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Abstract 

This paper details a methodology for quantification of errors and uncertainties of 

a finite element heat transfer model applied to a Ruggedized Instrumentation 

Package (RIP).  The proposed verification process includes solution verification, 

which examines the errors associated with the code’s solution techniques. The 

model was subjected to mesh resolution and numerical parameters sensitivity 

studies to determine reasonable parameter values and to understand how they 

change the overall model response and performance criteria. To facilitate 

quantification of the uncertainty associated with the mesh, automatic meshing 

and mesh refining/coarsening algorithms were created and implemented on the 

complex geometry of the RIP. Similarly, highly automated software to vary 

model inputs was also developed for the purpose of assessing the solution’s 

sensitivity to numerical parameters. The model was subjected to mesh resolution 

and numerical parameters sensitivity studies. This process not only tests the 

robustness of the numerical parameters, but also allows for the optimization of 

robustness and numerical error with computation time. Agglomeration of these 

studies provides a bound for the uncertainty due to numerical error for the 

model. An emphasis is placed on the automation of solution verification to allow 

a rigorous look at uncertainty to be performed even within a tight design and 

development schedule. 

Keywords:  Uncertainty Quantification, Verification, Mesh Resolution, 

Numerical Parameters 

SAND2013-2137C



1 Introduction 

In any numerical model, uncertainties due to the pedigree of the software and 

numerical parameters make the calculation of an exact answer for a given 

problem impossible.  Understanding the uncertainty associated with numerical 

errors is crucial to make meaningful predictions or comparisons to experimental 

results.  Quantification of these errors is done by preforming code and solution 

verification.  The purpose of solution verification is to quantify the uncertainty 

induced in simulation results by the algorithms used to approximate the solution.  

Ideally, each result used in the assessment would be based on an analytical 

solution of the governing partial differential equations (PDEs) in the geometry of 

interest, but solving these equations by hand is often not possible.  Computation 

offers a means to approximate these solutions, but introduces errors by relying 

on a discrete approximation of the underlying PDEs.  It is therefore important to 

know how much the calculated solution may differ from the exact solution.  

Quantification of this uncertainty involves varying numerical parameters such as 

mesh resolution, time integration methods, etc.  The resulting uncertainty is used 

to provide simulation error bounds when making predictions or comparing to 

experimental data.  This work summarizes the solution verification of the 

thermal model of the Ruggedized Instrumentation Package (RIP). 

2 RIP Definition 

The RIP is an assembly of electronics, batteries, and circuit boards packaged in 

metal housings as seen in Figure 1.  The goal was to create an FEA thermal 

model using SIERRA Thermal/Fluids code [1] in order to monitor the 

temperature in specified locations to ensure that electronics remained in their 

operating temperature range.   

 

 
Figure 1: Ruggedized Instrumentation Packager (RIP) in three views with heat 

sources labelled. 



 

     The RIP is approximately 0.15 meters in diameter. Heat sources in the RIP 

are 48 2/3 A-cell batteries and two electronic packages (EP).  In the simulation, 

the RIP is heated by these electronics in a vacuum (no convection) for one hour.  

Each EP produces 17 Watts of heat, however while EP1 is on for the entire hour, 

EP2 is only turned on in the final minute of the simulation.  The batteries each 

produce 0.3 Watts and are constantly producing heat throughout the hour.  There 

is no contact resistance specified in the model, other than between the EPs and 

the battery housing.  This represents a thin thermal gap pad, which was difficult 

to mesh.  The temperature was monitored in six locations (Figure 2), 

corresponding to the location of thermocouples (TC) in experiments that will be 

performed on the RIP.  TC 1, 2, 5 and 6 are located on the battery housing and 

TC 3 is located on EP1 and TC 4 on EP2. 

 

 
Figure 2: Locations where temperature is monitored 

 

2.1 Geometry 

The analysis team received production style ProEngineer [2] (computer aided 

design software) models of the RIP.  To prepare this model for meshing, many of 

the details needed to be removed, such as screws, fillets, threaded inserts, cables, 

and electrical connectors and features used for tolerancing, such as small gaps.  

Once these changes were made, the model was exported as a STEP file and 

imported into CUBIT [3], a geometry creation, manipulation, and mesh 

generator created by Sandia National Laboratories.  When the geometry was 

completed, the model was comprised of 107 blocks. 

