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WHAT FACTORS DETERMINE THE MICROSTRUCTURE AND COMPOSITION? 

§  Fabrication conditions (powder compaction & sintering) 
§  Storage conditions 
§  Pre-use annealing 
§  Service conditions 

Motivation 

PuO2 grain / void 
structure 

Mechanical properties of 238PuO2 fuel pellets are 
controlled by their microstructure and composition 

CAN WE MODEL THE LINK BETWEEN MICROSCALE AND MACROSCALE? 

§  Critical features at the grain scale 
§  Grain size / grain shape / void volume 
§  Material failure along grain boundaries and subsequent void collapse 

§  Response of representational volume can inform macro-scale constitutive law 

We propose peridynamics as a means to 
capture grain-scale response 
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Design Assessment Based on Experiments and Simulations 
KEY ROLE FOR COMPUTATIONAL SIMULATION 

§  Performing experiments on PuO2 is difficult / expensive 
§  Limited experimental data in the literature 

§  Material characterization 
§  Calibration of material models 

§  Modeling performed at the system level 

§  Classical FEM 
§  Continuum geomodel 

§  Limited component testing 

Experimental	
  Data	
  on	
  
PuO2	
  and/or	
  Surrogate	
  

Materials	
  

System-­‐Level	
  
Simula)ons	
  using	
  

Geomodel	
  
Design	
  Assessment	
  

Component	
  Tes)ng	
  



4	
  	
  

§  Generate representative grain-scale models 
§  Peridynamic modeling of grain structure 

§  Failure mechanisms occur at the grain scale 
§  Inform constitutive models at component / system level 

§  Resolving the grain structure in system-level analyses is computationally 
intractable 

Enrich Simulation Effort with Grain-Scale Models 

Experimental	
  Data	
  on	
  
PuO2	
  and/or	
  Surrogate	
  

Materials	
  

Geometric	
  
Microstructural	
  

Models	
  

Grain-­‐Scale	
  
Peridynamic	
  Simula)ons	
  

System-­‐Level	
  
Simula)ons	
  using	
  

Geomodel	
  
Design	
  Assessment	
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  Tes)ng	
  

UTILIZE PERIDYNAMICS AT THE MESOSCALE 
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Potential to Improve Mechanical Performance 

Experimental	
  Data	
  on	
  
PuO2	
  and/or	
  Surrogate	
  

Materials	
  

Geometric	
  
Microstructural	
  

Models	
  

Grain-­‐Scale	
  
Peridynamic	
  Simula)ons	
  

System-­‐Level	
  
Simula)ons	
  using	
  

Geomodel	
  
Design	
  Assessment	
  

Fabrica)on,	
  Storage,	
  and	
  
Service	
  Condi)ons	
  

Component	
  Tes)ng	
  

MOVING BEYOND DESIGN ASSESSMENT 

§  The grain structure is dictated by fabrication, storage, and service conditions 
§  Mechanical response is largely determined by the grain structure 

§  There is potential to alter fabrication, storage, and service conditions for improved 
mechanical performance based on simulation results 
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FINAL MICROSTRUCTURE IS CONTROLLED BY PROCESSING 

PuO2 Fuel Pellet Fabrication 

http://www.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/96spring/fuel_fabrication.html 

PuO2 powder 

Pressed 
PuO2 pellet 

Sintered pellet 
at 1400 oC 

Sintered pellet 
at 1700 oC 
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Microstructural Evolution During Sintering 

http://www.esrf.eu/UsersAndScience/Publications/Highlights/2002/Materials/MAT3 

§  2D slices perpendicular to the cylindrical axis 
a)  Before sintering 
b)  At 1000°C 

c)  At 1050°C 
d)  Final microstructure 
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Experimental Results of Stout, Ellis, and Pereyra 

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of 238UO2, 238PuO2, and 239PuO2 as a Function of 
Strain Rate and Temperature, LA-12811-MS, 1994. 

