

Informing Macroscale Constitutive Laws through Peridynamic Modeling of Grain-Scale Mechanisms in Plutonium Oxide

David Littlewood

Veena Tikare

John Bignell

Workshop on Nonlocal Damage and Failure

12 March 2013

SAND2013-1951C

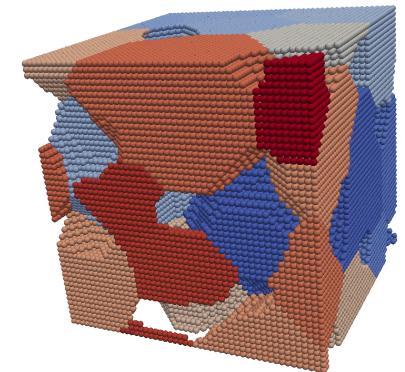
Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

Mechanical properties of $^{238}\text{PuO}_2$ fuel pellets are controlled by their microstructure and composition

WHAT FACTORS DETERMINE THE MICROSTRUCTURE AND COMPOSITION?

- Fabrication conditions (powder compaction & sintering)
- Storage conditions
- Pre-use annealing
- Service conditions



CAN WE MODEL THE LINK BETWEEN MICROSCALE AND MACROSCALE?

- Critical features at the grain scale
 - Grain size / grain shape / void volume
 - Material failure along grain boundaries and subsequent void collapse
- Response of representational volume can inform macro-scale constitutive law

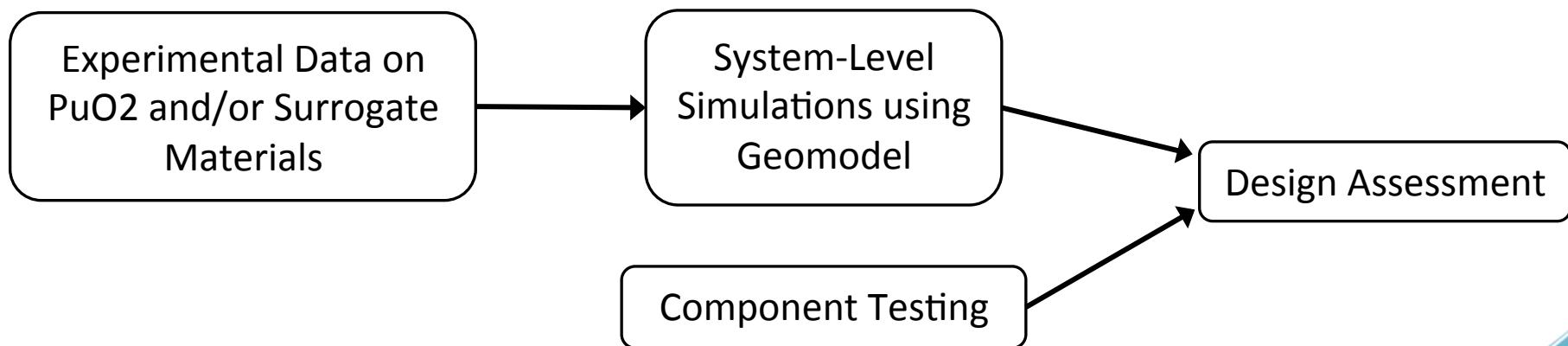
PuO_2 grain / void structure

We propose **peridynamics** as a means to capture grain-scale response

Design Assessment Based on Experiments and Simulations

KEY ROLE FOR COMPUTATIONAL SIMULATION

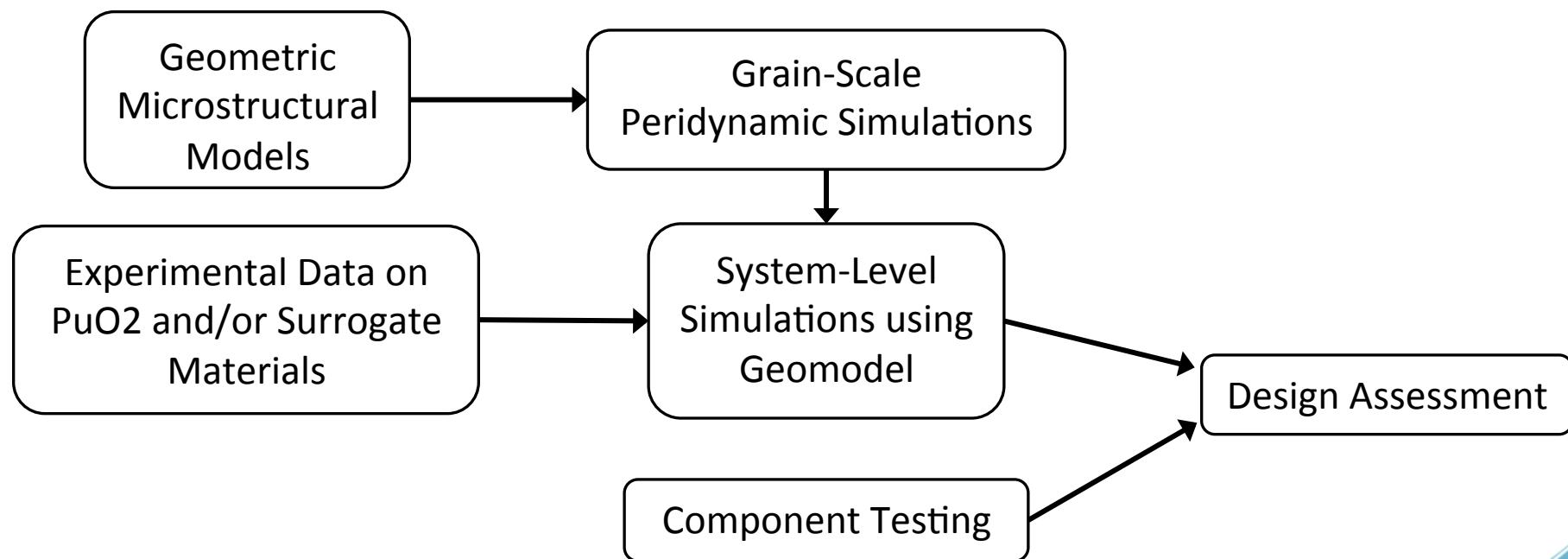
- Performing experiments on PuO₂ is difficult / expensive
- Limited experimental data in the literature
 - Material characterization
 - Calibration of material models
- Modeling performed at the system level
 - Classical FEM
 - Continuum geomodel
- Limited component testing



Enrich Simulation Effort with Grain-Scale Models

UTILIZE PERIDYNAMICS AT THE MESOSCALE

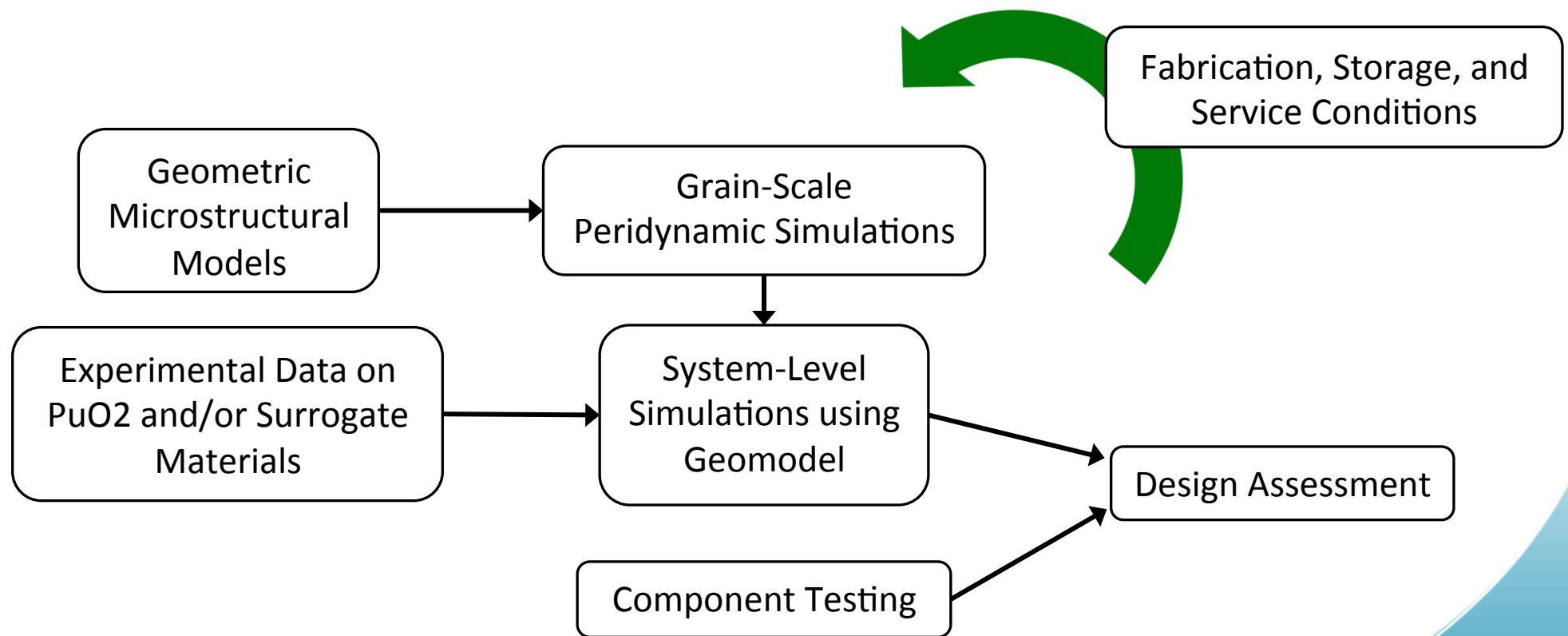
- Generate representative grain-scale models
- Peridynamic modeling of grain structure
 - Failure mechanisms occur at the grain scale
- Inform constitutive models at component / system level
 - Resolving the grain structure in system-level analyses is computationally intractable