3 Mesh Resolution Study 

When performing any computer analysis of PDEs, the continuous mathematical 

problem must be converted into a discrete representation.  Doing so requires the 

generation of a mesh, which discretizes the continuous model into finite 

elements, for solving and storing the approximate solution.  An unavoidable 

consequence is that information is lost relative to the original continuous 

problem, resulting in uncertainty.  The quantification of the sensitivity of the 

solution to the mesh size is accomplished through a mesh resolution study 

involving a family of topologically similar meshes with a range of characteristic 



length scales.  The finest mesh in the set is considered to be the ‘true’ solution, 

because as the mesh size decreases, the mesh-based approximations to the 

continuous derivatives also improve.  When the coarser meshes are compared to 

the ‘true’ solution, the error associated with discretion can be assessed.   

3.1 Original Mesh Creation 

One of the reasons CUBIT was chosen as the mesh generator for this project was 

that it has a built in Python (open source scripting language) interface.  A script 

was created using Python that would automatically generate a tetrahedral mesh 

for a complex geometry.  To handle models, such as this one, where the blocks 

varied drastically in size, this script was built with ‘intelligence’ to choose 

appropriate mesh sizes for each block.  The meshing script worked according to 

the following algorithm: 

 Obtain geometric information about the blocks, surfaces, and curves 

 Use curve information to set a global largest and smallest mesh size by 

evaluating the smallest and largest curves in the model.  The default is to set 

the smallest mesh size as half the length of the smallest curve and the largest 

as 200 times the smallest mesh size (the latter being user-specified). 

 Surfaces are ranked from smallest surface area to largest. 

 For each surface, beginning with the smallest, a mesh size is determined by 

dividing the length of the smallest curve in half.  The mesh size is compared 

against the longest curve on the surfaces, to ensure that surfaces with no 

small curves still have an appropriate mesh size.  Next, a check is conducted 

to make sure the mesh size falls between the globally allowed values.  

Finally, the surface is meshed. 

 The blocks are ranked by volume from smallest to largest. 

 Starting with the smallest block, the volume is meshed.  Next, a list of 

adjacent blocks is created and ranked from smallest the largest.  The 

smallest block in that list is then meshed and the process begins again.  If the 

smallest block is already meshed, the program moves down the list until it 

finds an unmeshed block. 

     If at any point in the program an unacceptable mesh is created (CUBIT 

automatically checks the quality of the mesh it creates), the program exits, 

providing the user information about the error.  The program can then be 

restarted where it left off.  Using this program, a mesh of 3,647,629 elements 

was created in approximately 10 minutes.  This mesh will be referred to as the 

nominal mesh. 

3.2 Refined Mesh Creation 

A second Python program was created in order to create a family of meshes for 

the mesh resolution study.  This program, referred to as ‘remesher’, is meant to 

be applied to an existing mesh, in this case the nominal mesh, and a user 

supplied scale factor by which the mesh is to be changed.  The program’s 



objective is to create a new mesh, topologically similar to the original, but with a 

smaller or larger number of elements. The program operates in the follow way: 

 Obtain geometric information about the mesh on blocks, surfaces, and 

curves in the model and store it. The mesh is then deleted and reset. 

 The curves are ranked from shortest to longest.  For each curve, beginning 

with the shortest, a new mesh size is created by multiplying the old mesh 

size by the user specified scale factor.  An optional check that the new mesh 

size does not violate a user supplied maximum mesh size is then conducted.  

Finally, a mesh size is set for the curve and the curve is meshed. 

 The surfaces are ranked from smallest surface area to largest.  For each 

surface, beginning with the smallest, the surface is meshed. 

 The blocks meshed in the same manner as the nominal mesher. 

     Using this program eight meshes were created.  The meshing time ranged 

from under 5 minutes for the coarsest meshes to over an hour for the finest.  

Table 1 gives information about these meshes and Figure 3 shows select meshes.  

Their names are derived from the change in number of elements from the 

nominal mesh (3,647,629 elements). 

