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Abstract

In order to assess the predicted performance of a manufactured system, analysts must typ-
ically consider random variations (both geometric and material) in the development of a finite
element model, instead of a single deterministic model of an idealized geometry. The incorpo-
ration of random variations, however, could potentially require the development of thousands
of nearly identical solid geometries that must be meshed and separately analyzed, which would
require an impractical number of man-hours to complete. This paper proposes a new approach
to uncertainty quantification by developing parameterized reduced order models. These param-
eterizations are based upon Taylor series expansions of the system’s matrices about the ideal
geometry, and a component mode synthesis representation for each linear substructure is used
to form an efficient basis with which to study the system. The numerical derivatives required
for the Taylor series expansions are obtained efficiently using hyper dual numbers, which enable
the derivatives to be calculated precisely to within machine precision. The theory is applied to
a stepped beam system in order to demonstrate proof of concept. The accuracy and efficiency
of the method, as well as the level at which the parameterization is introduced, are discussed.
Hyper dual numbers can be used to construct parameterized models both efficiently and accu-
rately and constitute an appropriate methodology to account for perturbations in a structural
system.

1 Introduction

Modern engineering analysis must take into account the effects of aleatoric (parametric) uncertainty
in the analysis of a system. As a real system is manufactured, part-to-part variations are introduced
that can have significant ramifications on the functionality of the system. Thus, in order to account
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for these variations at the design stage, a methodology is needed to assess the performance of many
(often thousands) of permutations of a design to qualify the performance of a manufactured system.

One method to simulate the performance of a system is via high fidelity modeling, such as
using the finite element (FE) method. High fidelity computational simulations can often provide
very accurate predictions; however, they have a very high computational cost. In order to develop
simulations that are both efficient and accurate enough, reduced order models (ROMs) often are
used as surrogates for a full order model in order to decrease the computational expense of analysis.

To model the perturbations that are found in manufactured systems without a systematic,
efficient reduced order approach would be prohibitively difficult. For example, consider a scenario
where it takes several weeks to develop a high quality mesh for one relatively simple component.
To quantify the aleatoric uncertainty associated with manufacturing, thousands of perturbations
of the ideal geometry are necessary, and each likely requires a new mesh. Even with factoring in
time saved from some automation of the process, the number of man hours required to construct
these meshes is on the order of 20 years. In addition, the computational time to analyze all of these
models is on the order of several years assuming that an entire super computer can be dedicated
to the analysis. Clearly, decades of time are infeasible constraints to be incorporated into a design
cycle. One method of accounting for these perturbations is to create a parameterized reduced order
model (PROM) of the system [1–4]. This allows the behavior of the system to be inexpensively
predicted over a range of perturbations based on a few simulations distributed about the nominal
design.

A standard approach to constructing ROMs for structural dynamics is Craig-Bampton (C-B)
Component Mode Synthesis (CMS) [5]. Figure 1 shows two approaches that can be taken to analyze
a system composed of several components. The left branch of the diagram shows the traditional
approach of forming a full order FE model for the system, which often is prohibitively expensive
for assessing aleatoric uncertainty. The right branch shows the steps when C-B CMS is used. To
account for aleatoric uncertainty, PROMs cab be utilized. Simple PROMs can be constructed
from a finite Taylor series expansion; for instance, in computing some scalar quantity of interest,
f(x), as a function of some perturbation to the nominal design, Δx, f(x) can be approximated as
f̄(x), which is based on a Taylor series expansion. For the FE and CMS cases outlined in Fig. 1,
f(x) could be elements of the mass and stiffness matrices or it could be the result of the system
analysis, such as displacements or eigenvalues. The perturbations to the nominal design, Δx, could
be changes in material properties or geometric variations. A parameterized model can then be
created as

f̄(x+Δx) = f(x) + (Δx)f ′(x) +
(Δx)2

2
f ′′(x) +

(Δx)3

6
f ′′′(x) + . . . . (1)

In practice, this infinite sum is truncated to be finite valued. In what follows, a second order and
a third order expansion are considered.

