} \quad (11)$$

349 and

$$350 \quad D = \frac{\lambda_0}{1+\lambda_0} B = \frac{\lambda_0}{1+\lambda_0} \frac{\beta}{1-\alpha}. \quad (12)$$

351 Note the $\lambda_0/(1+\lambda_0)$ basically tweaks the threshold
 352 according to the a-priori information. For $\lambda_0 > 1$ the
 353 thresholds will go lower to make target calls slightly more
 354 probable and if $\lambda_0 < 1$ the thresholds will go higher to
 355 make nontarget calls slightly more probable.

357 6. Dempster-Shafer Theory of Evidence

359 The Dempster Shafer (DS) theory [10] is a
 360 mathematical theory of evidence that allows combining
 361 evidence from different sources to arrive at a degree of
 362 belief. It models uncertainty by not requiring one to assign
 363 all of one's belief to a proposition.

366 The main assumption we make is that evidence is
 367 *consonant*. This allows us to use the probabilistic
 368 framework that we established in section 3. Shafer defines
 369 consonant evidence as evidence that points in a single
 370 direction and only varies in the precision of focus [10].
 371 This fits well with the GOF metric. The GOF describes the
 372 difference between stored knowledge, for example a
 373 template of the target, and the measured data. Thus it
 374 points only in the direction and focus of the hypothesis
 375 represented by the stored knowledge.

376 For the one-class problem the frame of discernment is
 377 $\Theta = \{T, \bar{T}\}$. From [10] the support function for the target
 378 T is

$$381 \quad \left. \begin{aligned} m_x(\bar{T}) &= 0 \\ m_x(T) &= 1 - \frac{p(x|\bar{T})}{p(x|T)} \\ m_x(\Theta) &= \frac{p(x|\bar{T})}{p(x|T)} \end{aligned} \right\} \text{if } \frac{p(x|T)}{p(x|\bar{T})} > 1 \quad (13)$$

387 and the support for the nontarget \bar{T} is

$$388 \quad \left. \begin{aligned} m_x(\bar{T}) &= 1 - \frac{p(x|T)}{p(x|\bar{T})} \\ m_x(T) &= 0 \\ m_x(\Theta) &= \frac{p(x|T)}{p(x|\bar{T})} \end{aligned} \right\} \text{if } \frac{p(x|\bar{T})}{p(x|T)} > 1. \quad (14)$$

394 where $m(\cdot)$ represents the DS basic probability assignment
 395 (BPA) function and $m_x(\Theta)$ represents the amount of
 396 uncertainty in the observation x .

397 For what we want to show it is simpler to work with
 398 DS's weight of evidence. If $m(A)$ represents the BPA for
 399 the proposition $A \subseteq \Theta$ then weight of evidence $w(A)$ is:

$$398 \quad w(A) = -\log(1-m(A)). \quad (15)$$

400 In terms of weight of evidence equation (13) becomes:
 401
 402
 403
 404
 405

$$w_x(\bar{T}) = 0 \\ w_x(T) = \log\left(\frac{f(x|T)}{f(x|\bar{T})}\right) \text{ if } \frac{f(x|T)}{f(x|\bar{T})} > 1 \quad (16)$$

406 and equation (14) becomes
 407
 408
 409

$$w_x(\bar{T}) = \log\left(\frac{f(x|\bar{T})}{f(x|T)}\right) \text{ if } \frac{f(x|\bar{T})}{f(x|T)} > 1 \\ w_x(T) = 0 \quad (17)$$

410 Using equation (2)
 411
 412

$$w_x(\bar{T}) = 0 \text{ if } \frac{f(x|T)}{f(x|\bar{T})} > 1 \\ w_x(T) = z \quad (18)$$

413 and
 414

$$w_x(\bar{T}) = -z \text{ if } \frac{f(x|\bar{T})}{f(x|T)} > 1 \\ w_x(T) = 0 \quad (19)$$

415 where z represents the log-likelihood ratio in the SPRT. As
 416 long as we separate the evidence and combine only
 417 evidence supporting the same proposition, then we have
 418 the homogenous weight of evidence combination rule
 419 where the weights of evidence combine additively. For the
 420 total support of the target class T , let w^+ represent the
 421 total amount of positive weight of evidence. Similarly
 422 define w^- for the total support for the non-target class \bar{T} .
 423 Here
 424

$$w^+ = \sum_{i=1}^n w_{x_i}(T) = \sum_{i=1}^n z_i, \text{ for } \frac{f(x|T)}{f(x|\bar{T})} > 1 \text{ or } z_i > 0 \quad (20)$$