Potential to Improve Mechanical Performance

MOVING BEYOND DESIGN ASSESSMENT

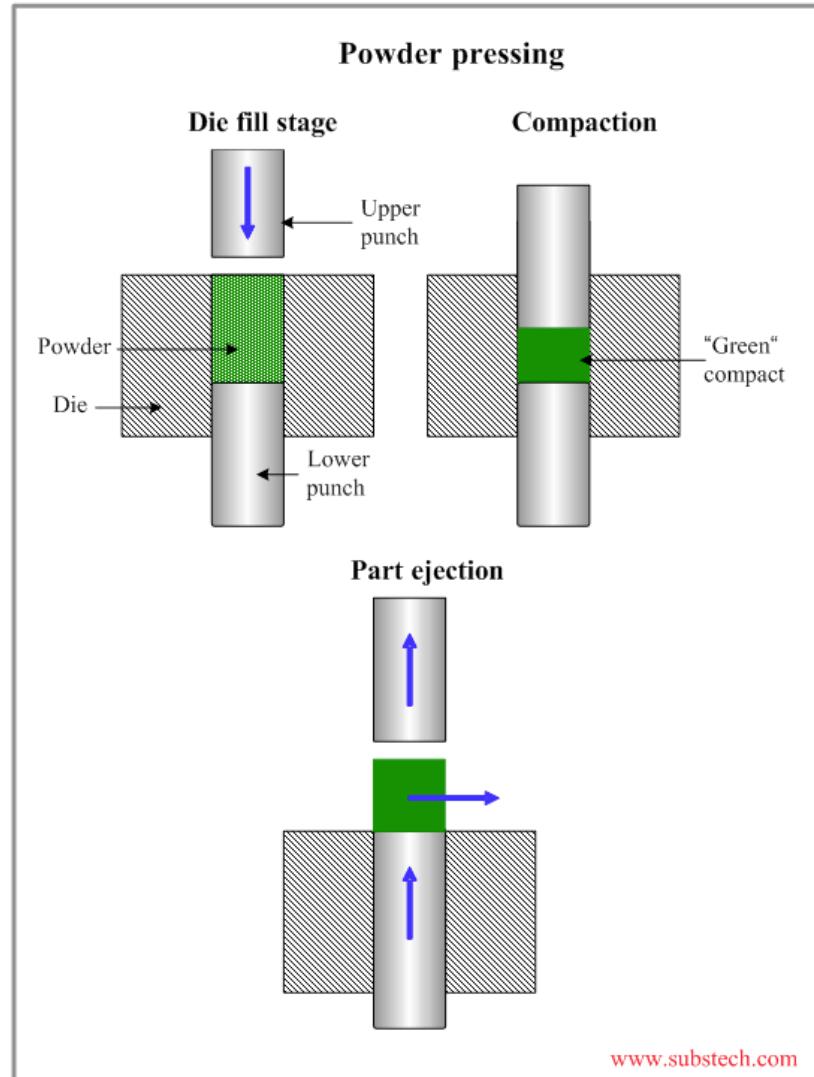
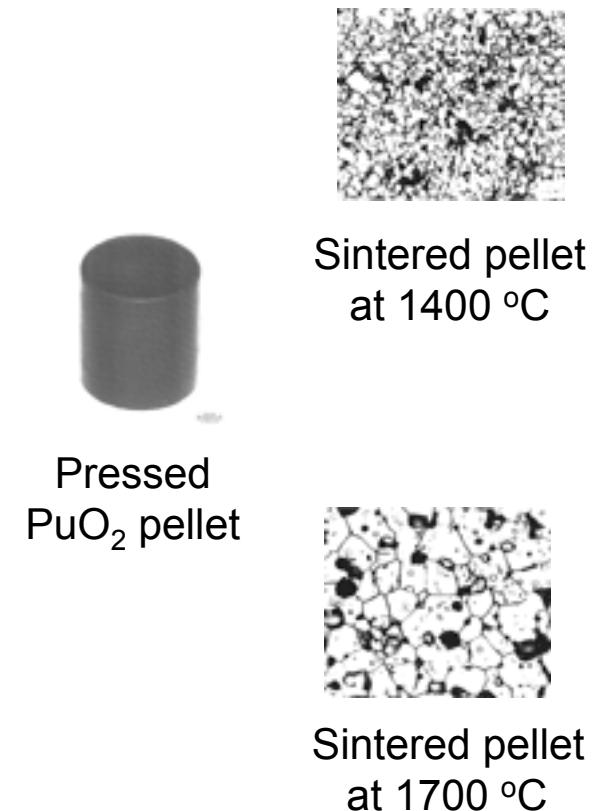
- The grain structure is dictated by fabrication, storage, and service conditions
- Mechanical response is largely determined by the grain structure
- There is potential to alter fabrication, storage, and service conditions for improved mechanical performance based on simulation results



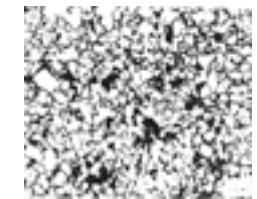
PuO₂ Fuel Pellet Fabrication

FINAL MICROSTRUCTURE IS CONTROLLED BY PROCESSING

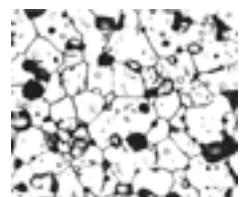
PuO₂ powder



Pressed
PuO₂ pellet

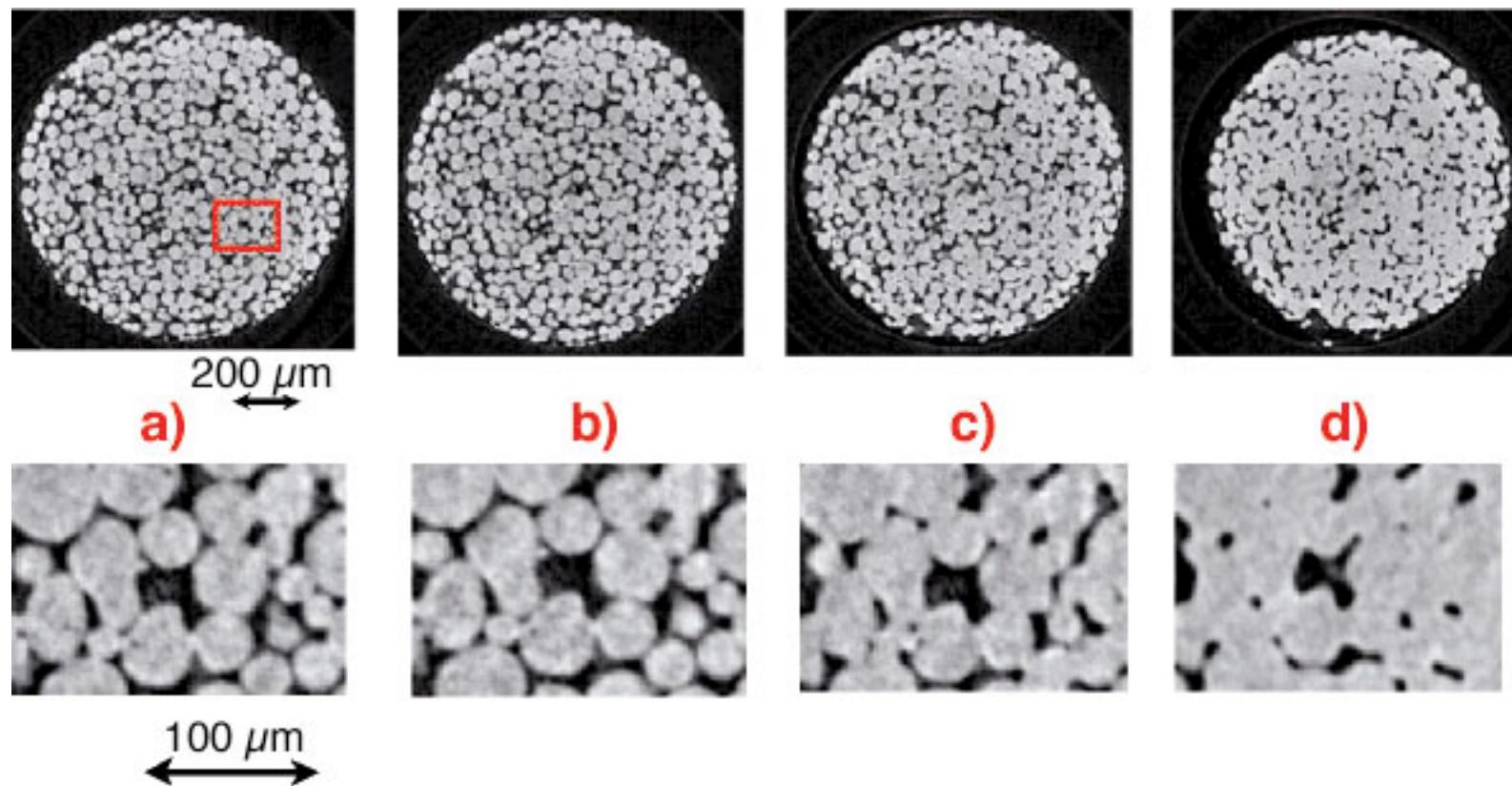


Sintered pellet
at 1400 °C



Sintered pellet
at 1700 °C

Microstructural Evolution During Sintering



- 2D slices perpendicular to the cylindrical axis
 - a) Before sintering
 - b) At 1000°C
 - c) At 1050°C
 - d) Final microstructure

Experimental Results of Stout, Ellis, and Pereyra

UNCONFINED COMPRESSION TESTS OF $^{238}\text{UO}_2$, $^{238}\text{PuO}_2$, and $^{239}\text{PuO}_2$

- Hypothesized that deformation is roughly elastic-perfectly-plastic due to dislocation motion
- Localized intergranular and/or transgranular failure
- Important variables: porosity, grain size, temperature, strain rate
- Significant variability in experimental data

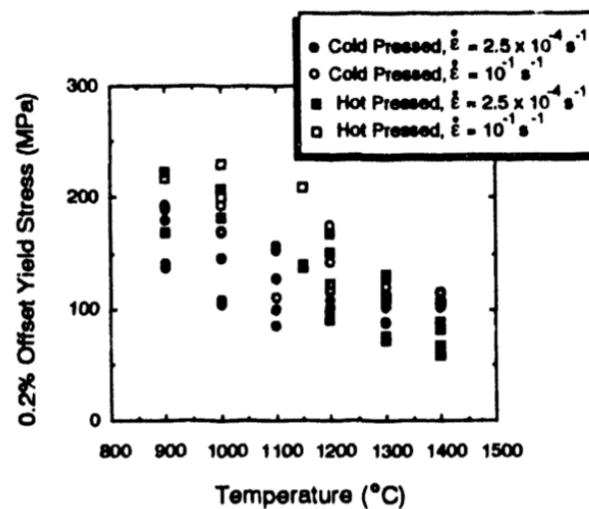


Figure 7 A combination of the yield strength data for both the hot- and cold-pressed urania, $\dot{\epsilon} = 0.1 \text{ s}^{-1}$ and $2.5 \times 10^{-4} \text{ s}^{-1}$.

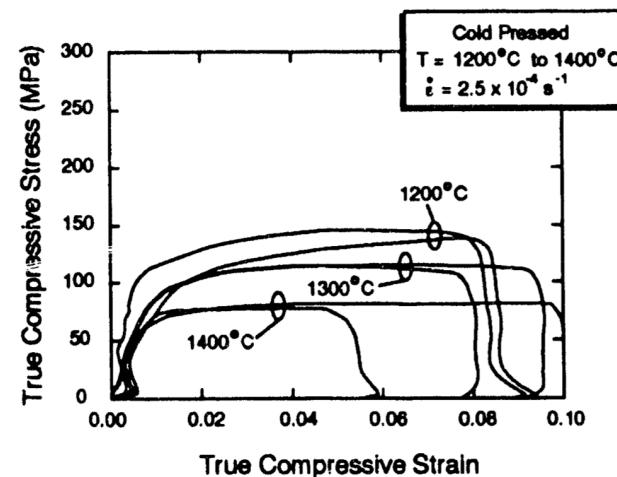


Figure 9d Stress/strain behavior of the cold-pressed and sintered urania at temperatures of 1200, 1300, and 1400 °C and a strain rate of $\dot{\epsilon} = 2.5 \times 10^{-4} \text{ s}^{-1}$.