The use of these parameterized models with FE analysis requires the calculation of derivatives
at the nominal design. These derivatives can be computed in many ways, such as using finite
difference approximations; however, finite difference approximations can require multiple meshes
for each dimension of a perturbation, which can result in an impractically large amount of man-
hours. For instance, a fourth order accurate cubic finite difference expansion for just two variables
could require 49 separate meshes, three variables could require 343 meshes, and N variables could
require as many as 7N . The approach proposed here is to compute the derivatives using hyper
dual numbers [6]. Hyper dual numbers produce exact values of the derivatives, and only require a
single evaluation at the nominal design, in contrast to finite difference approximations. The use of
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Figure 1: Two possible approaches for analyzing a system composed of several components, and
the levels at which parameterized models can be constructed.

hyper dual numbers only requires the nominal mesh, but the information on how the mesh would
change due to the perturbations needs to be known or calculated. In practice, this can require the
introduction of hyper dual numbers into the meshing procedure.

Parameterized models can be created at several levels in the analysis procedure outlined in Fig-
ure 1. One possibility is to construct parameterized models for the component mass and stiffness
matrices. Another possibility is to parameterize the output of the system analysis, i.e. displace-
ments or eigenvalues. When using CMS it is also possible to parameterize the reduced order mass
and stiffness matrices. One goal of this research is to assess the efficacy of developing PROMs at
each level identified in Fig. 1.

This paper presents a brief overview of C-B CMS in §2, and then in §3 introduces hyper dual
numbers and discusses the development of PROMs, where the required derivatives are computed
using hyper dual numbers [6]. Next, §4 assesses the efficacy of each potential level of developing a
PROM, as indicated in Fig. 1, and conclusions are presented in §5.

2 Craig-Bampton Component Mode Synthesis

The equation of motion for an unforced and undamped structure with mass matrix [M ], stiffness
matrix [K], and displacement {u} is

[M ] {ü}+ [K] {u} = {0} . (2)

The C-B CMS [5] method is based on a substructuring of the component’s degrees of freedom
(DOFs) into boundary (ub) DOFs and internal (ui) DOFs as {u} = {ub, ui}T . Boundary DOFs
typically are defined as DOFs where excitations are applied or where output quantities are desired
(such as the displacement of a particular flange), whereas internal DOFs are all non-boundary
DOFs, which generally are inside of the component and thus have no applied loads. This substruc-
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turing is used to recast Eq. 2 as

[
Mbb Mbi

Mib Mii

]{
üb
üi

}
+

[
Kbb Kbi

Kib Kii

]{
ub
ui

}
= {0} . (3)

Modal analysis is performed on the internal degrees of freedom,

(Kii − λ�Mii)φ� = 0, (4)

where λ� are individual eigenvalues and φ� are the corresponding eigenvectors of the fixed interface
normal modes. Constraint modes, φC , are a static deflection shape and are computed by imposing
a unit displacement at each individual boundary DOF while holding the other boundary DOFs
fixed at zero displacement. The constraint modes can therefore be computed as

φC = −K−1
ii Kib. (5)

Subsequently, the physical DOFs (ub and ui) are related to the hybrid set of physical and modal
DOFs (ub and qm) by {

ub
ui

}
=

[
I 0
φC φN

]{
ub
qm

}
, (6)

where I is the identity matrix and φN is a matrix of the eigenvectors φ�. This allows the equation
of motion for each component to be written as

[
MCC MCN

MNC I

]{
üb
q̈m

}
+

[
KCC 0
0 Λ2

]{
ub
qm

}
= {0} , (7)

assuming the eigenvectors are normalized with respect to the mass matrix Mii, and with

MCC = Mbb +MbiφC + φT
C + φT

CMiiφC , (8)

MCN = MT
NC =

(
Mbi + φT

CMii

)
φN , (9)

KCC = Kbb +MbiφC , (10)

where Λ is a diagonal matrix of the eigenvalues λ�.
The number of degrees of freedom can be reduced by retaining only enough fixed interface

normal modes to capture the behavior of interest. In general, keeping more modes results in a
more accurate approximation of the true behavior at the expense of an increased computational
cost. The reduced mass and stiffness matrices for each component can be combined to form a ROM
for the system. This ROM is less expensive to analyze and provides accurate results given that
enough modes are kept to capture the behavior of interest.