425 and
 426

$$w^- = \sum_{i=1}^n w_{x_i}(\bar{T}) = \sum_{i=1}^n z_i, \text{ for } \frac{f(x|\bar{T})}{f(x|T)} > 1 \text{ or } z_i < 0 \quad (21)$$

427 Combining conflicting weights (w^+ and w^-) of evidence
 428 cannot be done by simple addition. From [10] the weight
 429 of evidence for the contradictory propositions T and \bar{T}
 430 becomes:
 431

$$w(T) = \log\left(\frac{e^{w^+} + e^{w^-} - 1}{e^{w^-}}\right) \quad (22)$$

432 and
 433

$$w(\bar{T}) = \log\left(\frac{e^{w^+} + e^{w^-} - 1}{e^{w^+}}\right). \quad (23)$$

434 Using (15) in reverse we can get the corresponding BPA
 435 for propositions T and \bar{T}
 436

$$m(T) = \frac{e^{w^+} - 1}{e^{w^+} + e^{w^-} - 1} \quad (24)$$

437 and
 438

$$m(\bar{T}) = \frac{e^{w^-} - 1}{e^{w^+} + e^{w^-} - 1} \quad (25)$$

439 The DS uncertainty is the BPA assigned to Θ or
 440

$$m(\Theta) = \frac{1}{e^{w^+} + e^{w^-} - 1} \quad (26)$$

441 Since $m(T) + m(\bar{T}) + m(\Theta) = 1$ for a one-class classifier. Note
 442 the uncertainty of the system's belief is driven down to 0
 443 as evidence is collected or as w^+ and/or w^- increase. Thus
 444 high but equal w^+ and w^- would give low uncertainty, but
 445 an uninformed decision.
 446

447 The most obvious decision rule is
 448

$$\begin{aligned} \text{Decide } T & \text{ If } w(T) - w(\bar{T}) \geq 0 \\ \text{Decide } \bar{T} & \text{ otherwise} \end{aligned} \quad (27)$$

449 For the one-class problem, this turns out to be equivalent
 450 to the three unambiguous decision rules proposed by Kim
 451 in [4]. After some algebraic manipulation one can show
 452 that (27) is equivalent to
 453

$$\begin{aligned} \text{Decide } T & \text{ If } w^+ - w^- \geq 0 \\ \text{Decide } \bar{T} & \text{ otherwise} \end{aligned} \quad (28)$$

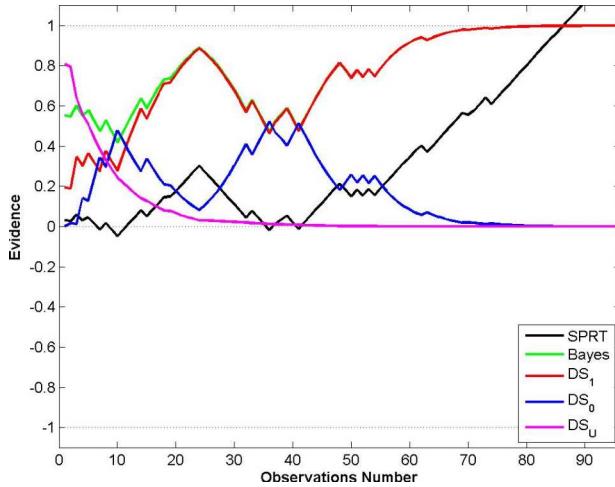
454 This is equivalent to a forced SPRT decision if one is
 455 unwilling or unable to wait for any more observations.
 456

7. Results

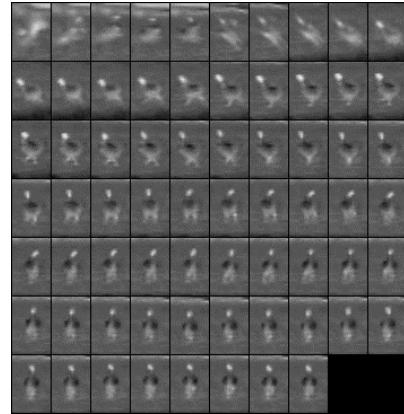
457 We show results on a one-class problem for video
 458 motion classification (VMC). The target class T
 459 represents upright-human dismounts and the nontarget
 460 class \bar{T} is any other mover detected by the video motion
 461 detection (VMD) algorithm. The imager is an uncooled
 462 DRS E3500 infrared camera with 320x240 resolution and
 463 8-bit precision. VMD was accomplished with background
 464 subtraction [1] and tracking with an alpha-beta tracker.
 465 The features for VMC were histograms of oriented
 466 gradients (HOG) [2] and the GOF metric was based on a
 467 multinomial pattern matching (MPM) [6].
 468