 

Table 1:  Meshes generated by remesher program 

Mesh Name # elements Mesh Name # elements 

Coarse 16x  228,485  Fine 2x  7,380,550  

Coarse 8x  454,463  Fine 4x  14,622,783  

Coarse 4x  919,198  Fine 8x  29,336,251  

Coarse 2x  1,845,807  Fine 16x  58,802,650  

 

 

 
Figure 3: Meshes generated by remesher program 

 

3.3 Mesh Resolution Study Results  

The 16x mesh was taken as the ‘true’ solution because it was the most refined 

mesh generated. As it is not actually the true mathematical solution, mesh 

convergence can only be assessed in the Cauchy sense, as discussed in Hughes 

[4]. Thus, the rate of convergence can be identified, but the difference between 

the nominal and 16x mesh only provides an estimate for the absolute difference 

between the numerical results and analytic solution. Two standard norms were 



used to assess the rate of convergence:  the L2 and L∞ norms.  The L∞ norm is the 

absolute maximum difference between the two solutions, also normalized by the 

fine mesh.  This norm is mathematically defined as (in 1D): 
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where Ω is the domain, TF(x) is the temperature of the fine mesh at location x 

and TC(x) is the temperature of the course mesh at location x.  The L∞ norm is 

expected to converge as h
-1

, where h is the mesh length scale.  It provides a 

measure of the worst-case local error that can occur and is useful for verifying 

that lower dimensional parts of the mesh are accurate, such as faces and contacts.  

In contrast, the L2 norm measures the mean square error between two solutions, 

normalized by the fine mesh, and is expected to converge as h
-2

.  It is useful for 

assessing the overall quality of the solution.  

 

 
Figure 4: Time vs Temperature for the TC 3 for the 16x fine mesh, nominal 

mesh, and 16x coarse mesh 

 

     Qualitative trends are presented in Figure 4 showing the differences in the 

temperature fields at a location of interest for three different mesh resolutions.  

The maximum temperature difference between the 16x fine mesh and the 16x 

coarse mesh occurs at 60 minutes and is 1.24K.  The temperature difference 

between the 16x fine mesh and the nominal mesh also occurs at 60 minutes and 

is 0.5K.  This indicates that the solution is converging, which is further 

supported by the quantitative results for the L2 and L∞ norms shown in Figure 5.  

When plotted on a log-log scale, the slope of the best fit lines in this figure 

represents -k in h
-k

.  The series of tested meshes have an L2 convergence rate of -

2.65 and a L∞ convergence rate of -1.07.  While these convergence rates are near 

the expected value, using a finer mesh as the ‘true’ solution could bring these 

values closer to the expected values.  Based on the results, it was determined that 

the nominal was the optimal mesh, since it is within the linear convergence 

regime, but at the coarse end, allowing for shorter computation times. 



 

 
Figure 5: L2 and L∞ norms with best fit lines (L2 best fit slope = -2.65, L∞ best fit 

slope = -1.07) 

 

     In addition to the model based approach shown in Figure 5, a block by block 

L2 and L∞ analysis was performed.  While convergence theory only holds for the 

entire model, examining the blocks can provide insight about local mesh quality.  

Figure 6 shows a histogram of the convergence rates of the blocks.  For the L2 

convergence rate, most of the blocks fell near the model L2 rate of -2.65.  This is 

expected, since the L2 norm is an average convergence rate.  In the L∞ case, most 

of the blocks fell near -2.5, far from the model rate of -1.07.  Since the mesh as 

well as the temperature inputs from the surrounding blocks is changing, it is 

reasonable that most blocks have a faster convergence rate than the global rate. 

 

  
(a) (b) 

Figure 6: Histogram of the (a) L2 and (b) L∞ norms for each block in the RIP 

4 Numerical Parameters Study  

In any simulation, there are a number of parameters that control the behaviour of 

the underlying numerical algorithms and hence can have an impact on the model 



results. Numerical parameters in the RIP thermal model fall into three general 

categories:  linear solver settings, time integration, and radiation solver 

parameters.  The linear solver settings specify the preconditioning and solution 

methods, and solution tolerance.  The time integration algorithm includes 

parameters governing the number of non-linear iterations and their convergence 

tolerance, the order of accuracy, and the use of lumped or consistent mass 

matrices.  Finally, there are several parameters governing the performance of the 

radiation solver. 

