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ABSTRACT

Recently, a new experimental based substructure formulation was introduced which reduces ill-conditioning due to
experimental measurement noise by imposing the connection constraints on substructure modal coordinates instead of the
physical interface coordinates. The experimental substructure is tested in a free-free configuration, and the interface is
exercised by attaching a flexible transmission simulator. An analytical representation of the fixture is then used to subtract its
effects from the experimental substructure. The resulting experimental component is entirely modal based, and can be
attached in an indirect manner to other substructures by constraining the modal degrees of freedom of the transmission
simulator to those substructures. This work explores a different alternative in which the transmission simulator is modeled
with a Craig-Bampton model, a model that may be more appropriate when the interfaces are connected rigidly. The new
method is compared to the authors’ previous approaches to evaluate the errors due to modal truncation using finite element
models of several beam systems including one in which the transmission simulator is connected to the component of interest
at two points, potentially producing an ill-conditioned inverse problem.

1. Introduction

Experimental-analytical substructuring is attractive in many applications where there is motivation to replace one
subcomponent with an experimental model. For example, a component may be difficult to model if it contains materials with
unknown properties, intricate geometry that would require many elements to approximate or joints or interfaces with
unknown stiffness and damping properties. In other cases the component may be produced by an external supplier, in which
case it may be inefficient to expend effort modeling a component that one cannot change. In any case, it will be necessary to
test the component at some point in order to validate the computational model. In these scenarios, one can perform a careful
dynamic test and extract an experimental-based model for the subcomponent(s) of interest. This model can then be coupled
to finite element (or other) models for the rest of the structure to predict the response.

Substructuring can be used to couple physical or modal models of each subcomponent to create a model (e.g. a set of
ordinary differential equations) for the assembly, or, for linear systems, one can also operate on the frequency responses
directly to predict those of the assembled system. The latter approach is called frequency based substructuring or impedance
coupling and an excellent review is provided in [1]. This work focuses on the former, which is commonly referred to as
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modal substructuring, although the authors have found that frequency based substructuring and modal substructuring give
similar results when the data sets used are identical [2, 3].

In [4] Allen, Mayes & Bergman presented a specific substructuring strategy, now known as the Transmission Simulator (TS)
method, in which the component of interest is tested with a fixture known as the transmission simulator attached in order to
improve the experimental model for the component. The transmission simulator allows one to capture the compliance and
damping of the bolted joints at the interface, provides a means for dealing with continuous, compliant interfaces where one
cannot easily reduce the interface to a few connection points, and improves the modal basis of the experimental component
by exercising the interface. The disadvantage to this approach is that the transmission simulator must be modeled very
accurately and its model must be subtracted from the experimental model, potentially introducing negative mass or stiffness
[5, 6].

In the authors’ previous works, the transmission simulator has always been modeled with a free interface. More specifically,
the modal model for the TS was described by up to six rigid body modes and a collection of elastic modes where all of the
connection points were free. This basis may not be ideal in some applications, especially when the TS is rigidly connected to
a stiff structure of interest. This work explores a new alternative where a Craig-Bampton model of the TS is created and
substracted from the experimental measurements. Hence, the modal basis is described by the fixed-interface modes of the TS
rather than its free modes, and this has been found to improve the results in a few test cases.

The following section reviews the theory underlying the transmission simulator method and how the transmission simulator
model is replaced with a Craig-Bampton model. The method is evaluated on a T-shaped beam structure in Section 3 and
conclusions are presented in Section 4.

2.  Theoretical Development

2.1  Free-Free Modal Transmission Simulator (FF-TS)

The transmission simulator method is explained in detail in [4, 7, 8] so only a cursory review will be presented here. One is
presumed to have a finite element model of the transmission simulator, denoted substructure A, and this can be used to
compute its mode shapes, ®” , natural frequencies, a)rA, r =1...n, and its modal damping ratios, g“rA are also presumed to

be known (e.g. they are typically taken to be half of the loss modulus of the material). In the traditional approach, these are
computed with the interface degrees of freedom free, and hence the first few modes are rigid body modes. An actual physical
transmission simulator is also constructed and attached to the substructure of interest, denoted B, and the assembly, denoted
C, is tested to identify its modal parameters. The equations of motion of C and (—A) can then be concatenated as follows
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where the DOF, q, are the generalized modal coordinates of each substructure. Let the set of degrees of freedom where the

TS joins the substructure be denoted as the c-set (or connection point set). Then one would ideally enforce equal motion
between substructure C and the TS at these points.