UNCONFINED COMPRESSION TESTS OF 238UO2, 238PuO2, and 239PuO2 

§  Hypothesized that deformation is roughly elastic-perfectly-plastic due to 
dislocation motion 

§  Localized intergranular and/or transgranular failure 
§  Important variables:  porosity, grain size, temperature, strain rate 

§  Significant variability in experimental data 
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Experimental Results of Stout, Ellis, and Pereyra 

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of 238UO2, 238PuO2, and 239PuO2 as a Function of 
Strain Rate and Temperature, LA-12811-MS, 1994. 

MATERIAL FAILURE WAS PREDOMINATLY TRANSGRANULAR 

§  Unconfined compression tests of 238UO2, 238PuO2, and 239PuO2  
§  Dominant vertical cracks were typically transgranular 

§  Non-vertical, intergranular cracks also observed, believed to be artifacts of 
fabrication process 
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Macroscale Constitutive Model for Classical FEM 

BEGIN PARAMETERS FOR MODEL SOIL_FOAM!
  YOUNGS MODULUS =!
  POISSONS RATIO =!
  A0 =!
  A1 =!
  A2 =!
  PRESSURE CUTOFF =!
  PRESSURE FUNCTION =!
END!

CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL 

§  SOIL_FOAM constitutive model in Sierra/SolidMechanics 
[Krieg 1978, Swenson and Taylor 1983, Taylor and Flanagan 1989, SAND2011-7597] 

§  Response is decomposed into volumetric and deviatoric components 

§  Yield surface defined in principal stress space:  confinement determines yield stress 

§  Arbitrary user-provided function specifies pressure as a function of volume 

[Swenson and Taylor, 1983] 
[Swenson and Taylor, 1983] 

Peridynamic RVE models can 
inform continuum model 
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Creation of Representational Volume Elements 
MODEL SIMULATES MICROSTRUCTURAL EVOLUTION DURING SOLID STATE SINTERING 

§  Simulates densification by annihilation, curve-driven grain growth and pore 
coarsening by surface diffusion 

§  Generates topologically correct microstructures given the processing variables 
§  The size and shape of stress concentrators (pores) are topologically correct  
§  Can generate correct microstructures over a wide range of processing 

conditions and starting powder characteristics. 

MICROSTRUCTURAL MODELS 

15% void volume 20% void volume 

Tikare et al., Comp. Mat. Sci., 2010, 48 317  
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Peridynamic Modeling of PuO2 Microstructures 

S.A. Silling.  Reformulation of elasticity theory for discontinuities and long-range forces.  Journal of the Mechanics and Physics of Solids, 48:175-209, 2000. 

Silling, S.A. and Lehoucq, R. B.  Peridynamic Theory of Solid Mechanics.  Advances in Applied Mechanics 44:73-168, 2010. 

Peridynamics is a mathematical theory that unifies the mechanics of 
continuous media, cracks, and discrete particles 

§  Peridynamics is a nonlocal extension of continuum mechanics 
§  Remains valid in presence of discontinuities, including cracks 
§  Balance of linear momentum is based on an integral equation: 

§  Peridynamic bonds connect any two material points that interact directly 
§  Peridynamic forces are determined by force states acting on bonds 
§  Material failure is modeled through the breaking of peridynamic bonds 
§  A peridynamic body may be discretized by a finite number of elements: 
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Peridynamic Modeling of PuO2 Microstructures 

GOALS 

§  Demonstrate that peridynamics can reproduce experimental data 
§  Unconfined compression data of Stout, Ellis, and Pereyra 

§  Inform macro-scale constitutive model 
§  Pressure as a function of volume 
§  Yield stress as a function of pressure 

CONSTITUTIVE MODELS 

§  State-based linear peridynamic solid 
§  Bond-based microelastic 
§  State-based elastic-plastic  
§  Non-ordinary state-based elastic-plastic 
§  Modified critical stretch bond failure law 