469 Figure 2 shows a mosaic of chips (subimages
 470 containing the detection) collected of a runner at about
 471 135 meters. The chips are of size 29x24 which is very
 472 small, on the order of 100 pixels on target. Performance on
 473 only one observation per frame is mediocre, especially
 474 when the runner is obscured by a brighter object as seen in
 475 the first row of chips in the mosaic.
 476

477 Figure 3 shows the result of multilook fusion using the
 478 SPRT, Bayesian Fusion, and DS on the outputs of the
 479 MPM GOF classifier. Since the MPM is designed to
 480 produce $N(0,1)$ scores for HOG features from a target,
 481 $p(x_i|T)$ is set to $N(0,1)$. As discussed in Section 3 we use
 482 $N(\mu_N, 1)$ for $p(x_i|\bar{T})$ where μ_N is empirically set to 5.
 483 The desired error rates α and β are set to 1×10^{-3} .
 484

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514515
516 Figure 2: Infrared detections of a runner tracked in an uncooled
517 infrared video imager.536
537 Figure 3: Results of different multilook fusion algorithms of the
538 runner GOF scores from runner chip sequence.539
540 The black line in Figure 3 shows the SPRT cumulative
541 log likelihood $Z(n)$ (2) normalized by the upper SPRT
542 threshold a (4). This puts the SPRT on the same scale as
543 the Bayesian likelihood and DS BPA and gives a target /
544 nontarget declaration when $Z(n)/a$ passes $1/-1$ (since
545 $a=|b|$) . The green line shows the Bayesian likelihood
546 $B(n)$ (7) with λ_0 set to 1 (equal priors). The DS BPA is
547 shown by three curves. The red curve is the BPA for the
548 T class $m(T)$, the blue curve is $m(\bar{T})$, and the magenta
549 curve represents the uncertainty of the belief $m(\Theta)$.

Note that as the uncertainty $m(\Theta)$ goes to zero the

550
551 Bayesian likelihood $B(n)$ approaches $m(T)$. Also when
552 the current SPRT likelihood points to a nontarget or
553 $Z(n)<0$ then $m(T)<m(\bar{T})$ and then for $Z(n)>0$
554 $m(T)>m(\bar{T})$. This supports the result in (28) that SPRT
555 and DS make the same forced decision. There is also a
556 similar relation between the Bayes likelihood $B(n)$ and
557 $Z(n)$. When $Z(n)<0$, $B(n)<0.5$, and $Z(n)>0$,
558 $B(n)>0.5$. This becomes evident from (7) when $\lambda_0=1$
559 and the knowledge that $Z(n)=0$ corresponds to $\Lambda(n)=1$.560
561 It is interesting to note that between observation 30 and
562 40 the DS uncertainty $m(\Theta)$ is close to 0, but so is the
563 SPRT log-likelihood. Any decision at this point would be
564 an uninformed decision at low uncertainty. When $Z(n)/a$
565 goes above the threshold of 1, then we can make a high
566 confidence decision that corresponds to low error rates of
567 α and β set to 1×10^{-3} . Also note the Bayesian likelihood
568 of $B(n)$ and D.S. BPA $m(T)$ of a target are very close to 1.569
570 Figure 4 shows a mosaic of a chicken tracked by the
571 system. The chip size is 51×34 . Even though the chip size
572 is different than that of the runner the use of the HOG
573 features with the same number of horizontal and vertical
574 blocks gives a system that is scale invariant.577
578 Figure 4: Infrared detections of a chicken tracked in an uncooled
579 infrared video imager.580
581 Figure 5 shows the multilook fusion results for the
582 tracked chicken against the upright-human dismounts
583 classification system. When the SPRT log likelihood
584 $Z(n)/a$ falls below the threshold of -1, we can make a
585 nontarget decision with low error rates. Also $B(n)$ and
586 $m(\bar{T})$ go to zero indicating a nontarget.