1)
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However, this leads to several difficulties and hence Allen, Mayes & Bergman, instead defined a set of measurement points
that completely characterize the transmission simulator (e.g. so that (I)’n: is full rank). Then the following constraints are
enforced, which constrain all of the modes of the transmission simulator to their projection onto the motion of C,
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where, ()T, denotes the pseudo-inverse of the matrix (). These constraints are enforced using the transformation

T 7 T T L L . : :
[qc qa ] =Bq. where B=|(I.) ((I)A,m <I)C'm) is in the null space of the constraint matrix, the matrix on
the left in Eqg. (3).

This method will only succeed in proportion to how well the modes of the transmission simulator, Q)’r: , span the space of the

motions observed on C, or ®< . While the free-interface modes have worked well in the cases studied so far, the authors

have noted cases where these modes did not adequately span the space of the observed motions (see, e.g. [5]), leading to less
accurate results or negative mass in the assembled system. Furthermore, it would be preferable to obtain a Craig-Bampton
model for the subcomponent, with its constraint modes that capture the interface stiffness and allow it to accurately capture
the motion of the subcomponent when it is connected to a variety of structures.

2.2 Craig-Bampton Transmission Simulator

In order to create a Craig-Bampton (CB) model of the transmission simulator, the physical displacement vector for
substructure A is partitioned into two sets, the c-set, corresponding to the connection degrees of freedom, and the o-set,
corresponding to the interior degrees of freedom (DOF). The resulting partitioned mass and stiffness matrices can be written
as

A | Mo, M | Ko K
M" = A A K" = A A )
M: M K: K

The displacement vector for component A can be transformed into CB [9] coordinates using the relation

uf (I")A A (’iA
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where ®* is a matrix of n, fixed-interface modes, y* = (K, )71 K* , I. is an identity matrix of order equal to the number

of interface DOF, q* is the vector of displacements of the fixed-interface modes, and uj represents the physical

displacement of the interface. The CB representation describes the deformation of the transmission simulator in terms of
T

dynamic fixed-interface modes, and static shapes, called constraint modes ¥* = [(WA)T IC} , in which each column gives

the static response of component A due to a unit deflection of one of the interface DOF holding the others fixed. The
corresponding CB mass and stiffness matrices are then given by
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where it has been assumed that the fixed-interface modes have been mass normalized, [\mf\] is a diagonal matrix of fixed-

interface modal frequencies, and MSA and K’S‘ are the component A mass and stiffness matrices statically reduced to the

interface DOF, respectively. As mentioned previously, the advantage of this transmission simulator representation over a
free-free modal representation is that the fixed-interface modes do a better job of representing the shape of the simulator in
the coupled system being tested, and the physical interface DOF are directly retained for connection to other substructures.

The CB representation of component A must now be subtracted from the experimental modal representation of the combined
system C. The authors have explored two methods for doing this, which will be outlined in the following two subsections.
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2.2.1 Method 1: Free Modes of Craig Bampton Model (CB-TS)
The CB representation of substructure A has the following equation of motion (omitting the damping terms for simplicity)

T

A A A A A\ pA
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This model can then replace the model for A in Eq. (1), so the concatenated equations become,
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In keeping with the modal constraint philosophy, all of the modes of the transmission simulator will be coupled to their
projection on C, using the following constraints, where once again the measurement set, m, includes enough sensors to fully
characterize the motion of the transmission simulator.

[(T@va ) @ —IAH q: } =0 (10)
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Since the model for substructure A is known, after assembling the system one can recover the response at any point on A
(including the connection point uf , both displacement and rotation!) using Eq. (5). Hence, one can estimate the fixed-

interface modes of the B system by applying the constraints uf =0 by defining an appropriate transformation matrix, B, and

then using the procedure outlined above. It is also interesting to note that one could obtain the same result by using the CB
model to estimate the free-interface modes of the TS and then using those in Eq. (1) together with the usual transmission
simulator approach. The free-interface modes thus estimated would not be the true free-interface modes but simply another
basis for the CB model, and hence this would produce the exact same result as the procedure outlined in Egs. (9) and (10). In
fact, this approach was used in this computations described in Section 3.