4.1 Approach  

For this study, the Latin Hypercube sampling (LHS) capability in Dakota was 

used to sample the parameters that control the numerical behaviour of the model 

in question and to generate and record model responses of interest as well as the 

time required to complete computations.  Dakota is a software package designed 

and developed at Sandia National Laboratories to perform advanced parameter 

space exploration of computational models [5, 6, 7].  Included are a wide range 

of algorithms for sensitivity analysis, uncertainty quantification, optimization, 

and parameter estimation.  LHS is a stratified sampling approach in which the 

parameter space is partitioned in such a way that there are p bins of equal 

probability for each parameter across its range of possible values, where p is the 

number of samples.  The size of the bins is determined by the probability 

distribution associated with the parameter.  This results in p
n
 bins for an n-

dimensional parameter space.  Samples are randomly placed within the bins such 

that for all one-dimensional projections of the p samples and bins, there will be 

one and only one sample in each bin.   

     The data generated by the LHS study was analysed using the R open-source 

statistical software [8].  Analysis of variance (ANOVA) and correlation analysis 

capabilities in R were used to determine which parameters had the most 

significant effects on the model responses and computation time [9, 10]. 

     ANOVA allows for the decomposition of the variance seen in the model 

response into a function of the parameters.  Statistical tests then allow for the 

identification of the parameters that have the most influence on the response.  

The key quantity of interest in ANOVA is the p-value, which represents the 

probability that a more extreme response would be observed despite the 

parameter having no effect on the response.  Therefore, the lower a parameter’s 

p-value, the stronger the evidence that it is influential.   

     To determine correlation coefficients, the Pearson and Spearman correlation 

were considered.  The former measures the direction and strength of the linear 

relationships between responses and parameters.  The latter is a measure of the 

monotonicity of the responses with respect to the parameters.  Values for both 

range from [-1,1], with the endpoints representing the strongest relationships. 

     Aggregate numbers and statistics such as those described above can often 

hide model behaviour.  With the correlations in particular, since they capture 

only linear and monotonic relationships, it is possible that cancellation effects 

can result in low values where in fact there might be some nonlinear influence.  



For that reason, the effects of parameters on the responses were also visually 

inspected using scatter plots.   

4.2 Results 

For the verification study, 27 input parameters were examined and the 

temperature at the thermocouples and the simulation time was monitored.  In 

addition, the results were compared to the results of a nominal run, and L2 and 

L∞ norms were calculated.  The study took approximately a day to set up, and 18 

hours to run (on 1120 processor cores running 70 simulations simultaneously).  

Using the p-values and correlation coefficients as a guide, all values below 

(Table 2) were considered to be significant for this study. 

 

Table 2:  Significant parameters 

Parameter Name Description 

Maximum time step 
The maximum amount of time allowed between each time step. The 

allowed range is 10 to 200, nominal is 100.  

Residual norm scaling 
The method for measuring the error. The choices are none or RHS, which 
normalizes it against the right-hand side. The nominal is none.  

Time integration method 
The order of accuracy in for time integration. The choices are first order 

and second order.  The nominal is second order.  

 

     Using this data it was determined that many of the nominal settings for the 

simulation were optimal.  For example, when residual norm scaling was set to 

RHS, the average runtime was higher than with none.  Since there was little 

appreciable change in the results data when residual norm scaling was changed, 

the choice of using the faster setting is preferable. 

     For maximum time step, it is assumed both the simulation time will increase 

as the time step decreases and that solution accuracy will decrease as time step 

increases.  As seen in Figure 7(a), simulation time increased rapidly as the 

maximum time step was below 50.  Figure 7(b) likewise shows a decrease in the 

spread of the data as the time step decreases. 

 

  

(a) (b) 

Figure 7: (a) Simulation time vs maximum time step (b) L2 norm vs time step 



 

     The thermocouples also showed a response to changing the maximum time 

step.  Representative thermocouple responses are shown in Figure 8.  TC 1, 5, 

and 4 had the strongest response, where TC 1 and 5 had similar plots, while TC 4 

showed the opposite trend in terms of average temperature.  However, both plots 

show the spread in the data decreases as the maximum time step decreases.  This 

indicated that the maximum time step needs to be set to 50 or less to reduce 

error.  When time integration method (Figure 9) was set to second order, the 

simulation time decreased and the spread in the temperature data from the 

thermocouples (except TC 4) decreased.  The spread in the TC 4 data may be 

caused by the variation in the maximum time step. 