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of $^{238}\text{UO}_2$, $^{238}\text{PuO}_2$, and $^{239}\text{PuO}_2$ as a Function of Strain Rate and Temperature, LA-12811-MS, 1994.

Experimental Results of Stout, Ellis, and Pereyra

MATERIAL FAILURE WAS PREDOMINATLTY TRANSGRANULAR

- Unconfined compression tests of $^{238}\text{UO}_2$, $^{238}\text{PuO}_2$, and $^{239}\text{PuO}_2$
- Dominant vertical cracks were typically transgranular
- Non-vertical, intergranular cracks also observed, believed to be artifacts of fabrication process

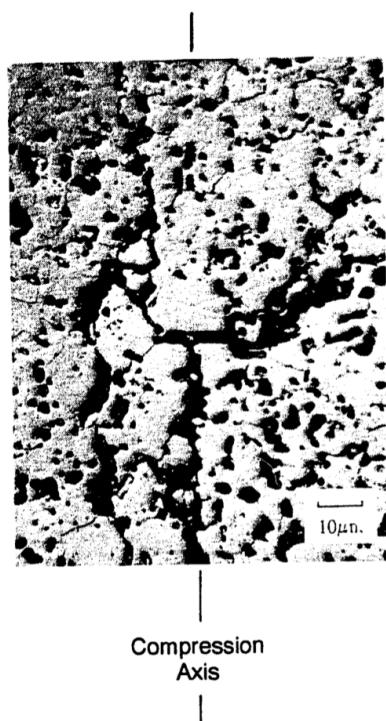


Figure 14a Intergranular fracture in a specimen deformed at 1000°C and a strain rate of $\epsilon = 2.5 \times 10^{-4} \text{ s}^{-1}$.

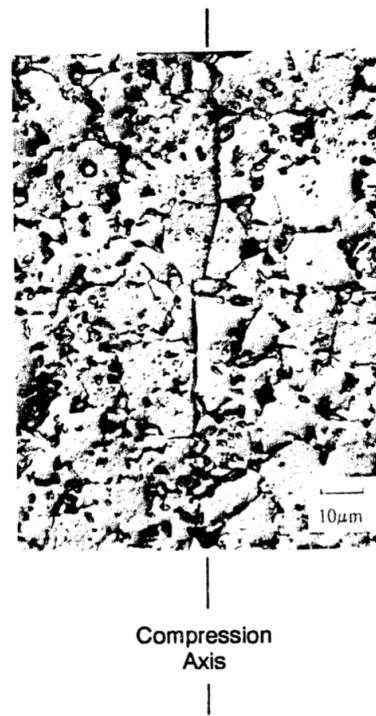


Figure 14b Transgranular fracture in a specimen deformed at 1000°C and a strain rate of $\epsilon = 2.5 \times 10^{-4} \text{ s}^{-1}$.

M.G. Stout, R.W. Ellis, R.A. Pereyra, Mechanical Behavior of $^{238}\text{UO}_2$, $^{238}\text{PuO}_2$, and $^{239}\text{PuO}_2$ as a Function of Strain Rate and Temperature, LA-12811-MS, 1994.

Macroscale Constitutive Model for Classical FEM

CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL

- SOIL_FOAM constitutive model in *Sierra/SolidMechanics*
[Krieg 1978, Swenson and Taylor 1983, Taylor and Flanagan 1989, SAND2011-7597]
- Response is decomposed into volumetric and deviatoric components
 - Yield surface defined in principal stress space: confinement determines yield stress
 - Arbitrary user-provided function specifies pressure as a function of volume

```
BEGIN PARAMETERS FOR MODEL SOIL_FOAM
  YOUNGS MODULUS =
  POISSONS RATIO =
  A0 =
  A1 =
  A2 =
  PRESSURE CUTOFF =
  PRESSURE FUNCTION =
END
```

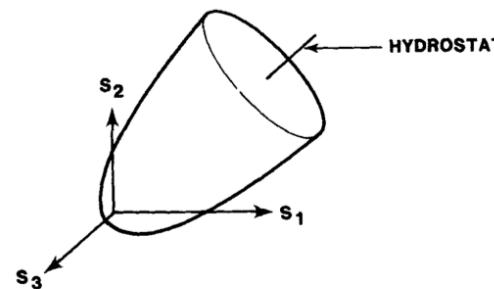


Figure 3. Yield surface in principal stress space

[Swenson and Taylor, 1983]

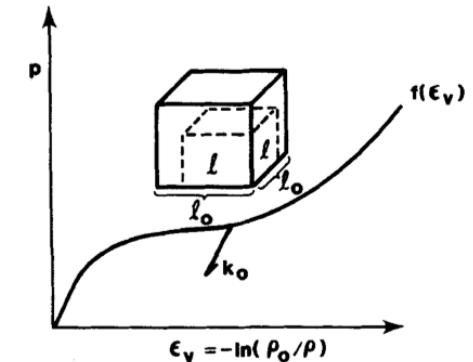


Figure 4. The pressure versus finite volume strain behaviour

[Swenson and Taylor, 1983]

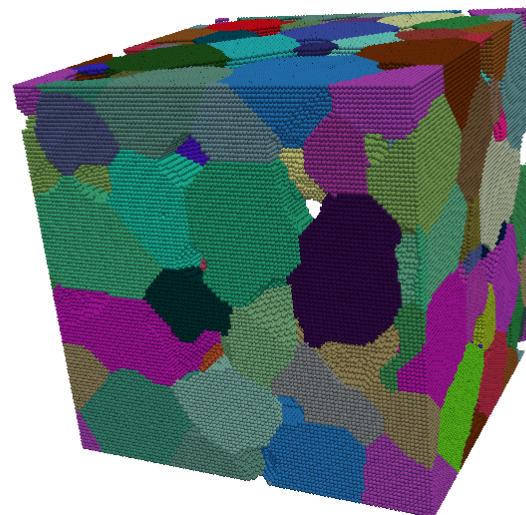
Peridynamic RVE models can inform continuum model

Creation of Representational Volume Elements

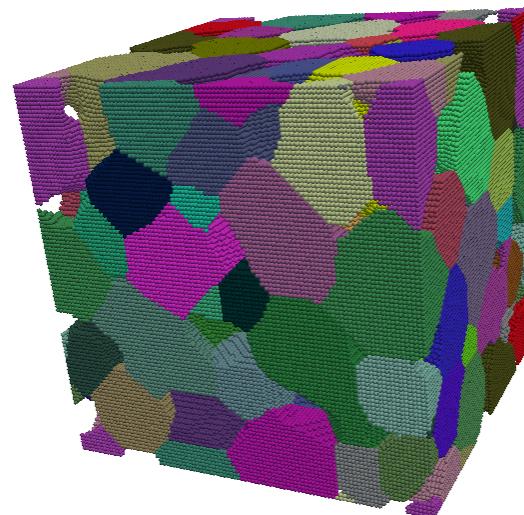
MODEL SIMULATES MICROSTRUCTURAL EVOLUTION DURING SOLID STATE SINTERING

- Simulates densification by annihilation, curve-driven grain growth and pore coarsening by surface diffusion
- Generates topologically correct microstructures given the processing variables
- The size and shape of stress concentrators (pores) are topologically correct
- Can generate correct microstructures over a wide range of processing conditions and starting powder characteristics.

MICROSTRUCTURAL MODELS



15% void volume



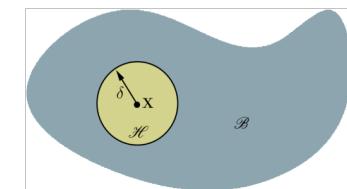
20% void volume

Peridynamic Modeling of PuO₂ Microstructures

Peridynamics is a mathematical theory that unifies the mechanics of continuous media, cracks, and discrete particles

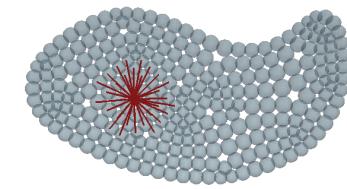
- Peridynamics is a *nonlocal* extension of continuum mechanics
- Remains valid in presence of discontinuities, including cracks
- Balance of linear momentum is based on an *integral equation*:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x}, t) = \underbrace{\int_{\mathcal{B}} \{\underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}'[\mathbf{x}', t] \langle \mathbf{x} - \mathbf{x}' \rangle\} dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)}_{\text{Divergence of stress replaced with integral of nonlocal forces.}}$$



- Peridynamic *bonds* connect any two material points that interact directly
- Peridynamic forces are determined by force states acting on bonds
- *Material failure* is modeled through the breaking of peridynamic bonds
- A peridynamic body may be discretized by a finite number of elements:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}_h(\mathbf{x}, t) = \sum_{i=0}^N \{\underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}'_i - \mathbf{x} \rangle - \underline{\mathbf{T}}'[\mathbf{x}'_i, t] \langle \mathbf{x} - \mathbf{x}'_i \rangle\} \Delta V_{\mathbf{x}'_i} + \mathbf{b}(\mathbf{x}, t)$$



S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. *Journal of the Mechanics and Physics of Solids*, 48:175-209, 2000.

Silling, S.A. and Lehoucq, R. B. Peridynamic Theory of Solid Mechanics. *Advances in Applied Mechanics* 44:73-168, 2010.