2.2.2  Method 2: Motion Relative to the Interface (CB-IP)

The method presented in the previous section is clearly very different from the way in which Craig Bampton models have
been employed in the analytical domain over the past several decades. Specifically, no effort was made to retain the structure
of the CB model nor the partition of interface degrees of freedom as unique coordinates. Hence, an alternative is presented
here, which will be denoted CB-IP for “Interface Preserving.”

Once again, following the modal constraint approach [4], coupling will be accomplished by enforcing physical displacement
compatibility between the two components at the measured locations

ut—u =0 (11)

where it is assumed that none of the connection DOF are in the set of measured locations. Transforming to CB coordinates
for component A and modal coordinates for experimental component C, Eq. (11) becomes

DA +yiut —Sq° =0 (12)

in which the subscript m indicates a row partition corresponding to the measured DOF. Equation (12) can be solved for the
transmission simulator fixed-interface modal response

§* = b [oa —viut ] (13

A~ A~ A~ -1 A
where @A = [CDQT(D:I } @A is the generalized inverse of the fixed-interface modes row partitioned to the measurement

locations. The existence of this inverse requires that matrix cf)i is full column rank, implying that n, =n,. Notice that the
constraints here can be viewed as projecting the motion of C relative to the interface onto the fixed-interface modes of A.
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The modal constraint can be applied by defining the coordinate transformation

ug=1 @* =Tu =| ®)OL -yl |§ (14)
u
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Applying the constraint to the uncoupled system in Eq. (9) gives the approximation of the equation of motion for the
experimental based substructure B
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in which the reduced displacement vector u, in Eq. (14) has been renamed u® where
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with ©=®2'®C and y =@ y*. The substructure representation for component B, given by Egs. (17) and (18), is not
precisely a CB representation because the stiffness matrix is not block diagonal. However, it is CB-like in that the
displacement vector a® contains modal degrees of freedom §®, and the physical degrees of freedom ﬁf at the points where

component B will connect to other substructures. The experimental based representation for component B can then be easily
connected to other FEM based substructures using traditional assembly methods. However, unlike the CB representation, the
modal degrees of freedom cannot be truncated based on frequency due to the stiffness coupling between the modal and
interface DOF in Eq. (18).

An advantage of the proposed component B substructure representation is that the fixed-interface modes and frequencies can
be determined directly by just crossing out the block row and column associated with the interface DOF. The resulting
constrained interface mass and stiffness matrices, Mf and Kf just correspond to the expressions in the upper-left quadrants

of the matrices in Eqgs. (17) and (18). Therefore, the fixed-interface modes and frequencies of component B can be derived
from a free-free vibration test of the composite system C including the transmission simulator. If the proper number of free-
free experimental modes for component C and fixed-interface modes from the transmission simulator are retained in the

analysis, the matrices Mf and Kf should both be positive definite. Further details regarding this approach can be found in
[10].

3. Numerical Examples

This new approach was explored by applying it to two systems, one of which was studied in a previous work [10]. The
second system contains two connection points (statically indeterminate interface) and was developed specifically for this
work.
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3.1 T-Beam System from [10]

The first system studied is the T-beam system shown in Figure 1, which was used in [10] to demonstrate the method that will
be denoted the CB-IP method here. The transmission simulator is a 24-in long steel beam with 0.5 by 0.5-in cross section
while the structure of interest, component B, is a 36-in long steel beam with 0.35 by 0.5-in cross section. Note that this
system’s TS is significantly more flexible than that used in [4-6], so it is more difficult to subtract from the assembly. Further
details regarding the setup are provided in [10]. As in the cited works, finite element models for these beams will be used to
simulate substructuring by truncating the modal basis.

- =

Experimental FEM Transmission Experimental Based
Component: C Simulator: A Component: B

Figure 1: Schematic of the T-beam substructuring problem. The goal is to experimentally derive
a model of component B, the horizontal (cyan) beam, from measurements of the assembly C.

As in [10], the frequency range of interest is 0 to 2500 Hz, so 24 modes of C are retained with natural frequencies ranging
from 0 Hz (3 rigid body modes) to 4780 Hz, or over about twice the frequency range of interest. In [10], 13 fixed-interface
modes were used to describe substructure A, with the highest mode at 15.9 kHz, and after applying 13 constraints a model for
B was obtained. As a first step in evaluating the success of the substructuring calculations, the free modes of component B
were calculated, and they are compared to those of the FEA truth model in Table 1 in the column labeled CB-IP.