3 Parameterization Using Hyper Dual Numbers

The PROM method proposed in the present work is derived using hyper dual numbers because
hyper dual numbers allow for exact calculations of derivatives without needing multiple points at
which the derivatives are evaluated. This is achievable due to the definition of a dual number.
A dual number is defined as a class of generalized complex numbers where the non-real part is
defined by the non-zero root of the number zero, as described in [6]. A hyper dual number is a dual
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number defined in more than one dimension. For example, two dimensional hyper dual numbers
are defined to consist of one real part and three non-real parts, where the three non-real units ε1, ε2,
and ε1ε2 have the properties that ε21 = ε22 = (ε1ε2)

2 = 0 but ε1 �= ε2 �= ε1ε2 �= 0. Higher dimensional
hyper dual numbers can also be considered, such as described later in the text. The Taylor series
for a real-valued function subjected to a hyper dual perturbation truncates exactly at the second
derivative term

f(x+ h1ε1 + h2ε2 + 0ε1ε2) = f(x) + h1f
′(x)ε1 + h2f

′(x)ε2 + h1h2f
′′(x)ε1ε2 (11)

for arbitrary perturbations h1 and h2. There is no truncation error because all the higher order
terms contain ε21 or ε22 or higher powers and are zero by definition. The first and second derivatives
are the leading terms of the non-real parts, and these terms can be found by taking the individual
non-real parts and dividing by the step size. There is no required difference operation, as in finite
difference approximations, which would lead to subtractive cancelation error. The first and second
derivatives can thus be computed exactly, regardless of the step size.

For the present research, third order parameterizations are needed since many geometry vari-
ables enter into the stiffness matrix as cubic terms. A hyper dual implementation that produces
exact third derivatives is created by including ε3 terms. This yields a Taylor series that truncates
exactly at the third derivative term (with an arbitrary perturbation h3)

f(x+ h1ε1 + h2ε2 + h3ε3 + 0ε1ε2 + 0ε1ε3 + 0ε2ε3 + 0ε1ε2ε3)

= f(x) + h1f
′(x)ε1 + h2f

′(x)ε2 + h3f
′(x)ε3 + h1h2f

′′(x)ε1ε2
+ h1h3f

′′(x)ε1ε3 + h2h3f
′′(x)ε2ε3 + h1h2h3f

′′′(x)ε1ε2ε3. (12)

The use of hyper dual numbers requires overloading all of the functions in the analysis code to
operate on hyper dual numbers instead of on real numbers (that is, creating a new method for a
function that operates on hyper dual numbers instead of the originally intended data structure).
However, there are often cases where functions are used for which the code is not available and
therefore cannot be modified. In these situations it may still be possible to use hyper dual numbers,
if the effect of computing the derivatives can be achieved. One example of this is the solution of
a linear system, Ay = b, where derivatives can be computed by several calls to the real-valued
routine [7]. First derivatives of the solution of a linear system, Ay = b, can be computed by solving

A
∂y

∂xi
=

∂b

∂xi
− ∂A

∂xi
y. (13)

Second derivatives can then be found by solving

A
∂2y

∂xi∂xj
=

∂2b

∂xi∂xj
− ∂2A

∂xi∂xj
y − ∂A

∂xi

∂y

∂xj
− ∂A

∂xj

∂y

∂xi
, (14)

and third derivatives by solving

A
∂3y

∂xi∂xj∂xk
=

∂3b

∂xi∂xj∂xk
− ∂3A

∂xi∂xj∂xk
y − ∂2A

∂xi∂xj

∂y

∂xk
− ∂2A

∂xi∂xk

∂y

∂xj

− ∂2A

∂xj∂xk

∂y

∂xi
− ∂A

∂xi

∂2y

∂xj∂xk
− ∂A

∂xj

∂2y

∂xi∂xk
− ∂A

∂xk

∂2y

∂xi∂xj
. (15)
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Using hyper dual numbers to compute derivatives for the parameterization of eigenvalues or
CMS matrices requires a hyper dual version of the eigenvalue calculation routine. As with the solu-
tion of a linear system, the effect of using hyper dual numbers can be recreated without modifying
the real-valued eigenvalue solver.

3.1 Derivatives of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are solutions of

(K − λ�M)φ� = F�φ� = 0, (16)

with F� = (K − λ�M). This equation can be differentiated to give

∂F�

∂xi
φ� + F�

∂φ�

∂xi
= 0. (17)

Pre-ultiplying this equation by the transpose of the eigenvector, and making use of the fact that
F�φ� = 0, yields

φT
�

∂F�

∂xi
φ� = φT

�

(
∂K

∂xi
− λ�

∂M

∂xi
− ∂λ�

∂xi
M

)
φ�. (18)

The eigenvectors are orthonormal with respect to M , so φT
� Mφ� = 1, and (18) can be rearranged

to give the first derivative of the eigenvalue

∂λ�

∂xi
= φT

�

(
∂K

∂xi
− λ�

∂M

∂xi

)
φ�. (19)

There are several methods for computing the first derivatives of eigenvectors, as summarized by
Alvin [8]. The method of Nelson [9] is exact but can be computationally expensive since it involves
solving a linear system for each derivative. The modal superposition method [10] represents the
derivative of an eigenvector as a superposition of the other eigenvectors and is less computationally
intensive than Neslon’s method.