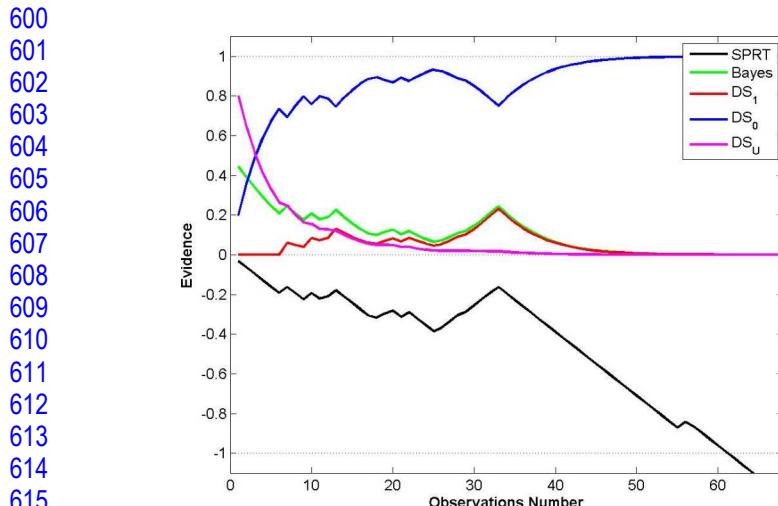


Figure 5: Results of different multilook fusion algorithms of the chicken GOF scores.

8. Conclusion

One of the main conclusions is that the sequential probability ratio test (SPRT), Bayesian fusion, and Dempster Shafer (DS) theory of evidence all make the same forced decision for the one-class problem when the consonant evidence is represented by probability density functions and there are equal priors for the target and nontarget classes. This is rather surprising, since Dempster Shafer incorporates the uncertainty of a belief in its belief combination rule.

While a one-class classifier approach may seem severely limiting one could solve the multi-class problem by designing a one-class classifier for each class.

Each fusion approach brings a different element to the problem of multiple look fusion. The SPRT approach allows one to select decision thresholds that control the two main errors used to measure a system's performance: the probability of missed detection and the probability of false alarm. Bayesian likelihoods become probabilities if the PDF's are discrete. Dempster Shafer incorporates belief uncertainty into evidence combination rule.

By theoretically analyzing each under a common probabilistic framework we are able to mathematically transform one into another and use or improve the best features of each.

References

[1] E. Boult, X. Gao, R. Micheals, and M. Eckmann, "Omni-directional visual surveillance," *Image and Vision Computing*, vol. 22, pp. 515, 2004.

[2] N. Dalal, and B. Triggs, "Histogram of oriented gradients for human detection," *Computer Vision and Pattern Recognition Conference*, June 2005. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[3] J. D. Gibson and J. L. Melsa, *Introduction to Nonparametric Detection with Applications*. New York: IEEE Press, pp. 25, 1996. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[4] H. Kim, and P. H. Swain, "Evidential reasoning approach to multisource-data classification in remote sensing," *IEEE Transactions on Systems, Man, and Cybernetics*, **24**, No. 8, 1257-1265, 1995. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[5] M. W. Koch, G. B. Haschke, and K. T. Malone, "Classifying acoustic signatures using the sequential probability ratio test," *Sequential Analysis Journal*, vol. 23, 4, pp. 557-583, 2004. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[6] M. L. Koudelka, J. A. Richards, and M. W. Koch, "Multinomial pattern matching for high range resolution radar profiles," *Algorithms for Synthetic Aperture Radar Imagery XIV*. Edited by Zelnio, Edmund G.; Garber, Frederick D.. Proceedings of the SPIE, Volume 6568, pp. 65680V (2007). 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[7] M. Moya and D. Hush, "Network constraints and multi-objective optimization for one-class classification," *Neural Networks*, vol. 9, 3, pp. 463-474, 1996. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[8] K. Murphy, and B. Myors, *Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests*. New Jersey: Lawrence Erlbaum Associates, 1998. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[9] J. Savage, et. al., "Irma 5.2 multi-sensor signature prediction model," Proc. SPIE 6564, Modeling and Simulation for Military Operations II, April 2007. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[10] Shafer, G., *A Mathematical Theory of Evidence*, Princeton University Press, 1976. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

[11] A. Wald, *Sequential Analysis*, John Wiley & Sons Inc, New York, 1947. 650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699