

Nonstoichiometric Perovskite Oxides for Solar Thermochemical H₂ and CO Production

Anthony H. McDaniel¹, Andrea Ambrosini², Eric N. Coker², James E. Miller², William C. Chueh,³ Ryan O’Hayre,⁴ and Jianhua Tong⁴

¹Ph.D., Hydrogen and Combustion Technologies Dept., Combustion Research Facility, Sandia National Laboratories, P.O. Box 969, MS9052, Livermore, CA 94550, USA, (925) 294-1440, amcdani@sandia.gov

² Ph.D., Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA

³ Ph.D., Department of Materials Science, Stanford University, Stanford, CA 94305-4034, USA

⁴ Ph.D., Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA
Corresponding Author Email, amcdani@sandia.gov

Perovskite oxides (ABO₃) are a largely unexplored class of materials in solar fuel applications. In this presentation we examine the use of nonstoichiometric perovskite-type oxides in a two-step, solar-thermochemical water or carbon dioxide splitting cycle. We find that a substituted SrMnO₃ will split both H₂O and CO₂. And the yield of H₂ and CO is significantly greater than CeO₂, a benchmark material in CSP fuels research, at a thermal reduction temperature 150 °C below that of CeO₂. Constant redox activity was demonstrated over 80 cycles. To put this discovery in perspective, efforts to improve upon ceria’s performance that are focused on destabilizing the crystal structure through doping or substitution have only marginally increased cycle capacity. It is unlikely that these enhancements to CeO₂ will prove sufficiently beneficial at reduction temperatures below 1400 °C. In addition, the amenability of the perovskite structure to chemical modification opens a vast composition space within which to design more effective materials that will greatly exceed the performance of ceria. The profound impacts on the development of concentrating solar power fuels technologies will be addressed.

Work at Sandia was supported by the DOE Fuel Cell Technologies Office as part of the Production technology development area, and by Laboratory Directed Research and Development at Sandia National Laboratories. W.C.C. was supported by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering. Work conducted at Colorado School of Mines was supported by the National Science Foundation MRSEC program under grant No. DMR-0820518. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.