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Introduction - switching materials

Ag2S
Ag

Pt

Jo et al. Nano Lett. 8, 392 (2008)C. Schindler et al. ‘2007 NVMTS;  
AdvMat?

Terabe et al. Nature 433,47 
(2005)

Kwon et al. Nature Nanotechnol. 
5, 148 (2010)

Lee et al. Nature Mater.
10, 625 (2011)

Chen et al. ‘2012 IEDM

Ti4O7
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MOTIVATIONS: A Full - nitride memristor

TiNAlN

TiN/AlN structure

1) TiN: fab preferred material;

2) AlN and TiN: thermodynamic equilibrium between AlN and TiN

3) TiN: a large solubility of N  perfect electrode (serving as N reservoir)

4) AlN: only two stable solid phases perfect switching material (a conducting phase + an 
insulting phase,  same as Ta-O)
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AlN memristor

Device performance: forming-free, 
repeatable

• Nitride memristors reported 

• Stable and reproducible switching was observed after electro-forming

• Compliance current (Icomp) defines device resistance and IOFF

Choi et al. Appl. Phys. A Pagexx 2012
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– Fabrication and characterization

Device performance: Ultra-fast real-time 
switching

• High speed measurement setup employed (coplanar waveguide)

• in-situ monitoring of switching under sub-100ps FHWM pulse 

• Switching seems to take place at the inert Pt/AlN interface
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• Sub-100ps switching observed
in nitride memristor
• Strongly nonlinear switching 
kinetics (shorter time - higher voltage)

Pulse sequence
Quasi-DC device 
resistance [k]

Initial 0.73

#3 (-2.0 V / 86 ps) 97.83 (OFF)

Initial 83 M

#6 (+2.1 V / 87 ps) 2.56 k (ON)

#7 (+2.1 V / 87 ps) 0.73 k (ON)

read

85ps

Write (ON)

(b)

read readWrite (OFF)

85ps

(a)

Switched OFF
(decreased current)

read

Switched ON
(increased current)

Bipolar device (2m x 2m) – OFF & ON switching

Device performance: Ultra-fast real-time 
switching
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50nm x 50nm nanodevice

• Nano-scaled device fabricated using 50nm half-pitch Nano-imprint template
• OFF-switching current reduced to 10~20 µA (lower than TiOx and TaOx)
• High ON/OFF ratio (>100)

Low-energy device:
Lower current than TiOx and even TaOx
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– Switchable interface? More inert interface favorable!

Switching mechanism: analogue of oxide 
switches
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– Switchable interface? More inert interface favorable!

Switching mechanism: Switching polarity

2x10
-3

1

0

-1

-2

C
u
rr

e
n
t 
(A

)

-0.8 -0.4 0.0 0.4

Voltage (V)

5µm x 5µm

AlN

Pt

TiN

2

1

0

-1

-2

C
u

rr
e

n
t 

(m
A

)

-0.8 -0.4 0.0 0.4

Voltage (V)

10
-5

10
-3

C
u
rr

e
n
t 
(A

)

0.6-0.6
Voltage (V)

AlN

TiN

Al

-2

-1

0

1

2

C
u

rr
e

n
t 

(m
A

)

-0.8 -0.4 0.0 0.4
Voltage (V)

10
-5

10
-4

10
-3

C
u

rr
e

n
t 

(A
)

0.6-0.6
Voltage (V)

AlN 

Pt

Al

1.0x10
-3

0.5

0.0

-0.5

-1.0

C
u
rr

e
n
t 
(A

)

0.80.40.0-0.4

Voltage (V)

AlN

TiN

PtQuestions:
Another oxide switch 
or real nitride switch?!



13/15

20 30 40 50 60

In
te

n
si

ty
 (

a
.u

.)

2 (degree)

AlN films grown by ALD

• XRD amorphous matrix with fine nano-crystalline (hexagonal wurtzite) phases 

observed by TEM
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Switching mechanism: film structure
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RBS & SIMS; atomic concentration and impurities

Integrity of nitride film

• AlN film was characterized by RBS & SIMS

• Depth profile by RBS (left): N-rich AlN with negligible impurities 

• Depth profile by SIMS (right): uniform Al & N profiles with much lower 

C & O concentration  

• Highly uniform and pure AlN film was grown by ALD method 

Al:N=45:54
(C, O, Cl <3%)

AlN

AlN

N, C, O Al, Si

RBS
SIMS

O <1%

Switching mechanism: film composition
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Scanning Tunneling 
X-ray Microscopy 
(STXM)

Pressure Modulated
Conducting Microscopy 
(PMCM)

Focused Ion Beam
-Transmission 
Electron 
Microscopy
(FIB-TEM)

– Various ex-situ method

Switching mechanism: localized channels
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FIB-TEM analysis; electro-formed device

Pt
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Switching mechanism: anatomy of active region
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Red = Oxygen, Green = Al(-N), Blue = Pt

• Strong heating expected from intermixing between top metals (Al/Pt)

• The Pt(BE)/AlN remains O-free  switching from a Pt(BE)/Al-N interface

• Chemical changes of Al-N around channel region are under investigating

FIB-TEM analysis; electro-formed device
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Switching mechanism: O-free switching interface
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• Nitride memristors were fabricated and characterized from materials to devices

• AlN films grown by ALD are N-rich with uniform depth profile, much lower 
concentration of C, O impurities  

• Switching seems to take place at the more inert interface, such as Pt/AlN or 
TiN/AlN 

• FIB-TEM analysis revealed that Pt/AlN switching interface is preserved from O 
contamination in spite of significant heating during electroforming

• Fast switching (FWHM ~85ps) for both ON and OFF was observed

• Nano-devices were fabricated and reversible switching with high ON/OFF 
(>100) ratio and low current (~10uA) operation was observed

• Nitride memristors can have a great potential and open a new materials pool 

– Nitride memristors

Summary
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