The same process was repeated using the traditional transmission simulator method with free-interfaces modes, the FF-TS
method, and the result of that calculation is compared with the proposed method which uses a Craig-Bampton model to
describe the transmission simulator, the CB-TS method, and those results are also shown in Table 1. Both of these models
used 10 modes to describe the transmission simulator, 3 rigid body modes plus 7 free-interface elastic modes for the FF-TS
method and 3 constraint modes plus 7 fixed-interface modes for the CB-TS method. These modes spanned a frequency range
of 0 to 13.7 kHz for the FF-TS method and 0 to 8.4 kHz for the CB-TS method. Note that because the interface (connection
point) is at the center of the transmission simulator, its fixed interface modes came in pairs in which either the top or bottom
vibrated as a cantilever while other side remained stationary. As a result, a larger number of modes would be required to
span the same frequency range.

Table 1: Free-Interface Modes of component B estimated by each substructuring approach.

CB-IP FF-TS CB-TS
Actual (Craig Bampton) (Free-Interface) (Craig Bampton)
N FEA Freq (Hz) | % Error | N Freq (Hz) | % Error | N Freqg (Hz) % Error
4 45.4 45.4 0.01% 4 45.4 0.00% 4 45.4 0.00%
5 125.1 125.1 0.00% 5 125.1 0.00% 5 125.1 0.00%
6 245.3 2454 0.02% 6 245.3 0.00% 6 245.3 0.00%
7 405.5 405.7 0.05% 7 405.5 0.00% 7 405.6 0.01%
8 605.8 606.5 0.12% 8 605.8 0.01% 8 606.0 0.03%
9 846.1 848.1 0.23% 9 846.2 0.01% 9 846.6 0.05%
10 1126.5 1131.2 0.42% 10 1126.8 0.02% | 10 1127.5 0.09%
11 1447.0 1457.5 0.72% 11 1447.5 0.04% | 11 1449.0 0.14%
12 1807.6 1829.6 1.22% | 13* 1808.6 0.05% | 12 1811.3 0.20%
13 2118.7 21184 -0.01% | 14 2118.8 0.00% | 13 2128.9 0.48%
14 2208.3 2253.5 2.05% 15 2210.1 0.08% | 14 2214.8 0.30%
15 2649.2 2741.3 3.48% 16 2652.3 0.12% | 15 2660.3 0.42%
16 3130.3 18* 31354 0.16% | 17* 3148.8 0.59%
17 3651.7 19 3659.8 0.22% | 18 3682.1 0.83%
18 4213.6 20 4226.1 0.30% | 19 4265.3 1.23%
19 4237.3 21 4237.4 0.00% | 20 4480.4 5.74%

Allen, Kammer & Mayes IMAC, Feb. 2014 Page 6 of 16



| 20 | 4816.0 | | 22 | 48364 | 0.42% | 21| 49298 | 2.36% |

The results show that, while any of the methods produces good estimate of the B system’s free-free natural frequencies in the
frequency range of interest, the traditional FF-TS method is somewhat more accurate than the others. This is, perhaps, to be
expected since our goal is to obtain a Craig-Bampton-like model for system B, and while a Craig-Bampton model would be
excellent at describing B in an assembly, it might not produce the best results when the interface is free or lightly coupled. In
those cases another subcomponent model, such as a Craig-Chang model [11], would probably be preferred and the FF-TS
method produces a model that is more along those lines. On the other hand, the table also shows the mode number of each
mode that is being compared in the column labeled “N.” The modes were matched using a MAC and so only modes that
were similar are compared in the table. The FF-TS and CB-TS methods both show gaps in the mode number. The modes
that are not shown had purely imaginary natural frequencies and hence were not included. The one exception was mode 12
in the FF-TS method which appeared to be reasonable. The gaps reveal that the first spurious mode occurred above 1400 Hz
(after the 11" mode) for the FF-TS method and not until above 2660 Hz (after the 15" mode) for the CB-TS method. This
could suggest that the CB-TS method captures the deformation of the transmission simulator more effectively.

When the component of interest will be connected to a fairly rigid substructure, it may be more important for the substructure
model to accurately predict the component’s fixed-interface modes rather than its free modes. The fixed-interface modes of
each of the substructure models were derived by constraining the three interface DOF as mentioned in Sections 2.2.1 and
2.2.2. Then the fixed-interface natural frequencies were found and are compared in Table 2.

Table 2: Fixed-Interface Modes of component B estimated by each substructuring approach.