Peridynamic Modeling of PuO₂ Microstructures

GOALS

- Demonstrate that peridynamics can reproduce experimental data
 - Unconfined compression data of Stout, Ellis, and Pereyra
- Inform macro-scale constitutive model
 - Pressure as a function of volume
 - Yield stress as a function of pressure

CONSTITUTIVE MODELS

- State-based linear peridynamic solid
- Bond-based microelastic
- State-based elastic-plastic
- Non-ordinary state-based elastic-plastic
- Modified critical stretch bond failure law

SANDIA COMPUTING RESOURCES

- *Sierra/SolidMechanics* analysis code
- *Peridigm* analysis code
- RedSky compute cluster

Bond Failure Law

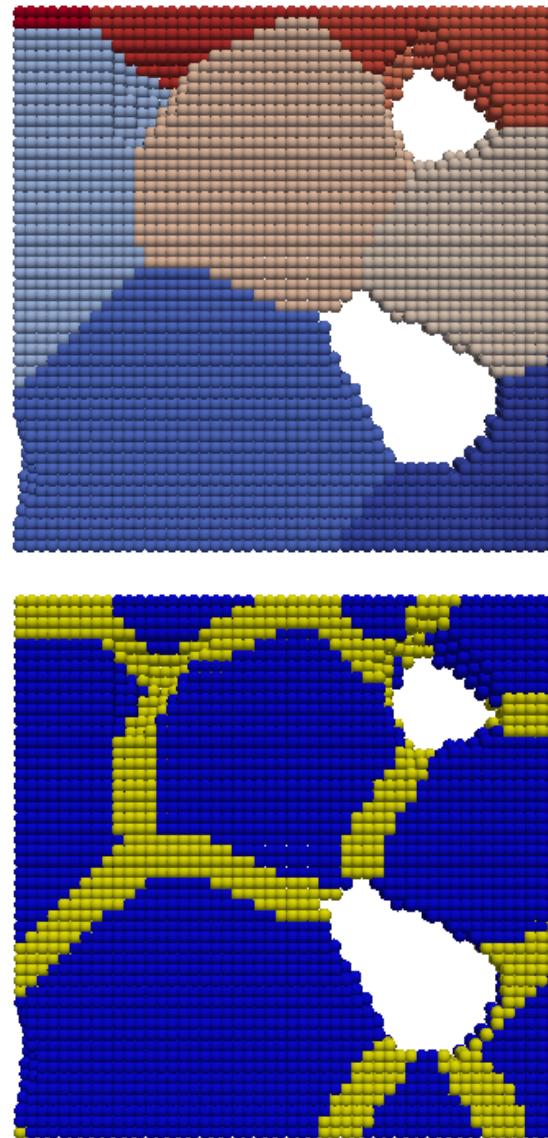
CRITICAL STRETCH BOND FAILURE RULE

- Bonds fail when their extension exceeds a critical value
- Bond failure is irreversible

$$\phi = \begin{cases} 0 & \text{if } s_{\max} < s_{\text{crit}} \\ 1 & \text{if } s_{\max} \geq s_{\text{crit}} \end{cases}$$

$$s_{\max} = \frac{\|\underline{e}\|_{\max}}{\|\underline{x}\|}$$

- Bond failure law is applied only in direct vicinity of grain boundaries
- Contact algorithm controls material interactions after bonds are broken



S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, *Computers and Structures*, 83, 2005.

Linear Peridynamic Solid Constitutive Model

\mathcal{H}	Family	m	Weighted volume
\underline{x}	Bond (reference config.)	θ	Dilatation
$\underline{\omega}$	Influence function	k	Bulk modulus
\underline{e}	Bond extension	μ	Shear modulus
\underline{e}^d	Deviatoric bond extension		

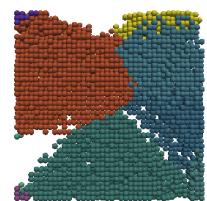
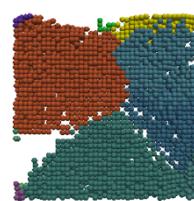
$$m = \int_{\mathcal{H}} (\underline{\omega} \underline{x}) \cdot \underline{x} dV$$

$$\theta = \frac{3}{m} \int_{\mathcal{H}} (\underline{\omega} \underline{x}) \cdot \underline{e} dV \quad \underline{e}^d = \underline{e} - \frac{\theta \underline{x}}{3}$$

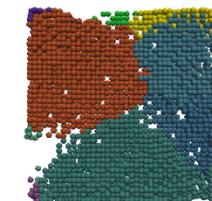
$$\rightarrow \underline{t} = \frac{3k\theta}{m} \underline{\omega} \underline{x} + \frac{15\mu}{m} \underline{\omega} \underline{e}^d$$

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, *Journal of Elasticity*, 88, 2007.

Unconfined Compression: State-Based Elastic Model

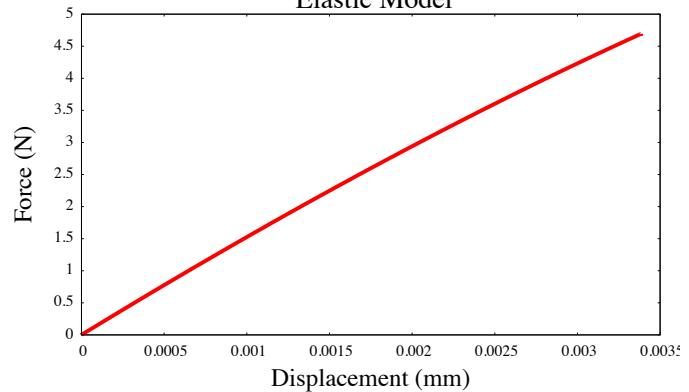
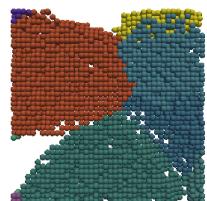
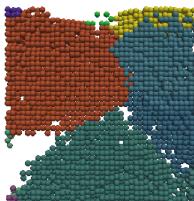


No bond failure

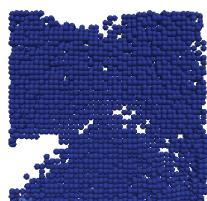
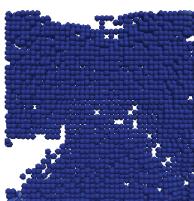
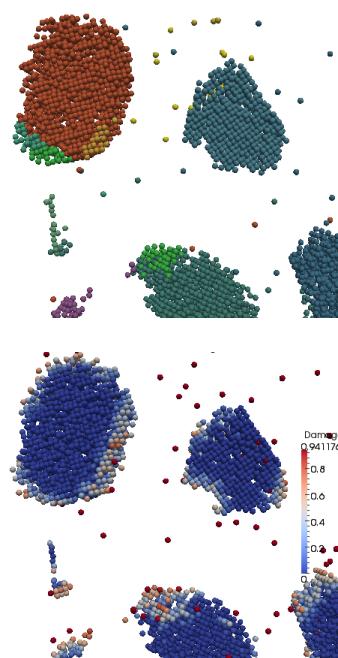


Cross section perpendicular to load

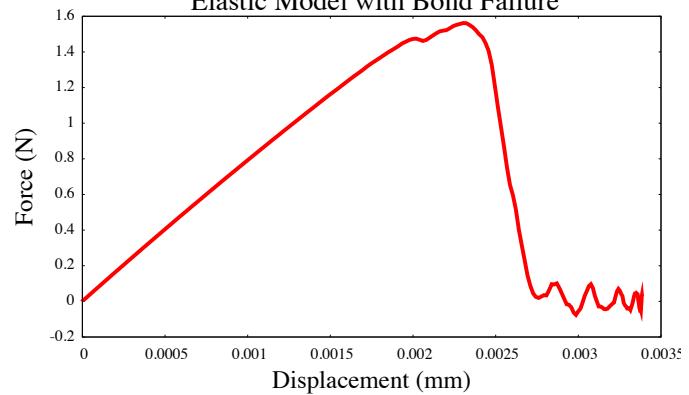
Unconstrained Compression
Elastic Model



Bond failure



Unconstrained Compression
Elastic Model with Bond Failure



Bond-based Microplastic Constitutive Model

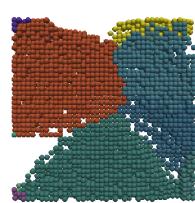
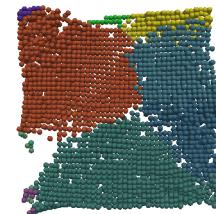
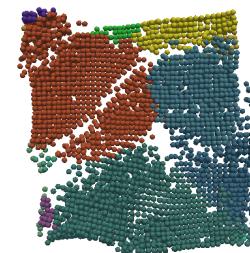
k	Bulk modulus	δ	Horizon
s	Bond stretch	s_p	Plastic bond stretch
s_Y	Yield stretch		

$$s_p(0) = 0, \quad \dot{s}_p = \begin{cases} \dot{s} & \text{if } |s - s_p| \geq s_Y, \\ 0 & \text{otherwise.} \end{cases}$$

$$\rightarrow \underline{t} = \frac{18k}{\pi\delta^4} (s - s_p)$$

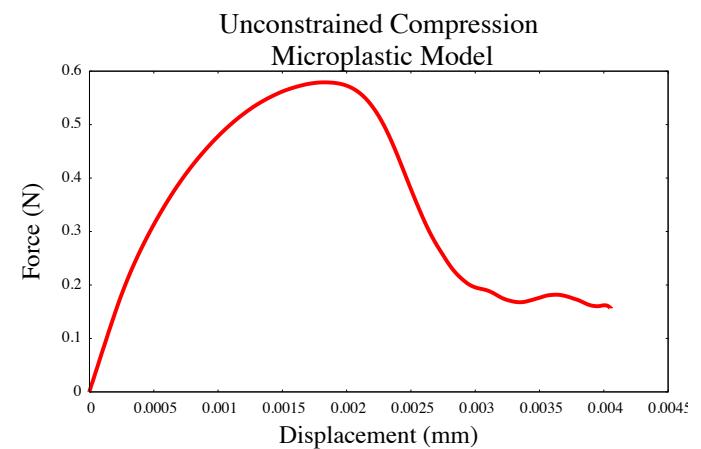
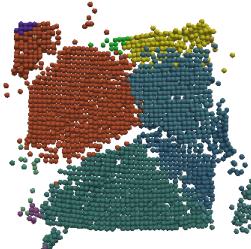
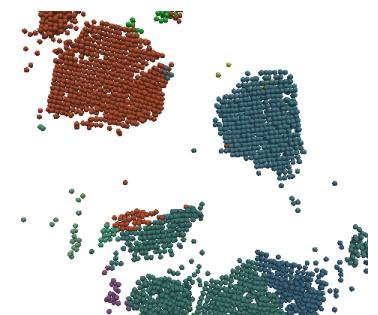
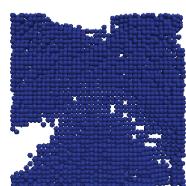
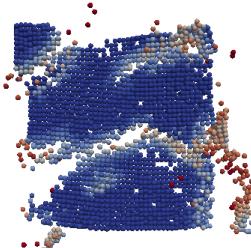
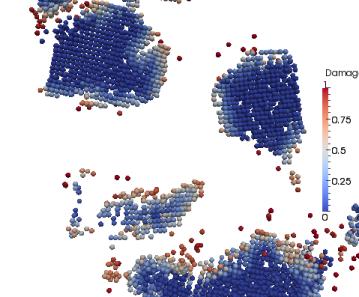
R.W. Macek and S.A. Silling, Peridynamics via Finite Element Analysis, *Finite Elements in Analysis and Design*, 43, 2007.