Figure 2 shows the first derivative of the second eigenvector with respect to the cross-sectional
height computed using finite differences, Nelson’s method, and modal superposition. Nelson’s
method and the finite difference calculation are in good agreement. The first derivative of the
eigenvector has sharp corners where the individual components join together. Modal superposition
requires the use of all eigenvectors in order to be exact. Using a smaller subset results in an
approximation. Figure 2 shows the result of modal superposition with 20 modes. The modal
superposition method does not capture the sharp corners, and exhibits Gibb’s phenomena, as
would be expected of a method relying on a finite summation of modes. When the application
is CMS, only a few eigenvectors are kept, so the computational cost of Nelson’s method is not
expected to be an issue and is preferred over modal superposition.

Nelson’s method for computing the first derivative of an eigenvector is to represent it as a sum
of two terms

∂φ�

∂xi
= zi + ciφ�. (20)

The quantity zi is found by solving (17) with ∂φ�
∂xi

replaced by zi,

F�zi = −∂F�

∂xi
φ�. (21)
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Figure 2: A comparison of three methods for computing derivatives of eigenvectors (the system
and its parameters are described in §4.

The contribution of φ� is added back in by multiplying by ci, where ci is found by differentiation
the orthonormalization equation

φT
j Mφi = δij , (22)

where δij is the Kronecker delta function. The first derivative of the orthonormalization equation
is

φT ∂M

∂xi
φ+ 2φTM

∂φ�

∂xi
= 0. (23)

Substituting Eq. 20 into this equation produces

φT ∂M

∂xi
φ+ 2φTM (zi + ciφ�) = 0, (24)

and ci can then be computed as

ci = −1

2
φT
�

∂M

∂xi
φ� − φT

� Mzi. (25)

Expressions for second and third derivatives can be derived following a similar procedure. The
second derivative of an eigenvalue can be computed as

∂2λ�

∂xi∂xj
= φT

�

(
∂2K

∂xi∂xj
− ∂λ�

∂xi

∂M

∂xj
− ∂λ�

∂xj

∂M

∂xi
− λ

∂2M

∂xi∂xj

)
φ� + φT

�

∂F�

∂xi

∂φ�

∂xj
+ φT

�

∂F�

∂xj

∂φ�

∂xi
, (26)

and the second derivative of the corresponding eigenvector can then be computed as

∂2φ�

∂xi∂xj
= zij + cijφ�, (27)
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where

cij = −1

2
φT
�

∂2M

∂xi∂xj
φ� − φT

�

∂M

∂xi

∂φ�

∂xj
− φT

�

∂M

∂xj

∂φ�

∂xi
− ∂φT

�

∂xj
M

∂φ�

∂xi
− φT

� Mzij . (28)

The term zij is found by solving

F�zij = − ∂2F�

∂xi∂xj
φ� − ∂F�

∂xi

∂φ�

∂xj
− ∂F�

∂xj

∂φ�

∂xi
. (29)

The expression for the third derivative of an eigenvalue is

∂3λ�

∂xi∂xj∂xk
= φT

�

(
∂3K

∂xi∂xj∂xk
− ∂2λ�

∂xj∂xk

∂M

∂xi
− ∂2λ�

∂xi∂xk

∂M

∂xj
− ∂2λ�

∂xi∂xj

∂M

∂xk
− ∂λ�

∂xi

∂2M

∂xj∂xk

− ∂λ�

∂xj

∂2M

∂xi∂xk
− ∂λ�

∂xk

∂2M

∂xi∂xj
− λ

∂3M

∂xi∂xj∂xk

)
φ� + φT

�

∂2F�

∂xj∂xk

∂φ�

∂xi
+ φT

�

∂2F�

∂xi∂xk

∂φ�

∂xj

+ φT
�

∂2F�

∂xi∂xj

∂φ�

∂xk
+ φT

�

∂F�

∂xi

∂2φ�

∂xj∂xk
+ φT

�

∂F�

∂xj

∂2φ�

∂xi∂xk
+ φT

�

∂F�

∂xk

∂2φ�

∂xi∂xj
. (30)