CB-IP FF-TS CB-TS
Actual (Craig Bampton) (Free-Interface) Craig Bampton)
Freq %

N FEA N | Freq (Hz) | % Error | N (Hz2) % Error N Freq (Hz) Error
1 7.127 1 7.14 0.18% 1 7.07 | -0.80% 1 7.127 0.00%
2| 44.707 2 44.71 0.01% 2 4436 | -0.78% 2 44.707 0.00%
3| 125.19 3 125.2 0.00% 3 1242 | -0.77% 3 125.18 0.00%
4| 245.32 4 245.3 0.00% 4 24345 | -0.76% 4 245.30 | -0.01%
5| 405.53 5 405.5 0.00% 5 402.48 | -0.75% 5 405.49 | -0.01%
6 | 605.80 6 605.8 0.00% 6 601.30 | -0.74% 6 605.71 | -0.01%
7| 846.12 7 846.2 0.01% 7 839.91 | -0.74% 7 845.95 | -0.02%
8| 1059.3 8 1059.3 0.00% 8 808.03 | -23.72% 8 1059.3 0.00%
9| 1126.5 9 1126.6 0.01% 9 1118.3 | -0.73% 9 1126.2 | -0.03%

10| 1447.0| 10 1447.1 0.01% | 10 1436.5 | -0.72% 10 1446.5 | -0.04%

11| 18076 | 11 1807.8 0.01% | 11 1794.6 | -0.72% 11 1806.8 | -0.04%

12 | 2208.3 | 12 2208.6 0.01% | 13* 21926 | -0.71% 12 2207.1 | -0.06%
13| 2649.2 | 13 2649.5 0.01% | 14 26304 | -0.71% 13 2647.4 | -0.07%
14 | 3130.3 | 16* 3130.7 0.01% | 16* 3108.3 | -0.70% | 15* 3127.8 | -0.08%
15| 3178.0 | 17 3178.0 0.00% | 17 3672.1 | 15.55% 16 3178.1 | 0.00%
16 | 3651.7 | 18 3652.3 0.01% | 18 3626.2 | -0.70% 17 3648.2 | -0.10%
17| 4213.6 | 19 4214.2 0.01% | 19 4184.3 | -0.70% 18 4208.6 | -0.12%
18 | 4816.0 | 20 48155 | -0.01% | 20 47825 | -0.69% 19 4809.4 | -0.14%

19| 5296.6 | 21 5327.3 0.58% | - - - 20 6289.3 | 18.74%
20 | 5459.2 | 22 5498.4 0.72% | - - -
21| 61433 21 6915.0 | 26.67%

The results in Table 2 show that the methods that use a Craig Bampton basis to describe the transmission simulator produced
considerably more accurate predictions of the fixed-interface modes. Indeed, both the CB-IP and CB-TS methods estimated
all of the natural frequencies below 5 kHz (twice the bandwidth of interest) with less than 0.2% error. The errors for the CB-
IP method are somewhat lower, although any of these modal truncation errors would probably be negligible relative to
measurement errors when the methods are applied in practice. In contrast, while the natural frequencies predicted by the FF-
TS method are quite reasonable for most of the modes (typically below 1%), the errors in modes 8 and 17 were quite large
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and the model contains a larger number of spurious modes. To diagnose this, the number of modes used to describe the TS in
the FF-TS method was varied between 3 and 11. In all cases the FF-TS method predicted a reasonable number of free-
interface modes correctly (e.g. with errors in the natural frequencies below 1%). It also gave reasonable estimates for the
lower fixed-interface modes, with about 2% maximum error over the first eight modes for na=3 decreasing to less than 9%
maximum error (1.5% average error) for the first 15 modes for na=8. As more modes were added to the TS modes 8 and 17
began to degrade as seen above while the other natural frequencies became even more accurate. In contrast, the CB-TS
method gave excellent predictions for the fixed-interface modes for n,>5, with all of the lower natural frequencies having
less than 1% errors.

These results are somewhat surprising. While one would expect that, if one could create a Craig Bampton model for
subcomponent B, that it would do an excellent job of predicting the fixed interface modes (actually the result would be
perfect since the CB model contains the fixed-interface modes). However, here we have used a relatively small number of
the free modes of the assembly C and a CB model for A to derive an approximate CB model for B by computing B=(C-A),
and the result is excellent!

