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Motivation

Mechanical properties of 233PuQ, fuel pellets are
controlled by their microstructure and composition

WHAT FACTORS DETERMINE THE MICROSTRUCTURE AND COMPOSITION?

= Fabrication conditions (powder compaction & sintering)
= Storage conditions
" Pre-use annealing
= Service conditions

CAN WE MODEL THE LINK BETWEEN MICROSCALE AND MACROSCALE?

= Critical features at the grain scale PuQ, grain / void
S _ _ structure
= Grain size / grain shape / void volume
= Material failure along grain boundaries and subsequent void collapse
= Response of representational volume can inform macro-scale constitutive law

We propose peridynamics as a means to
- capture grain-scale response




Design Assessment Based on Experiments and Simulations

KEY ROLE FOR COMPUTATIONAL SIMULATION

= Performing experiments on PuO, is difficult / expensive
= Limited experimental datain the literature
= Material characterization
= Calibration of material models
= Modeling performed at the system level
= Classical FEM
= Continuum geomodel
= Limited component testing

Experimental Data on System-Level
PuO2 and/or Surrogate Simulations using
Materials Geomodel

[ Design Assessment ]

[ Component Testing
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Enrich Simulation Effort with Grain-Scale Models

UTILIZE PERIDYNAMICS AT THE MESOSCALE

= Generate representative grain-scale models
= Peridynamic modeling of grain structure
= Failure mechanisms occur at the grain scale
= |nform constitutive models at component / system level

= Resolving the grain structure in system-level analyses is computationally

intractable
.Geometrlc Grain-Scale
Microstructural Peridynamic Simulations
Models l
Experimental Data on System-Level
PuO2 and/or Surrogate Simulations using
Materials Geomodel

[ Design Assessment ]

[ Component Testing
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Potential to Improve Mechanical Performance

MOVING BEYOND DESIGN ASSESSMENT

= The grain structure is dictated by fabrication, storage, and service conditions
" Mechanical response is largely determined by the grain structure

= There is potential to alter fabrication, storage, and service conditions for improved
mechanical performance based on simulation results

Service Conditions

Fabrication, Storage, and }

Geometric

- Grain-Scale
Microstructural Perldynamlc Simulations
Models

Experimental Data on System-LeveI
PuO2 and/or Surrogate Simulations using
i Geomodel
Materials De5|gn Assessment ]
[ Component Testing }/
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PuO, Fuel Pellet Fabrication

FINAL MICROSTRUCTURE IS CONTROLLED BY PROCESSING
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http://www.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/96spring/fuel_fabrication.




Microstructural Evolution During Sintering

= 2D slices perpendicular to the cylindrical axis

a) Before sintering C) At 1050°C
D) At 1000°C d) Final microstructure

http://www.esrf.eu/UsersAndScience/Publications/Highlights/2002/Materials/MAT3




Experimental Results of Stout, Ellis, and Pereyra

UNCONFINED COMPRESSION TESTS OF 238UJ0,, 238Pu0,, and 23 Pu0,
= Hypothesized that deformation is roughly elastic-perfectly-plastic due to
dislocation motion
= Localized intergranular and/or transgranular failure
= Important variables: porosity, grain size, temperature, strain rate
= Significant variability in experimental data

® Cold Pressed, & =2.5x10"s" Cold Preased
o Cold Pressed,t = 10’ s T 300 T T T T = 1200°C to 1400°C
300 v v A - o . - -1
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o True Compressive Strain
Temperature (°C)
Figure 7 A combination of the yield strength data for both the hot- Figure 9d Stress/strain behavior of the cold-pressed and sintered
and cold-pressed urania, ¢ = 0.1 s” and 2.5 x 10* 5™, urania at temperatures of 1200, 1300, and 1400°C and a strain rate

of e =25x10%s",

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of 238U0,, 223Pu0,, and %3°*PuQ,, as a Function of
Strain Rate and Temperature, LA-12811-MS, 1994.
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Experimental Results of Stout, Ellis, and Pereyra

MATERIAL FAILURE WAS PREDOMINATLY TRANSGRANULAR

= Unconfined compression tests of 228U0O,, 23¥Pu0,, and #°Pu0,

= Dominant vertical cracks were typically transgranular

= Non-vertical, intergranular cracks also observed, believed to be artifacts of
fabrication process
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e 000°C and a strain rate of ¢ = 2.5 x 10* 8™,
and a strain rate of ¢ = 2.5 x 10* 5™, 1

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of 238U0,, 223Pu0,, and %3°*PuQ,, as a Function of
Strain Rate and Temperature, LA-12811-MS, 1994.