Unconfined Compression: Microplastic Model

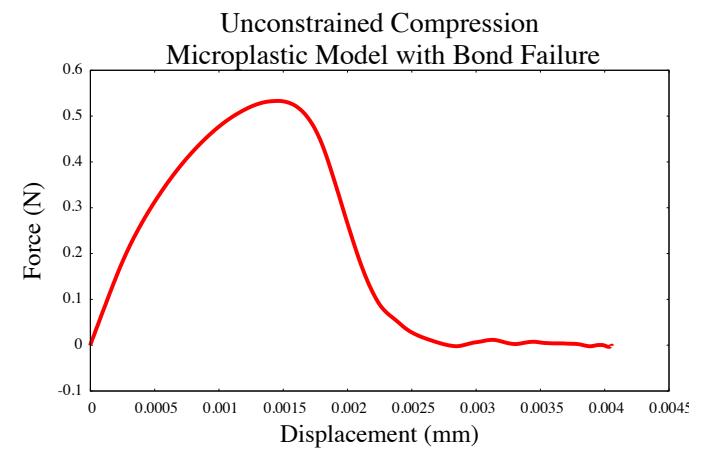


No bond failure

Cross section perpendicular to load



Bond failure



State-Based Elastic-Plastic Constitutive Model

\mathcal{H}	Family	m	Weighted volume
\underline{x}	Bond (reference config.)	θ	Dilatation
$\underline{\omega}$	Influence function	k	Bulk modulus
\underline{e}	Bond extension	μ	Shear modulus
\underline{e}^d	Deviatoric bond extension		

$$m = \int_{\mathcal{H}} (\underline{\omega} \underline{x}) \cdot \underline{x} dV$$

$$\theta = \frac{3}{m} \int_{\mathcal{H}} (\underline{\omega} \underline{x}) \cdot \underline{e} dV$$

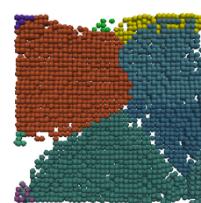
$$\underline{e}^d = \underline{e} - \frac{\theta \underline{x}}{3} = \underline{e}^{de} + \underline{e}^{dp}$$

$$\dot{\underline{e}}^{dp} = \lambda \nabla^d \psi$$

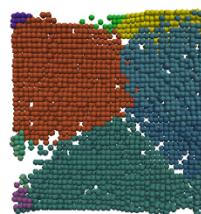
$$\rightarrow \underline{t} = \frac{3k\theta}{m} \underline{\omega} \underline{x} + \frac{15\mu}{m} \underline{\omega} (\underline{e}^d - \underline{e}^{dp})$$

J.A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND2011-3166, 2011.

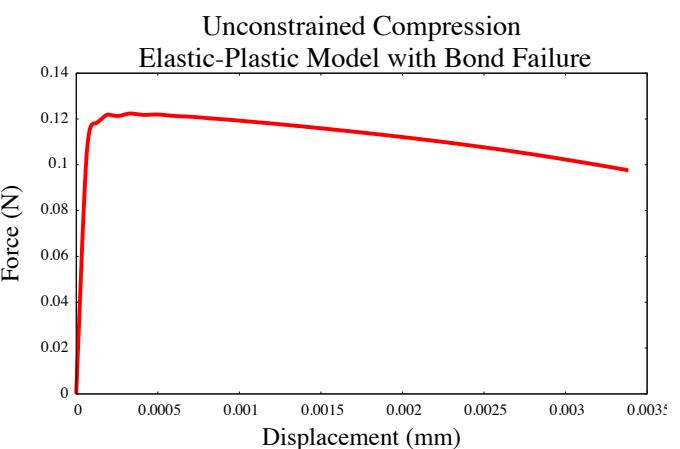
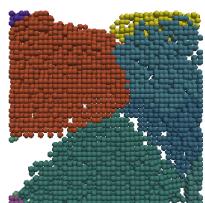
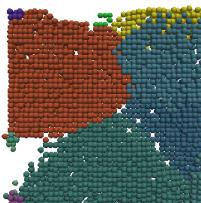
Unconfined Compression: Elastic-Plastic Model



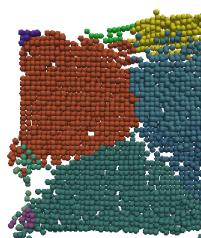
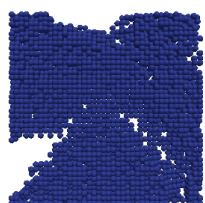
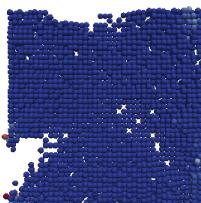
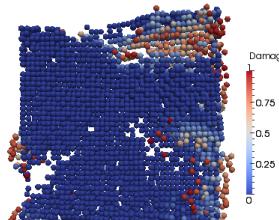
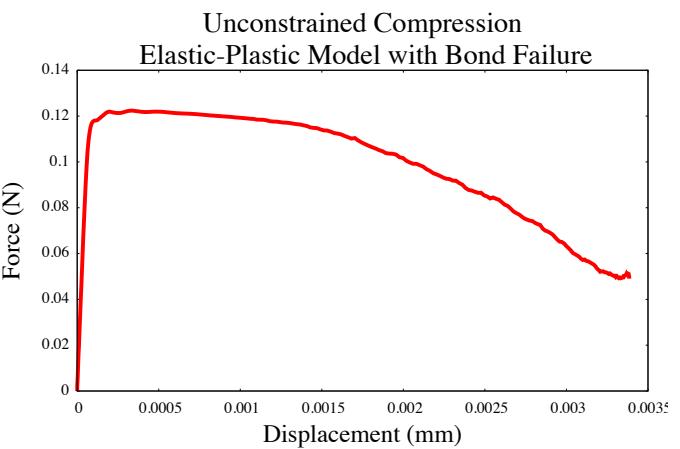
No bond failure



Cross section perpendicular to load



Bond failure



Non-Ordinary State-Based Material Models

APPLICATION OF CLASSICAL (LOCAL) MATERIAL MODELS WITHIN PERIDYNAMICS

- Approximate deformation gradient based on initial and current locations of material points in family

Approximate Deformation Gradient

$$\bar{\mathbf{F}} = \left(\sum_{i=0}^N \underline{\omega}_i \underline{\mathbf{Y}}_i \otimes \underline{\mathbf{X}}_i \Delta V_{\mathbf{x}_i} \right) \mathbf{K}^{-1}$$

Shape Tensor

$$\mathbf{K} = \sum_{i=0}^N \underline{\omega}_i \underline{\mathbf{X}}_i \otimes \underline{\mathbf{X}}_i \Delta V_{\mathbf{x}_i}$$

- Kinematic data passed to classical material model
- Classical material model computes stress
- Stress converted to pairwise forces

$$\underline{\mathbf{T}} \langle \mathbf{x}' - \mathbf{x} \rangle = \underline{\omega} \sigma \mathbf{K}^{-1} \langle \mathbf{x}' - \mathbf{x} \rangle$$

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive modeling. *Journal of Elasticity*, 88(2):151-184, 2007.

Suppression of Zero-Energy Modes

APPROACH: PENALIZE DEFORMATION THAT DEVIATES FROM REGULARIZED DEFORMATION GRADIENT

Predicted location of neighbor

$$\mathbf{x}'^* = \mathbf{x}_n + \bar{\mathbf{F}}_n (\mathbf{x}'_o - \mathbf{x}_o)$$

Hourglass vector

$$\boldsymbol{\Gamma}_{\text{hg}} = \mathbf{x}'^* - \mathbf{x}'_n$$

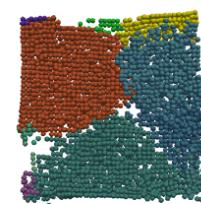
Hourglass vector projected onto bond

$$\gamma_{\text{hg}} = \boldsymbol{\Gamma}_{\text{hg}} \cdot (\mathbf{x}'_n - \mathbf{x}_n)$$

Hourglass force

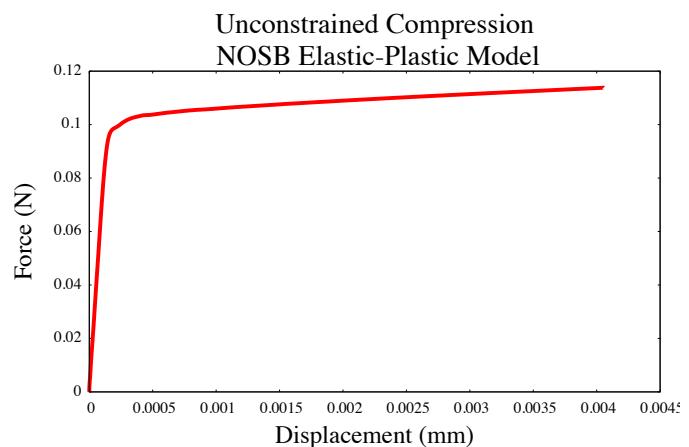
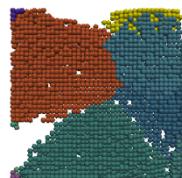
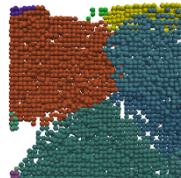
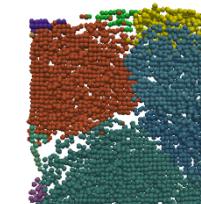
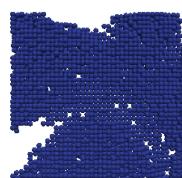
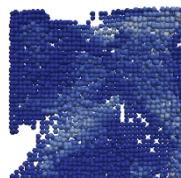
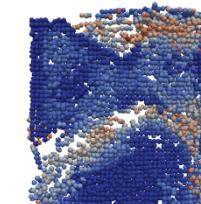
$$\rightarrow \mathbf{f}_{\text{hg}} = -C_{\text{hg}} \underbrace{\left(\frac{18k}{\pi\delta^4} \right)}_{\text{micro-modulus}} \underbrace{\frac{\gamma_{\text{hg}}}{\|\mathbf{x}'_o - \mathbf{x}_o\|}}_{\text{hourglass stretch}} \underbrace{\frac{\mathbf{x}'_n - \mathbf{x}_n}{\|\mathbf{x}'_n - \mathbf{x}_n\|}}_{\text{bond unit vector}} \Delta V_x \Delta V_{x'}$$