As has been mentioned in the authors’ previous works [5, 6], when one substructure is subtracted from another it is possible
for the mass matrix to become indefinite (contain negative eigenvalues), and these in turn tend to produce additional spurious
modes in the substructuring predictions. The authors presented two algorithms in [6] to address this issue. The Craig-
Bampton method presented in this work is essentially interchangeable with the FF-TS method in the authors previous works,
so the same algorithms can be used to force positive mass when substructuring. This was explored here by using the “Added
Mass” method in [6] to add mass to the substructure model for B until its mass matrix became positive definite. This
algorithm was used to correct the models for B for the case presented in Tables 1 and 2 by adding the minimum amount of
mass which caused the mass matrix to become positive definite. For the FF-TS method the mass added was 0.65% of the
total mass of substructure B, while for the CB-TS method only 0.00015% mass had to be added. The added mass didn’t
change the CB-TS results appreciably. On the other hand, for the FF-TS method it was surprising to see that the added mass
dramatically improved the predictions of 8" and 17" fixed interface modes, reducing the errors in those natural frequencies
just a few percent. All of these results suggest that a Craig-Bampton model is a more accurate basis for the transmission
simulator in this application.

In the authors previous works [4-6], they have also studied a T-beam system which is similar to that described here (and in
[10]) although it had a stiffer transmission simulator. The CB-TS method was also applied to that system and the results
obtained showed similar trends to those presented above, so for brevity those results will not be included here.

3.2 Two-dimensional Structure with Indeterminate Interface

In this next case study, a system is considered which could lead to an ill-conditioned substructuring problem. The
system of interest is the C-shaped assembly highlighted with a dash-dot (blue) box in Figure 2. In the assembly of
interest (on the left in Figure 2), system B is connected to another C-shaped beam creating a box structure with an
additional appendage that is 305mm long. As shown in Figure 2, the beams that complete the box in the assembly
of interest are thicker than those in B, having a height of 25mm where the beams comprising B have a height of
19mm. The box in both C and in the assembly of interest is 457 mm square and all of the beams had a width of
25mm. A transmission simulator was designed to replicate the C-shaped beam in the assembly of interest,
although the cross section of the transmission simulator was 19mm high by 25mm thick, so it is less stiff than the
system in the assembly of interest. All of the other dimensions were identical to those in the assembly of interest.
The interface between the TS and system B consists of two separate arms and hence is reminiscent of the system
studied by P. Ind in his PhD thesis [12]. Ind’s work showed that a system such as this can exhibit dramatic
sensitivity to noise because the measurements are likely to contain very little relative motion of the arms and yet
that motion provides the only available information about how the structure will move once the transmission
simulator is removed. However, in this case the problem should not be as poorly conditioned as the system
studied by Ind because the transmission simulator does allow some motion of the interface DOF in its lower
modes of vibration.
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a.) Full Assembly E b.) Experimental Assembly C

— e 5 e

Component
of Interest, B

Component
of Interest, B

Substructure,
D

Transmission
Simulator, A

Figure 2: Schematic of two-dimensional structure with a statically indeterminate interface.
a.) Full Assembly E=B+D, b.) Assembly C. We desire to predict the motion of the assembly on
the left but wish to avoid creating an FEA model for B. A transmission simulator, A, is created and
attached to B and the modes of the assembly are found and used to derive the model for B.

One dimensional FEA models were created for each beam, with 25 mm long elements, and the resulting nodes are
shown in Figure 3. Duplicate nodes were merged when assembling the system. Then, to simulate a modal test
the modes of the FEA model for assembly C were computed out to 3kHz, resulting in a 16 mode model for C that
included three rigid body modes. A Craig Bampton model was then created of the transmission simulator, with
six constraint modes and two elastic (fixed-interface) modes. Those two elastic modes were the only fixed-
interface modes below 1kHz.

Figure 4 shows twelve of the thirteen elastic modes of Assembly C. (The first elastic mode, which is not shown,
was a first ovaling mode along the diagonal of the frame.) The higher modes show considerable bending of the
frame suggesting that a modal model based on these modes should be able to capture relatively complicated
motion of component B. The fixed interface and constraint modes of the transmission simulator are shown in
Figures 5 and 6 respectively. This truncated model for the TS was evaluated by computing its free-interface
modes and comparing their natural frequencies with the true free-interface natural frequencies. This revealed that
the Craig-Bampton model for the TS accurately predicted the first three modes of the free-free transmission
simulator (up to 650 Hz) to within 1.2%, while the next few modes (beginning at 1.2 kHz) were not predicted
accurately, although their shapes were vaguely similar.
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Figure 3: Finite Element Mesh of the Assembly of Interest.
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Allen, Kammer & Mayes IMAC, Feb. 2014

Page 10 of 16



Mode 1 Mode 2
fn = 348.1833 Hz fn = 379.724 Hz

Figure 5: Fixed-interface modes of the transmission simulator.
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Figure 6: Constraint modes of the transmission simulator.