' Sandia
9 National
Laboratories




Macroscale Constitutive Model for Classical FEM

CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL

" SOIL FOAM constitutive model in Sierra/SolidMechanics
[Krieg 1978, Swenson and Taylor 1983, Taylor and Flanagan 1989, SAND2011-7597]

= Response is decomposed into volumetric and deviatoric components

* Yield surface defined in principal stress space: confinement determines yield stress
2
Oyd = Qo + a1p + az2p

= Arbitrary user-provided function specifies pressure as a function of volume

1\

BEGIN PARAMETERS FOR MODEL SOIL FOAM P
- HYDROSTAT tHEy)

YOUNGS MODULUS = i %
POISSONS RATIO = S2 e 1
[ 4 /

A0 10
Al
A2 S4 ko
PRESSURE CUTOFF =

= S3 —>
PRESSURE FUNCTION Figure 3. Yield surface in principal stress space ev ==In( Po /P)
END Figure 4. The pressure versus finite volume strain behaviour

[Swenson and Taylor, 1983]
[Swenson and Taylor, 1983]

‘ Peridynamic RVE models can
inform continuum model
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Creation of Representational Volume Elements

MODEL SIMULATES MICROSTRUCTURAL EVOLUTION DURING SOLID STATE SINTERING

= Simulates densification by annihilation, curve-driven grain growth and pore
coarsening by surface diffusion

= Generates topologically correct microstructures given the processing variables
® The size and shape of stress concentrators (pores) are topologically correct

= Can generate correct microstructures over a wide range of processing
conditions and starting powder characteristics.

MICROSTRUCTURAL MODELS

15% void volume 20% void volume

11 Tikare et al., Comp. Mat. Sci., 2010, 48 317 / ot
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Peridynamic Modeling of PuO,, Microstructures

Peridynamics is a mathematical theory that unifies the mechanics of
continuous media, cracks, and discrete particles

= Peridynamics is a nonlocal extension of continuum mechanics
= Remains valid in presence of discontinuities, including cracks
= Balance of linear momentum is based on an integral equation:

p(x)u(x,t) = /gg {T[x,t] (x' —x) - T'[x,t] (x —x')} dVa + b(x,1)

7

~~

Divergence of stress replaced with
integral of nonlocal forces.

= Peridynamic bonds connect any two material points that interact directly
= Peridynamic forces are determined by force states acting on bonds
Material failure is modeled through the breaking of peridynamic bonds

= A peridynamic body may be discretized by a finite number of elements:

T[x, t] (x; —x) — T'[x], 1] (x — x}) } AV, 4 b(x, 1)
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S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-

Silling, S.A. and Lehoucq, R. B. Peridynamic Theory of Solid Mechanics. Advances in Applied Mechanics 44:73-168, 2010. Ns%i:al
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Peridynamic Modeling of PuO,, Microstructures

GOALS

* Demonstrate that peridynamics can reproduce experimental data
= Unconfined compression data of Stout, Ellis, and Pereyra

* |nform macro-scale constitutive model
= Pressure as a function of volume
" Yield stress as a function of pressure

CONSTITUTIVE MODELS SANDIA COMPUTING RESOURCES
= State-based linear peridynamic solid = Sierra/SolidMechanics analysis code
® Bond-based microelastic = Peridigm analysis code
= State-based elastic-plastic = RedSky compute cluster

" Non-ordinary state-based elastic-plastic
= Modified critical stretch bond failure law

g Sandia
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Bond Failure Law

CRITICAL STRETCH BOND FAILURE RULE

= Bonds fail when their extension exceeds a
critical value

= Bond failure is irreversible

b = { 0 if  Smax < Serit
1 if Smax Z Scrit
_le]lmax
Smax —
]|

= Bond failure law is applied only in direct vicinity
of grain boundaries

= Contact algorithm controls material interactions
after bonds are broken

xxxxx

S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers

and Structures, 83, 2005. )
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Linear Peridynamic Solid Constitutive Model

H  Family m  Weighted volume
x  Bond (reference config.) ¢  Dilatation

w  Influence function k Bulk modulus

e Bond extension i Shear modulus
e  Deviatoric bond extension

m=/ﬂ(gz)-de

_ 3 . d _ 0x
3k6O 15
- = Wzt —o wed
m m

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal

of Elasticity, 88, 2007.
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Unconfined Compression: State-Based Elastic Model

No bond failure

Unconstrained Compression
Elastic Model
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Bond-based Microplastic Constitutive Model

k Bulk modulus 0  Horizon
s  Bond stretch s, Plastic bond stretch
sy  Yield stretch

s if |s —sp| > sy,
$,(0) =0, s§,=
p( ) b { 0 otherwise.

