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Metal-Organic Frameworks (MOFs) as Chemical
Recognition Materials

sense, but are nanoporous, hybrid materials composed of metal ions typically
linked to an oxygen-containing organic group. MOFs offer unprecedented
opportunities to couple specific interactions between molecules adsorbed in
their pores with a transduction mechanism that enables chemical sensing. A
key advantage of using these materials in sensing applications is their potential
to exhibit physical properties that are altered by very minor perturbations. MOF
thermal stability also enables sensor regeneration and many display long-term
stability under ambient conditions. In addition, their chemical selectivity is
determined by framework topology and the structure of the organic linker, which
can be varied easily by synthetic design. Our results demonstrate that MOF-
based sensors can exhibit similar performance in terms of working temperature
and response intensity to commercially available sensors and that MOFs
possess much greater synthetic versatility than traditional nanoporous
materials such as zeolites.
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MOF porosity and chemical functionality are highly tailorable,
making them ideal sensing materials

ucose 60
(~9A) (~10A) DNA(~20A)

Hemoglobin Small viruses
~10 nm ~ 50 nm

MIL-101

IRMOF-10

MOF-74-ll

20 A 30 A 40 A 50 A
Interior pore diameter @ Sandia National Laboratories



MOFs: high surface area, tailorable porosity for
chemical recognition layers
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Integration of MOF Thin Films with MEMS Devices

devices Ccan

detect a wide range of small molecules, including water, hydrocarbons, ketones
and alcohols. For example, we demonstrated sensitivity to sub-ppm water
vapor concentrations using a MOF-coated SAW device, which is competitive

with state-of-the-art commercial sensors.
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Sensing platforms for detection by mass uptake
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Quartz Crystal Microbalance : A versatile technique to
monitor in situ the deposition of MOFs on surfaces
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Cu-BTC SAM@Au, Al,O,, SiO, LBL, drop-casting, Continuous, polycrystalline

QCM, SAW, uCL Spin-coating, films

solvothermal

DUT-6 Al, O, Hydrothermal Continuous films
MOF-74(Mg) SiO, Drop-casting, spin Island growth

SAW casting, solvothermal
MOF-74(Zn) SiO, Solvothermal Continuous films
Al-MIL-53 SiO, Drop cast Individual crystals
PCN-14 SAW/SIO, Solvothermal Continuous film (rough,

semi-amorphous)

NOTT-100 SiO,, Al,O, Solvothermal; LBL Continuous films

SAW
NOTT-101 SiO,, Al,O, Solvothermal; LBL Continuous films

SAW
ZIF-8 SAW/SIO, Hupp method Continuous films (rough)
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CuBTC deposition on various substrates
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MOF-coated microcantilever: repeatable detection
of water vapor demonstrated

Sensor in continuous use for >12 months!

Water At Various Concentrations
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MOFs for Breath Analysis

disease markers (e.g., acetone or nitric oxide) or indications of consumption of
substances such as alcohol. The presence of a large number of potential interferents,
including water vapor, carbon dioxide, and many trace species demands that chemical
sensors exhibit a high degree of selectivity, as well as high sensitivity and fast response.
Our synthetic effort is guided by atomistic modeling, which shows that both sensitivity
(i.e., analyte uptake) and selectivity can be achieved by tuning the chemical environment
of the MOF pore. Our results demonstrate that detection of acetone and alcohols is
feasible using MOF-coated SAW sensors and strain-based microcantilevers. Using a
hydrophilic MOF (“Cu-BTC”), we demonstrate uptake of alcohols and acetone, while the
hydrophobic MOF “ZIF-8” responds to acetone and hexane, but not water vapor. In
contrast, we can tune the humidity and hexane response within a common structural
element by modifying the organic linker from hydrophilic (Cu-BTC) to hydrophobic (PCN-
14) in a series of copper-paddlewheel MOFs.
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Breath analysis

Uncontrolled diabetes

Acetone 500 ppb
Isoprene 100 ppb
Ethanol 200 ppb

Ethane, n-Pentane

Alkanes, alkane and
benzene derivatives

Cholesterol metabolism
Alcohol consumption
Oxidative stress; lipid peroxidation

Lung cancer

GC/FID; PTR-MS

Metal-oxide Acetone: 20 ppb — 100
ppm

Carbon black/polymer EtOH: 600 ppb—10 ppm

composites Acetone: 5—-33 ppm

Bulky; expensive

Operate at 100 — 400 °C
Selectivity can be poor

Broad response, low selectivity
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Heats of adsorption (298 K) predicted by Grand
Canonical Monte Carlo simulations
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MOFs used in this study
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MOFs used in this study (Part 2)

O (0] (0] O,
2 2 HO OH HO OH
" RO OO0
HO OH HO OH
0~ OH ) 0 0 o
Hsbtc H,bptc Htptc Hjadip
benzene-1,3,5- [1,1"-biphenyl]-3,3',5,5'- [1,1:4',1"-terphenyl]-3,3",5,5" 5,5'-(anthracene-9,10-diyl)-
tricarboxylic acid tetracarboxylic acid -tetracarboxylic acid diisophthalic acid

Pore entrance diameter (A): 6.5 4.8 5.5 4.5
Largest cavity diameter (A): 11.1 10.0 11.2 11.2
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Ethanol detection:
Cu-BTC coated microcantilever
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Response of MOF-coated SAWS to humidity and hexane,
tuned by pore chemical environment
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Cu-BTC 6.6
NOTT-100 2.2
NOTT-101 1.1
PCN-14 3.2
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Response to acetone:
ZIF-8 coated SAW device
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Time constants for adsorption and desorption
Cu-BTC@SiO, on microcantilever

T(s) T(s)

o Vapor pressure (Adsorption) (Desorption)

(thermodynamics)

o Diffusion rate (kinetics) Acetone 57 52 59

o Good correlation with b.p. | Methanol 65 43 83

Isopropanol 83 14 22

* t(desorption) > t(adsorption); | H.0 100 11 14
suggests:

= Chemisorption
= Molecular size plays a role
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Response to acetone — temperature dependence

ZIF-8 coated SAW device

Acetone on ZIF-8. Fixture at 75C{SAW 1)
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- Porous structure aids diffusion, decreases response time

- Tailorable pore size, chemistry enable selectivity

« MOF-functionalized MEMS sensors

Sub-ppm sensitivity achievable (demonstrated for H,O)

LOD for organics: 20 — 30 ppm; improvement strategies:
» Should be possible to decrease based on Q
* Increase SAW frequency to 500 MHz
« Improve mechanical coupling and optimize thickness

Response time < 60 s feasible with microcantilevers

Discrimination against principal breath components possible
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