Unconfined Compression: NOSB Elastic-Plastic Model

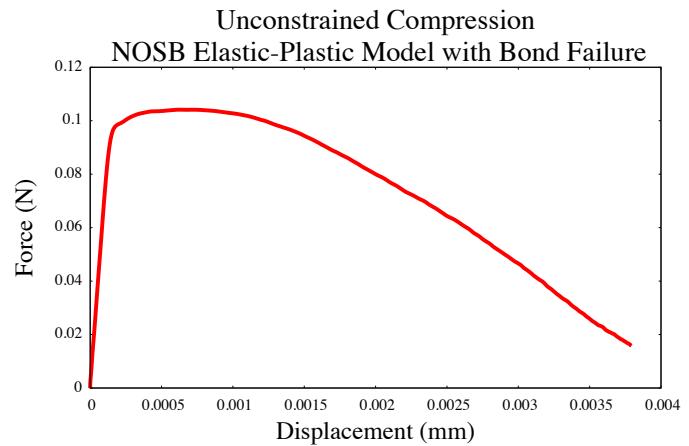


No bond failure

Cross section perpendicular to load



Bond failure



Unconfined Compression

COMPARISON TO EXPERIMENTAL DATA

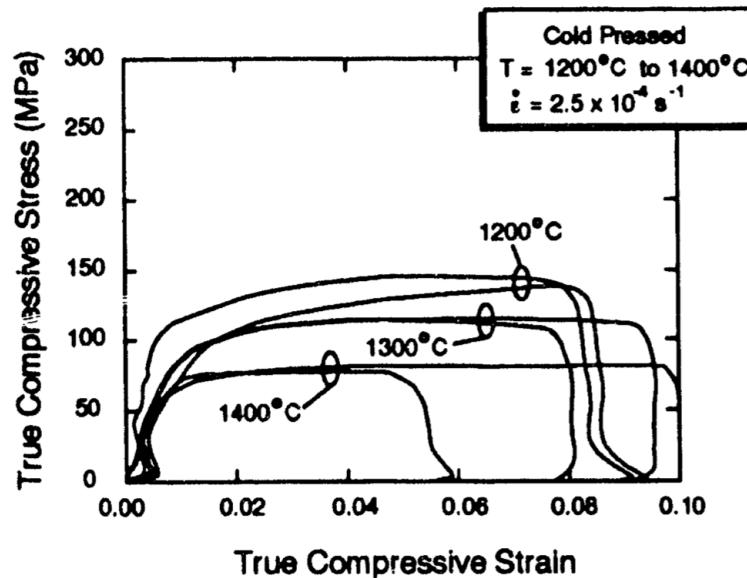
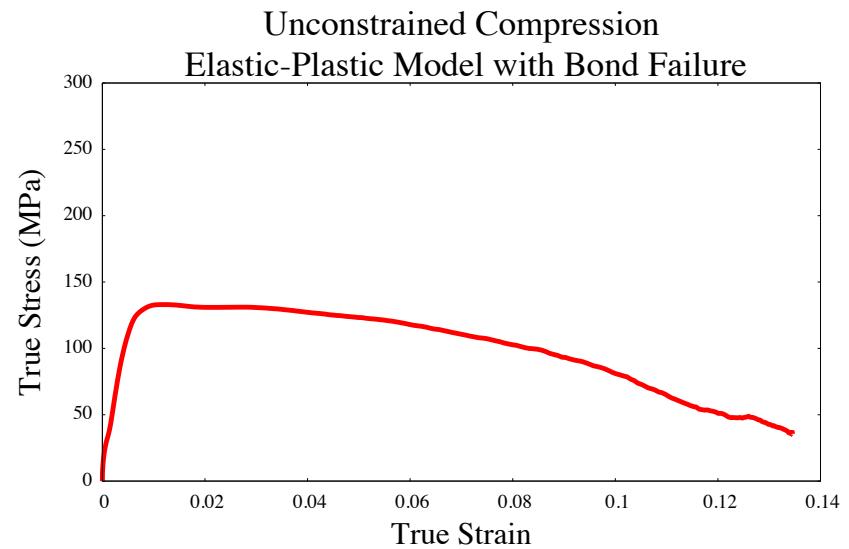


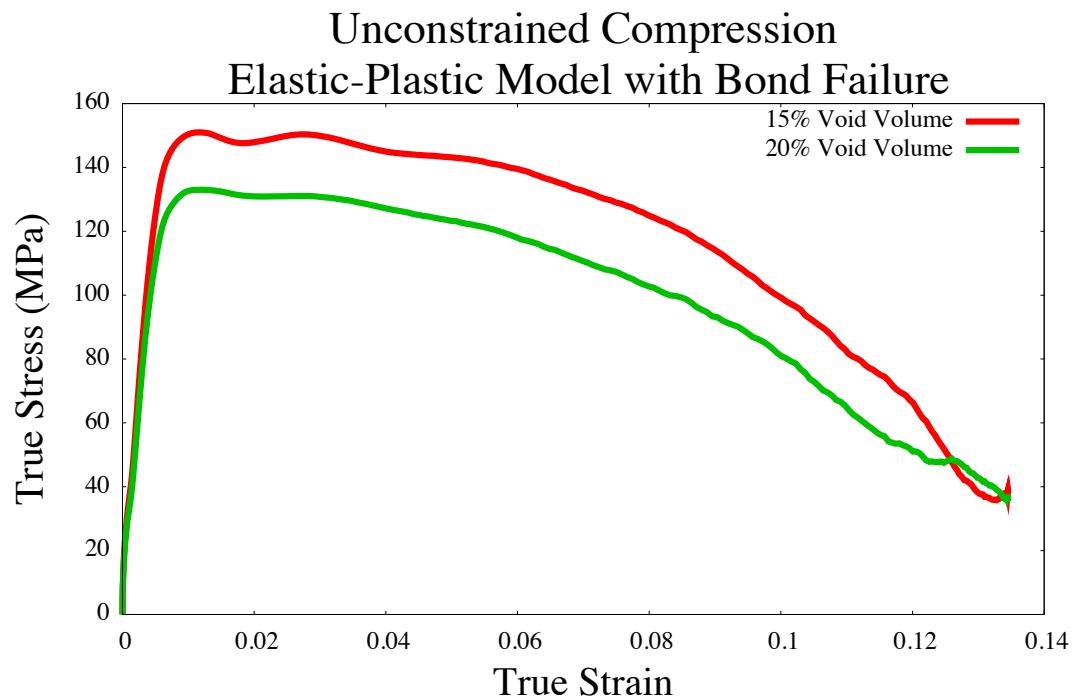
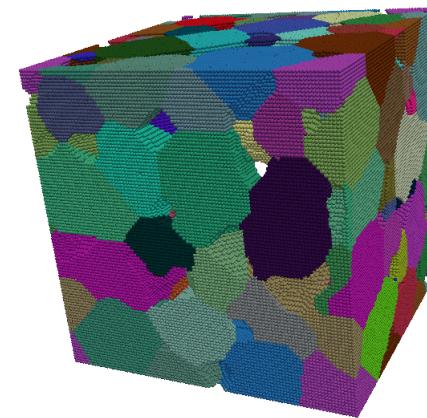
Figure 9d Stress/strain behavior of the cold-pressed and sintered urania at temperatures of 1200, 1300, and 1400°C and a strain rate of $\dot{\epsilon} = 2.5 \times 10^{-4} \text{ s}^{-1}$.

[Stout, Ellis, and Pereyra, 1994]

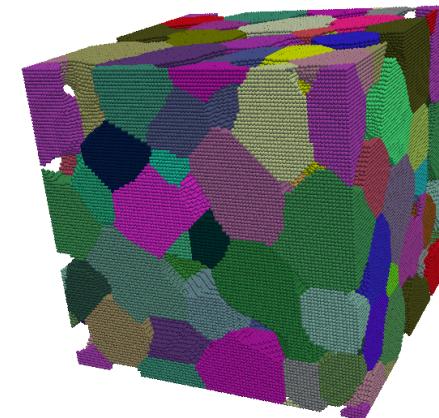
Unconfined Compression: Effect of Void Volume

MICROSTRUCTURE AFFECTS MACROSCOPIC RESPONSE

- Reduced void volume leads to higher yield stress
- Inform macro-scale constitutive model



15% void volume



20% void volume

Pressure as a Function of Volumetric Strain

CLASSICAL CONTINUUM GEOMODEL APPLIED IN SYSTEM MODEL

- SOIL_FOAM constitutive model requires user-specified function describing the pressure response as a function of volumetric strain
- Peridynamic model predicts:
 - Initial elastic response
 - Macroscopic yielding due to void collapse
 - Re-stiffening of response following void collapse