R.W. Macek and S.A. Silling, Peridynamics via Finite Element Analysis, Finite Elements in Analysis and Design,

43, 2007.
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Unconfined Compression: Microplastic Model

No bond failure
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State-Based Elastic-Plastic Constitutive Model

H  Family m  Weighted volume
xz  Bond (reference config.) ¢  Dilatation
w  Influence function k Bulk modulus
e Bond extension i Shear modulus
e Deviatoric bond extension
3
m=/ (wz)-zdV 0=— [ (wz)-edV
H m Ju
=g =t e &% = Ay
_—) t= ﬁw_wr ow (e? —eP)
m m

J.A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report

SAND2011-3166, 2011. /
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Unconfined Compression: Elastic-Plastic Model

No bond failure

Unconstrained Compression
Elastic-Plastic Model with Bond Failure
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Non-Ordinary State-Based Material Models

APPLICTION OF CLASSICAL (LOCAL) MATERIAL MODELS WITHIN PERIDYNAMICS

= Approximate deformation gradient based on initial and current locations of material
points in family

Approximate Deformation Gradient Shape Tensor
N N
> -1
F = (Zgili®XiAin)K K:Z%Xz'@)xz'AVXi
=0 1=0

= Kinematic data passed to classical material model
= Classical material model computes stress

= Stress converted to pairwise forces

T(x' —x)=woK ! (x' —x)

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive
modeling. Journal of Elasticity, 88(2):151-184, 2007.
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Suppression of Zero-Energy Modes

APPROACH: PENALIZE DEFORMATION THAT DEVIATES FROM REGULARIZED

DEFORMATION GRADIENT
Predicted location of neighbor Hourglass vector
Ix __ L / Ik /
X, =X, +F, (X, —X,) 'y =%, — X,

Hourglass vector projected onto bond

Thg = th- (X;;, - X’n)

Hourglass force

18k x — X
‘ fhg = —Chg 1 ; n AV AVX/
7T5 IXO - Xo|| x5 = xnl|
micro- hourglass bond unit
modulus stretch vector
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Unconfined Compression: NOSB Elastic-Plastic Model

Cross section perpendicular to load
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Unconfined Compression

COMPARISON TO EXPERIMENTAL DATA

Coid Pressed Unconstrained Compression
E‘ 300 T T T I T = 1200°C to 1400°C 200 Elastic-Plastic Model with Bond Failure
t=25x10"s"
g' 250 |
§ 250
s 200 | - £
n 1200°C s
% 150 | n g 150
® 77
G 100 1300’0j \ . g 10
8 w : ) =
g 1400°C 50
= 0 4 4 0
0.00 0.02 0.04 0.08 0.08 0.10 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
True Strain
True Compressive Strain

Figure 9d Stress/strain behavior of the cold-pressed and sintered
urania at temperatures of 1200, 1300, and 1400°C and a strain rate
of e =25x10%s".

[Stout, Ellis, and Pereyra, 1994]
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Unconfined Compression: Effect of Void Volume

MICROSTRUCTURE AFFECTS MACROSCOPIC RESPONSE

® Reduced void volume leads to higher yield stress
* |nform macro-scale constitutive model

Unconstrained Compression
Elastic-Plastic Model with Bond Failure

15% Void Volume s
20% Void Volume s
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True Strain
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Pressure as a Function of Volumetric Strain

CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL

" SOIL FOAM constitutive model requires user-specified function describing the
pressure response as a function of volumetric strain

® Peridynamic model predicts:
= [nitial elastic response
= Macroscopic yielding due to void collapse
= Re-stiffening of response following void collapse

PuO2 Macroscale Response

2500 A
]
2000 / f(€y)
5 R %
E 1500 : } - 1
]
:)/ } = /io
3 1
% 1000
& ko
500
€, =-In( Po/P)
0 Figure 4. The pressure versus finite volume strain behaviour

0 0.05 0.1 0.15 0.2 0.25
True Crush = -In(V/Vo) [Swenson and Taylor, 1983]
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Yield Stress as a Function of Confinement
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Reduced Confinement
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No Confinement
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Macroscopic Response of Representational Volumes
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Macroscopic Response of Representational Volumes
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Conclusions and Ongoing Work

WHAT’S BEEN DONE

= Creation of representational volume element

= Void fraction is a function of processing conditions
= Peridynamic model of representational volume mechanical response
= Macroscopic response tied to microstructure

WHERE WE ARE GOING

= Experimental validation of peridynamic representational volume model
= Calibration of macro-scale constitutive law base on meso-scale calculations
= |nvestigation of alternative models

= Peridynamic constitutive model

= Bond failure law

g Sandia
32 National _
Laboratories



Questions?
David Littlewood

djlittl@sandia.gov
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