§  Sierra/SolidMechanics analysis code 
§  Peridigm analysis code 
§  RedSky compute cluster 

SANDIA COMPUTING RESOURCES 
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Bond Failure Law 
CRITICAL STRETCH BOND FAILURE RULE 

§  Bonds fail when their extension exceeds a 
critical value 

§  Bond failure is irreversible 

§  Bond failure law is applied only in direct vicinity 
of grain boundaries 

§  Contact algorithm controls material interactions 
after bonds are broken 

S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers 
and Structures, 83, 2005. 
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Linear Peridynamic Solid Constitutive Model 

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal 
of Elasticity, 88, 2007. 
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Bond-based Microplastic Constitutive Model 

R.W. Macek and S.A. Silling, Peridynamics via Finite Element Analysis, Finite Elements in Analysis and Design, 
43, 2007. 
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State-Based Elastic-Plastic Constitutive Model 

J.A. Mitchell.  A nonlocal, ordinary, state-based plasticity model for peridynamics.  Sandia Report 
SAND2011-3166, 2011. 
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§  Approximate deformation gradient based on initial and current locations of material 
points in family  

Non-Ordinary State-Based Material Models 

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari.  Peridynamic states and constitutive 
modeling.  Journal of Elasticity, 88(2):151-184, 2007. 

Approximate Deformation Gradient Shape Tensor 

APPLICTION OF CLASSICAL (LOCAL) MATERIAL MODELS WITHIN PERIDYNAMICS 

§  Kinematic data passed to classical material model 

§  Classical material model computes stress 

§  Stress converted to pairwise forces 
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APPROACH:   PENALIZE DEFORMATION THAT DEVIATES FROM REGULARIZED 
                        DEFORMATION GRADIENT 

Suppression of Zero-Energy Modes 

Predicted location of neighbor Hourglass vector 

Hourglass force 

Hourglass vector projected onto bond 
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Unconfined Compression 

 0

 50

 100

 150

 200

 250

 300

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

Unconstrained Compression
 Elastic-Plastic Model with Bond Failure

[Stout, Ellis, and Pereyra, 1994] 

COMPARISON TO EXPERIMENTAL DATA 



25	
  	
  

Unconfined Compression:  Effect of Void Volume 
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MICROSTRUCTURE AFFECTS MACROSCOPIC RESPONSE 

§  Reduced void volume leads to higher yield stress 
§  Inform macro-scale constitutive model 

15% void volume 
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Pressure as a Function of Volumetric Strain 
CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL 

§  SOIL_FOAM constitutive model requires user-specified function describing the 
pressure response as a function of volumetric strain 

§  Peridynamic model predicts: 
§  Initial elastic response 
§  Macroscopic yielding due to void collapse 
§  Re-stiffening of response following void collapse 

[Swenson and Taylor, 1983] 
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Yield Stress as a Function of Confinement 
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Reduced Confinement 
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WHAT’S BEEN DONE 

Conclusions and Ongoing Work 

WHERE WE ARE GOING 

§  Creation of representational volume element 
§  Void fraction is a function of processing conditions 

§  Peridynamic model of representational volume mechanical response 
§  Macroscopic response tied to microstructure 

§  Experimental validation of peridynamic representational volume model 
§  Calibration of macro-scale constitutive law base on meso-scale calculations 
§  Investigation of alternative models 

§  Peridynamic constitutive model 
§  Bond failure law 
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Questions? 

RESOURCES 

Advanced	
  Simula)on	
  and	
  Compu)ng	
  (ASC)	
  

hZp://www.sandia.gov/asc/	
  
	
  

Peridigm:	
  	
  A	
  publicly-­‐available	
  peridynamics	
  code	
  

hZps://so\ware.sandia.gov/trac/peridigm/	
  
	
  
	
  

David Littlewood 
djlittl@sandia.gov!
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