These “measured” modes for C were combined with the CB model for the transmission simulator and Eq. (9) was
used with the constraint in Eq. (10) to compute a model for subcomponent B. In practice the model for B would
then be used to predict the response of the assembly of interest, or of various design iterations of that assembly.

In this work, the true assembly is already known (via the full finite element model), and so its modes will be
compared with those predicted by substructuring to evaluate the CB procedure. Before doing this, two other
intermediate cases were considered to seek to explain what information is captured in the “experimentally”
derived model for B. First, both of the legs of B were constrained to ground at the connection points. In this case
the model for B accurately predicted the first three natural frequencies, with errors of 5% or less, and the next few
modes were also quite reasonable with about 10% error. Next, only one leg of B was constrained to ground
leaving the other leg free. In this case the model produced qualitatively accurate estimates of the first three modes

Allen, Kammer & Mayes IMAC, Feb. 2014 Page 11 of 16



although their natural frequencies were about 30% too high. This reveals that, while the CB procedure does
produce a Craig-Bampton-like model for substructure B, it will not necessarily have the same resolution as a real
analytical Craig-Bampton model with the same number of modes. The authors have previously suggested that the
best practice is to use a transmission simulator that mimics the interface in the assembly of interest, and the TS
used here clearly does this so one would hope that the model for B will be accurate in that assembly.

3.2.1  Results for Assembly of Interest

The true modes of the system in the application of interest are show in Figure 7. Each of the modes estimated by
the substructuring procedure was matched to the system modes using the MAC matrix shown in Figure 8. Then,
the natural frequencies for the modes that corresponded were compared in Table 3. The substructuring procedure
was repeated using the CB-TS method as well as the original FF-TS method from [4]. Both methods used 8
modes to model the transmission simulator. In the case of the FF-TS method, the highest mode was at 2.2 kHz,
considerably higher than the highest free-interface mode that the CB-TS model predicted accurately.

Allen, Kammer & Mayes IMAC, Feb. 2014 Page 12 of 16



Mode 4 Mode 5 Mode 6
fn =139.0 Hz fn = 208.0 Hz fn =229.4 Hz

Mode 7 Mode 8 Mode 9

-5
-10t. ‘ ‘
-20 -10 0 10
Mode 10 Mode 11 Mode 12
10
0
-10 L. ‘ i : y - CECTTI,
-20 -10 0 10 -10 0 10
Mode 13 Mode 14 Mode 15
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Figure 8: MAC between the Modes of the Truth Model and those predicted by substructuring
using the (left) CB-TS and (right) FF-TS methods.

The results in Table 3 show that the CB-TS method produced considerably more accurate estimates for this
assembly in the application of interest, at least in the lower frequency range. For the modes below 1kHz (or one
third of the frequency range over which the C assembly was tested), the CB method accurately estimated all of the
modes with less than 0.5% error in any natural frequency and almost all of the MAC values above 0.999. On the
other hand, the FF-TS method also provides reasonable predictions although the frequencies were less accurate,
sometimes in error by as much as 16%, and the mode shapes were also somewhat less accurate as shown by the
MAC. On the other hand, the FF-TS method provided reasonable estimates of all of the modes below 2kHz while
the CB-TS method predicted several spurious modes beginning at 1.2kHz.

Table 3: Natural Frequencies (Hz) of the Assembly of Interest Estimated by Substructuring.