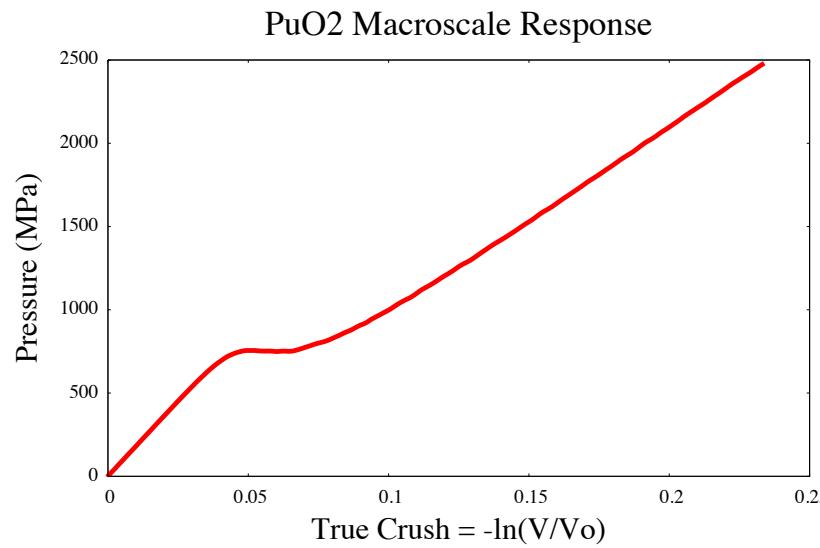
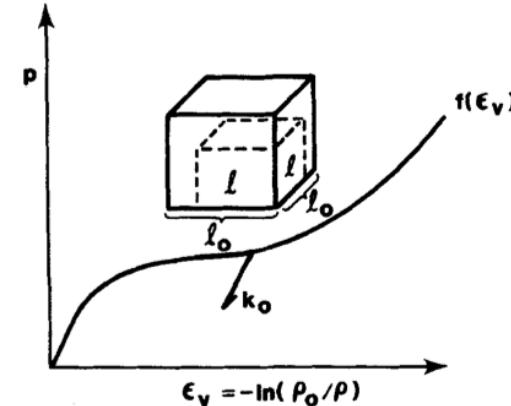
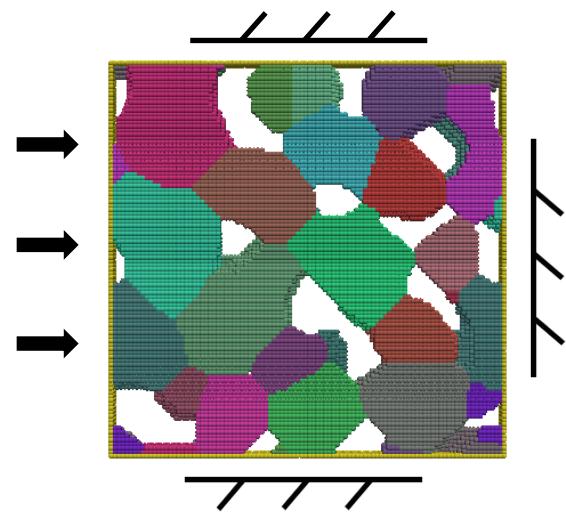
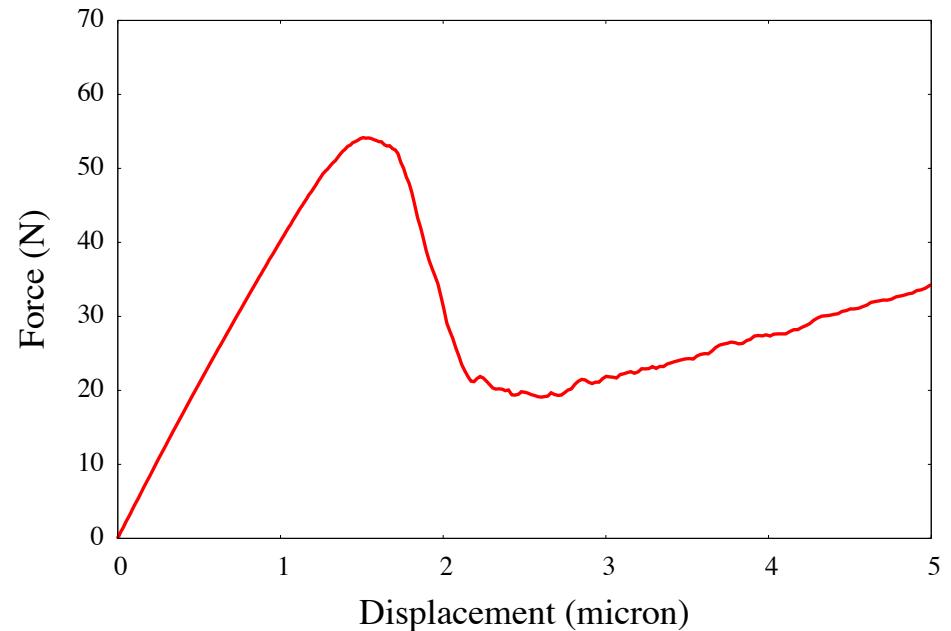
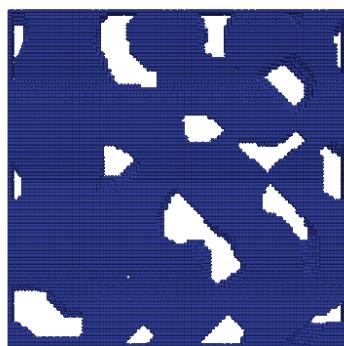
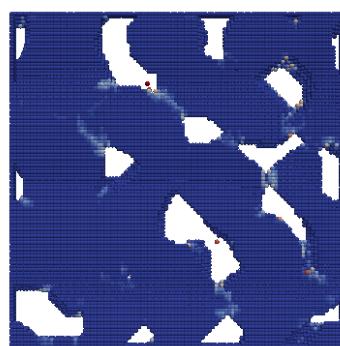
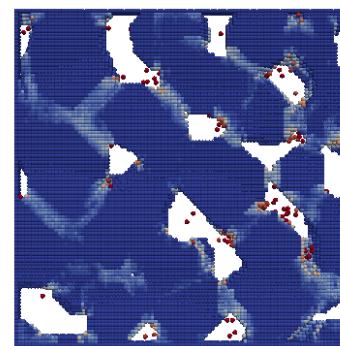
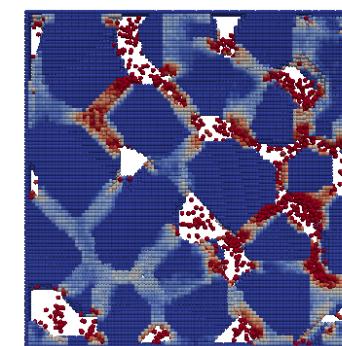
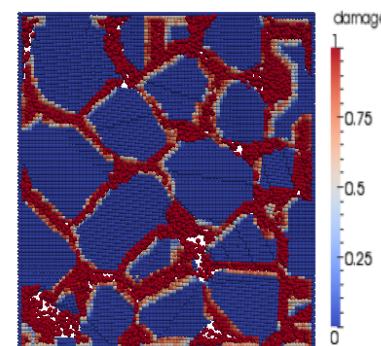


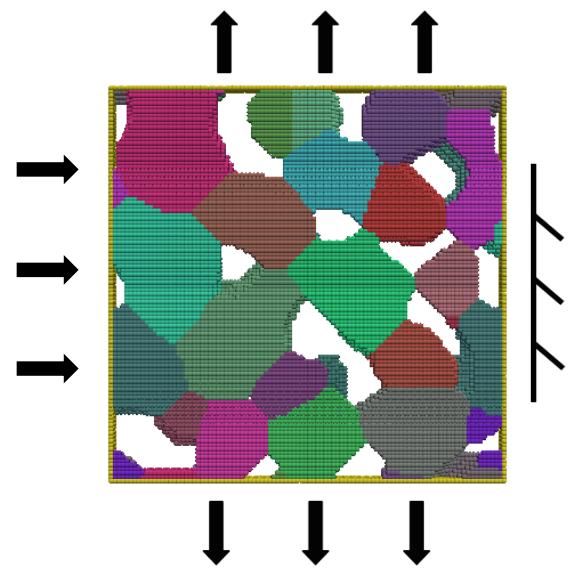
Figure 4. The pressure versus finite volume strain behaviour

[Swenson and Taylor, 1983]

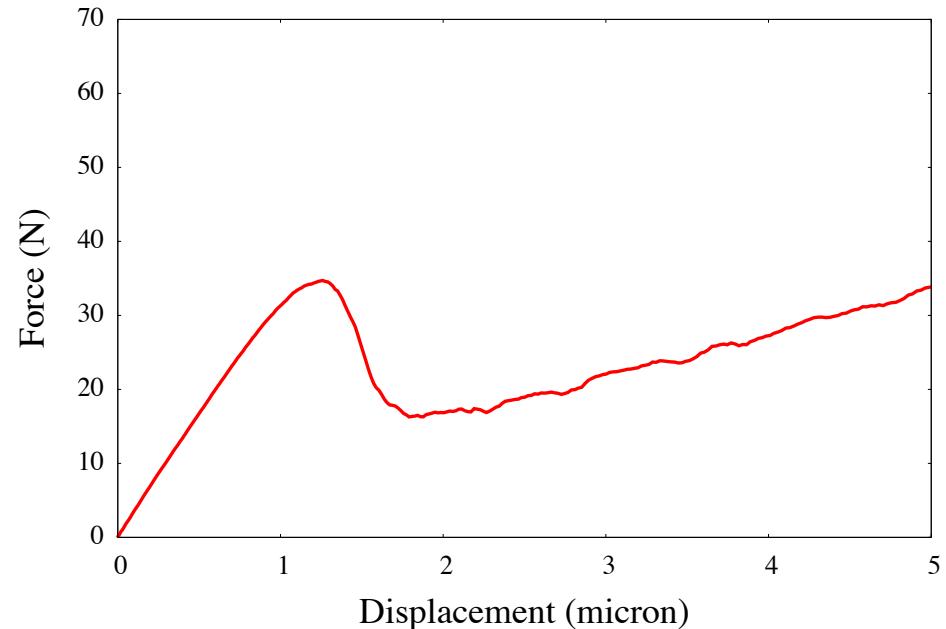
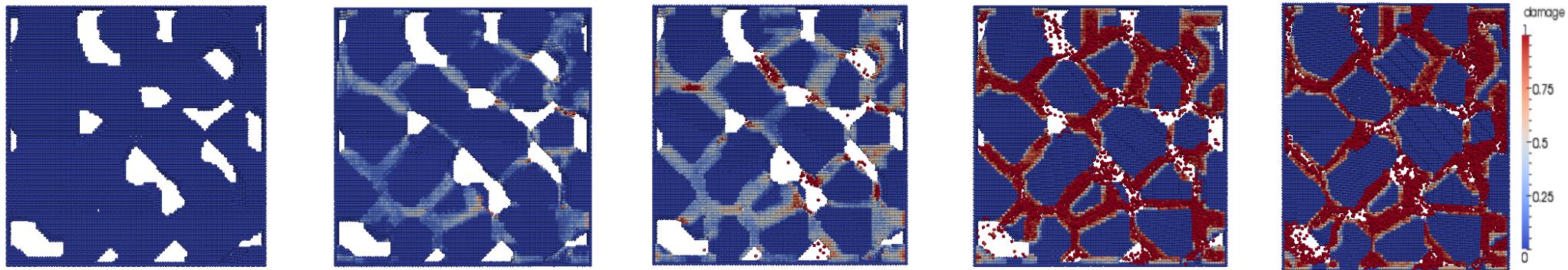
Yield Stress as a Function of Confinement



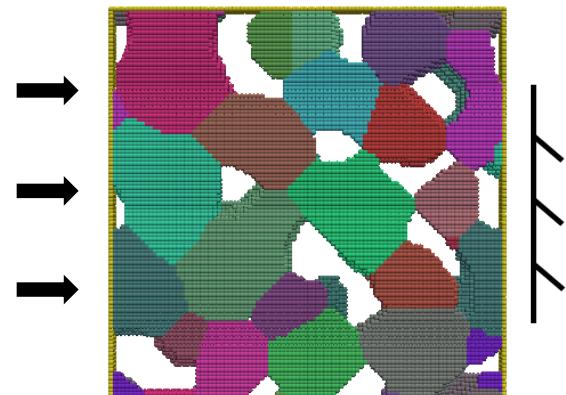
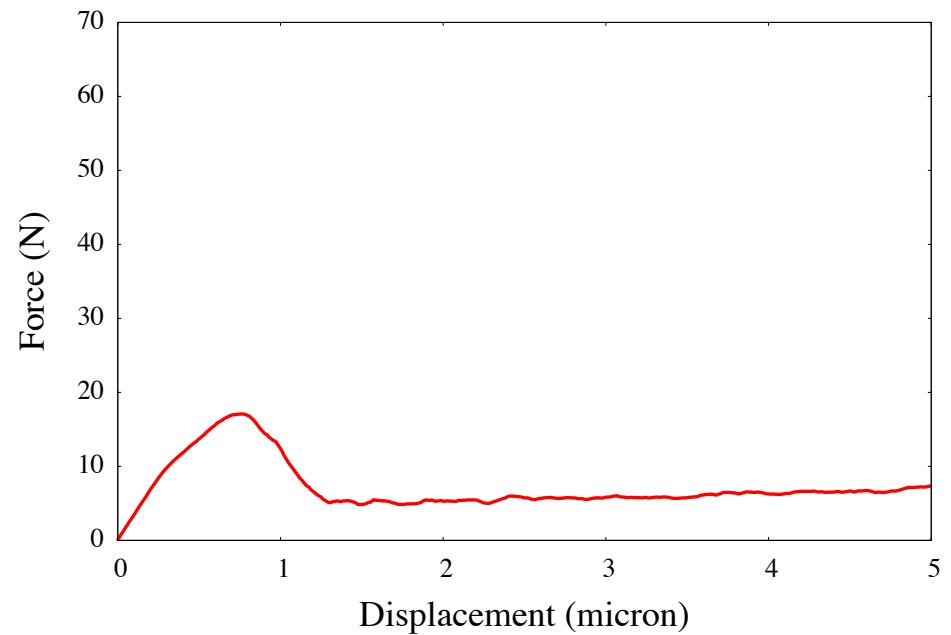
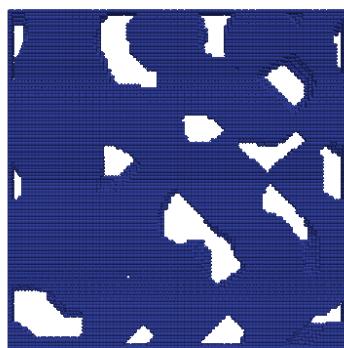
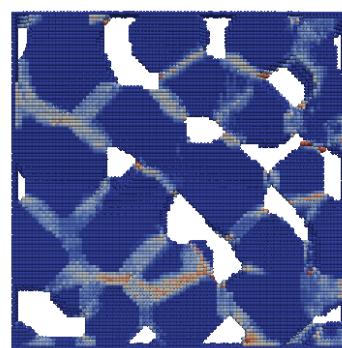
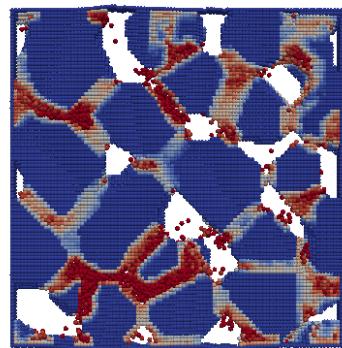
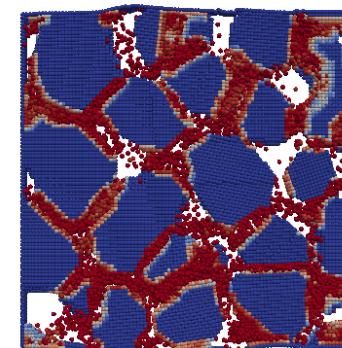
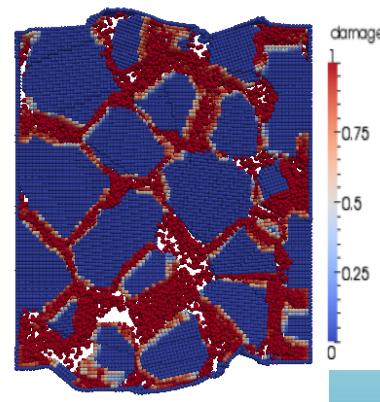
Reduced Confinement