 

  
(a) (b) 

Figure 8: Temperature vs maximum time step for (a) TC 1 and (b) TC 4.  Boxed 

data points refer to boxed data points in Figure 9(b) 

 

  
(a) (b) 

Figure 9: Temperature vs integration order for (a) TC 1 and (b) TC 4. Boxed 

data points refer to boxed data points in Figure 8(b) 

5 Uncertainty Quantification 

The data from the mesh resolution and the numerical parameters studies used to 

quantify the uncertainty.  The maximum difference in temperature between the 



16x fine and the 16x coarse meshes is a conservative estimate of the uncertainty 

with regards to the mesh.  Table 3 shows these results. 

Table 3:  Uncertainty for each thermocouple with regards to mesh 

Thermocouple 
Temperature 

Uncertainty 
Thermocouple 

Temperature 

Uncertainty 

TC 1 ± 1.10 K TC 4 ± 1.24 K 

TC 2 ± 1.10 K TC 5 ± 1.08 K 

TC 3 ± 1.24 K TC 6 ± 1.18 K 

 

     In order to determine the uncertainty from the mesh for all points on the RIP, 

not just the tracked locations, the L2 and L∞ norms are employed.  Since the 

norms are a normalized measure of the temperature difference, when multiplied 

by 100 it can be used as a percent error.  Using the L∞ norm is a more 

conservative estimate than the L2 norm, as L∞ indicates the maximum variation.  

Although Table 4 reports the uncertainties derived from L2 and L∞ for all 

meshes, since the mesh resolution study showed that the nominal mesh was 

optimal for our problem, a conservative estimate for the error introduced by the 

mesh at any point in our problem is ± 0.42%.  In addition, the L∞ correlates well 

with the temperature difference based approach (335K * 0.42% = 1.4K). 

Table 4:  Uncertainty associated with each mesh 

Mesh Name L2 Error L∞ Error Mesh Name L2 Error L∞ Error 

Coarse 16x ± 0.21% ± 2.05% Nominal ± 0.09% ± 0.42% 

Coarse 8x ± 0.18% ± 2.02% Fine 2x ± 0.05% ± 0.24% 

Coarse 4x ± 0.15% ± 0.86% Fine 4x ± 0.03% ± 0.23% 

Coarse 2x ± 0.13% ± 0.38% Fine 8x ± 0.01% ± 0.15% 

 

   To quantify the error introduced by the numerical parameters, the largest 

spread induced by a chosen parameter is evaluated.  Maximum time step and 

integration order are the parameters driving the uncertainty while TC 4 has the 

largest response to variation of numerical parameters.  At the nominal maximum 

time step value of 100, the entire spread of temperature for second order is the 

error (Figure 9(b)), approximately 1.5 K.  By reducing the maximum time step to 

50, the cluster of points near 333 K (the boxed data on Figures 8(b) and 9(b)) can 

be ignored, since it is clear on Figure 8(b) that no such temperatures exists when 

the maximum time step is 50 or less.  This reduces the error to 0.75 K. 

6 Summary 

A verification analysis was conducted on a finite element heat transfer model of 

the RIP.  A conservative estimate of the error introduced into the solution by the 

numerical parameters and mesh is ± 2 K.  This study, once the infrastructure was 

prepared, took less than two working weeks to conduct.  This time scale was 

acceptable to the development engineers that requested the thermal model.  This 

paper shows that rigours verification of model can be obtained within the 

constraints of an aggressive design, development, and production schedule.  



6.1 Future Work 

In the numerical parameters study, TC 4 exhibited responses different from the 

other five thermocouples.  TC 4 is located on EP2, the electronics package that 

turns on for the last minute of the simulation.  This may explain the behaviour of 

TC 4 and therefore parameters involving contact resistance transient solutions 

should be studied more in depth to identify an optimal setting.  Once the above 

topics have been addressed, the analysis team will conduct a material sensitivity 

study and validate the model, using data collected by the experimental team. 
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