Mode | Truth N CB-TS CB Error MAC N | FF-TS | FF-Error MAC

4 139.0 | 4 138.8 -0.2% 1.0000 | 4 | 128.0 -7.9% 0.9962
5 208.0 | 5 208.4 0.2% 0.9999 | 5 | 200.2 -3.7% 0.9950
6 2294 | 6 229.5 0.0% 0.9999 | 6 | 228.0 -0.6% 0.9979
7 4145 | 7 416.6 0.5% 0.9993 | 7 | 396.7 -4.3% 0.9858
8 4570 | 8 457.1 0.0% 0.9996 | 8 | 452.9 -0.9% 0.9977
9 4898 | 9 490.0 0.0% 0.9999 | 9 | 488.2 -0.3% 0.9977
10 986.0 | 10 990.6 0.5% 0.9695 | 10 | 887.2 -10.0% 0.8290
11 1146.9 | 11 1238.0 - 11| 962.4 -16.1% 0.9038

12 1179.7 | 12 1172.03 2.2% 0.8392 | 12 | 1134.0 -3.9% 0.7124
13 1356.5 | 14 | 1314.279 -3.1% 0.7867 | 13 | 1263.4 -6.9% 0.7421
14 1865.1 14 | 1802.1 -3.4% 0.7132
15 1982.8 15 | 1854.4 -6.5% 0.9923

These models were found to contain some negative mass, so, as was done in Section 3.1, the “Added Mass”
method from [6] was used to add mass to the substructure model for B until its mass matrix became positive
definite. Figure 9 and Table 4 show the results when positive mass is forced onto the substructuring results. The
ratio of the norm of the mass added to that of the mass matrix in each case was 0.0766 and 0.0226 for the CB-TS
and FF-TS methods respectively. While the CB-TS method required three times as much mass to obtain a
positive mass matrix, this simple addition of mass improved the results remarkably. With added mass the CB-TS
method produced only one spurious mode and predicted all of the modes below 2 kHz quite accurately. On the

Allen, Kammer & Mayes IMAC, Feb. 2014 Page 14 of 16



other hand, the model predicted by the FF-TS method did not improve significantly, except perhaps in its
estimates of the rigid body modes.
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Figure 9: MAC matrices for the cases mentioned in Figure 8, when positive mass is enforced for
each method: (left) CB-TS and (right) FF-TS.
Table 4: Natural Frequencies (Hz) of the Assembly of Interest Estimated while enforcing positive mass.
Mode Truth N CB-TS CB Error MAC N FE-TS FE-Error MAC
4 139.0 4 138.3 -0.6% 1.0000 | 4 128.0 -7.9% 0.9962
5 208.0 5 208.4 0.2% 0.9999 | 5 200.2 -3.7% 0.9949
6 2294 6 229.3 -0.1% 0.9999 | 6 228.0 -0.6% 0.9979
7 414.5 7 415.8 0.3% 0.9997 | 7 396.7 -4.3% 0.9855
8 457.0 8 456.3 -0.1% 1.0000 | 8 452.9 -0.9% 0.9977
9 489.8 9 489.7 0.0% 0.9999 | 9 488.2 -0.3% 0.9974
10 986.0 10 978.8 -0.7% 0.9981 | 10 887.2 -10.0% 0.8295
11 1146.9 |11 | 1135.3 -1.0% 0.9919 | 11 962.4 -16.1% 0.9040
12 1179.7 |13 | 1178.3 -0.1% 0.9929 | 12 | 1134.0 -3.9% 0.7121
13 1356.5 |14 | 1344.3 -0.9% 0.9967 | 13 | 1263.4 -6.9% 0.7416
14 1865.1 | 15| 1866.8 0.1% 0.9981 | 14 | 1802.1 -3.4% 0.7152
15 1982.8 - 15| 18544 -6.5% 0.9949

4. Conclusion

This work has presented an alternative to the Transmission Simulator method in which the TS is modeled with a
Craig-Bampton model. This is expected to produce a more accurate model of the TS in applications where the TS
is rigidly connected to the subcomponents of interest. The method was validated by applying it to a few simple
beam structures and the results showed that this new method did indeed give more accurate estimates of the
assembly’s natural frequencies. However, if one’s goal was to estimate the free modes of the structure of interest
(e.g. if it will not be assembled to a rigid component after removing the transmission simulator) then the CB
method was somewhat less accurate than the authors’ previous approach, which used free-interface modes to
model the TS.

The last application presented here explored a potentially ill-conditioned problem of removing a TS that connects
to the subcomponent of interest at two points. In this case, one already requires six modes for the constraint
modes of the CB model; if the interface was modeled with more points then it would almost certainly be
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necessary to reduce the interface in some way or there might be more TS modes than there are in system C
making this subtraction impossible. In this regard, the traditional FF-TS method is convenient as it simply uses
the free modes of the transmission simulator to approximate the interface so this does not become an issue unless
the system is such that too many free modes are required to adequately model the TS.
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