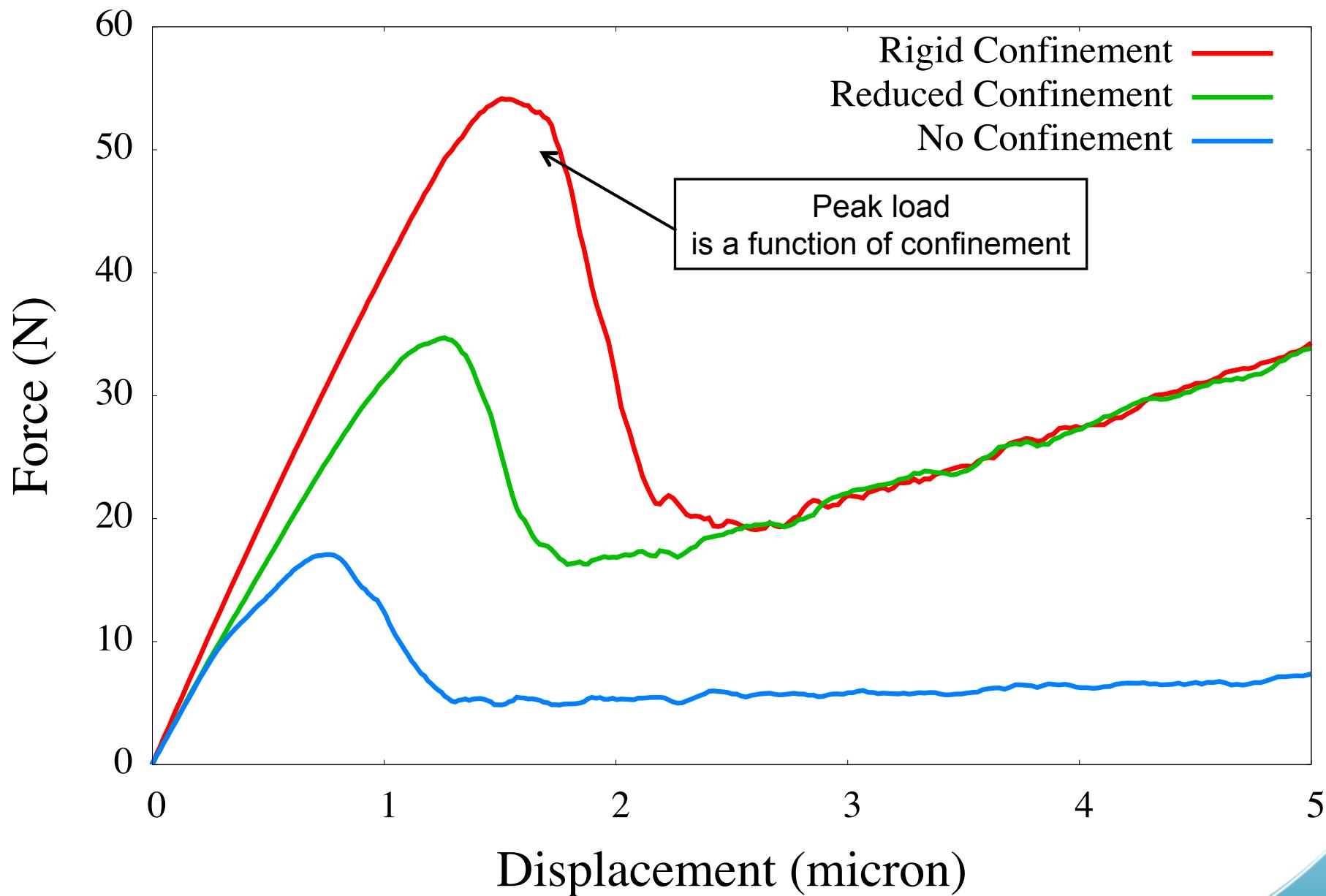
$$u_{\text{transverse}} = 0.15 u_{\text{loading direction}}$$



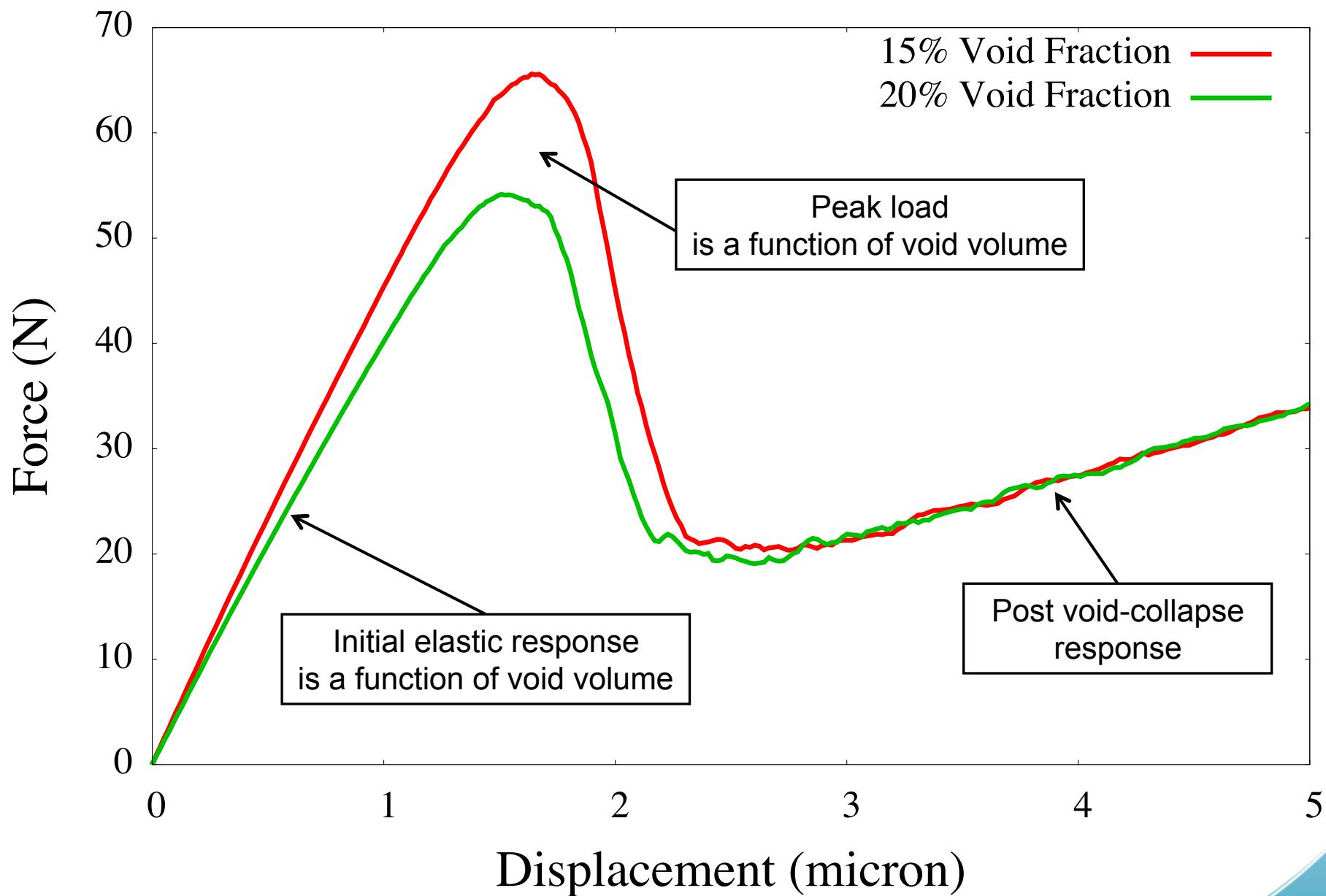
No Confinement



Macroscopic Response of Representational Volumes



Macroscopic Response of Representational Volumes



Conclusions and Ongoing Work

WHAT'S BEEN DONE

- Creation of representational volume element
 - Void fraction is a function of processing conditions
- Peridynamic model of representational volume mechanical response
- Macroscopic response tied to microstructure

WHERE WE ARE GOING

- Experimental validation of peridynamic representational volume model
- Calibration of macro-scale constitutive law base on meso-scale calculations
- Investigation of alternative models
 - Peridynamic constitutive model
 - Bond failure law

Questions?

David Littlewood
`djlittl@sandia.gov`

ACKNOWLEDGEMENTS

ASC Algorithms Program
Radio Isotope Power Systems Launch Safety Program

RESOURCES

Advanced Simulation and Computing (ASC)

<http://www.sandia.gov/asc/>

Peridigm: A publicly-available peridynamics code

<https://software.sandia.gov/trac/peridigm/>