The third derivative of the corresponding eigenvector can then be computed as

∂3φ�

∂xi∂xj∂xk
= zijk + cijkφ�, (31)

where

cijk = −1

2
φT
�

∂3M

∂xi∂xj∂xk
φ� − φT

�

∂2M

∂xi∂xj

∂φ�

∂xk
− φT

�

∂2M

∂xi∂xk

∂φ�

∂xj
− φT

�

∂2M

∂xj∂xk

∂φ�

∂xi
− ∂φT

�

∂xk

∂M

∂xi

∂φ�

∂xj

− ∂φT
�

∂xk

∂M

∂xj

∂φ�

∂xi
− ∂φT

�

∂xk
M

∂2φ�

∂xi∂xj
− ∂φT

�

∂xj

∂M

∂xk

∂φ�

∂xi
− ∂2φT

�

∂xj∂xk
M

∂φ�

∂xi
− ∂φT

�

∂xj
M

∂2φ�

∂xi∂xk

− φT
�

∂M

∂xi

∂2φ�

∂xj∂xk
− φT

�

∂M

∂xj

∂2φ�

∂xi∂xk
− φT

�

∂M

∂xk

∂2φ�

∂xi∂xj
− φT

� Mzijk, (32)

and zijk is found by solving

F�zijk = − ∂3F�

∂xi∂xj∂xk
φ� − ∂2F�

∂xj∂xk

∂φ�

∂xi
− ∂2F�

∂xi∂xk

∂φ�

∂xj
− ∂2F�

∂xi∂xj

∂φ�

∂xk

− ∂F�

∂xi

∂2φ�

∂xj∂xk
− ∂F�

∂xj

∂2φ�

∂xi∂xk
− ∂F�

∂xk

∂2φ�

∂xi∂xj
. (33)

4 Application to a Stepped Beam

The example problem being considered is a simply supported beam composed of three components,
as shown in Figure 3. The beam has elastic modulus E, density ρ, width B, cross-sectional height
H, location of the center of the defect �, and length of the defect W , with nominal values given in
Table 1. The material properties and geometry of the center section are allowed to be perturbed
from their nominal values.
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Figure 3: A simply supported beam composed of three components.

Property Value

Property Value

Density, ρ 2700 kg/m3

Elastic modulus, E 68.9 GPa
Cross-sectional width, B 20 cm
Cross-sectional height, H 5 mm
Location of defect’s center, � 45 cm
Length of the defect, W 30 cm
Length of the beam, L 1 m

Table 1: Material and geometric properties for the beam.

Two types of parameterizations are considered: quadratic and cubic. These parameterizations
are applied at all the levels shown in Figure 1, although only results from the CMS branch are
presented here. A parameter sweep was run for each case to determine the true behavior in order
to assess the accuracy of the parameterized models. The CMS calculations are performed by keeping
only three modes per component. This seems to produce accurate results although more testing is
needed on the effect of varying the number of modes kept. Parameter variations are considered for
each of the variables in Table 1, except for L.

A quadratic parameterization (the first three terms of Eq. 1) is used to produce the comparisons
shown in Figs. 4-6. Quadratic parameterization produces fairly accurate results for variations in
Young’s modulus, material density and cross-sectional width and height. There are some issues
with the CMS parameterizations at the extremes of the parameter space. For the quadratic param-
eterization, variations in Young’s modulus, material density and cross-sectional width are exactly
represented to machine precision by parameterizing the component matrices. Parameterizing the
CMS matrices produces slightly less accurate results, and parameterizing the eigenvalues produces
fairly accurate results. Quadratic parameterization of the full system matrices and CMS matrices
is not able to accurately capture the effects of variations in cross-sectional height. Here, the system
matrices are composed to represent bending stiffness (as opposed to the cross-sectional height).
Bending stiffness relates to the cube of cross-sectional height, whereas the other parameters factor
into the system matrices in a linear manner. For variations in location and length of the center com-
ponent the parameterizations are only accurate in a small region around the nominal design. For
these variations, parameterizing the eigenvalues is the most accurate, followed by parameterizing
the CMS matrices, with parameterizing the component matrices the least accurate.

Cubic parameterizations, as given in Eq. 1, produce similar trends but are in general more
accurate. The accuracy of the cubic parameterization is shown in Figs. 7-9. The cubic parameter-
ization applied to the component matrices is able to accurately represent the effect of varying the
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(a) Variations in Young’s modulus
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(b) Variations in material density

Figure 4: The effects on the first five eigenvalues of quadratic parameterizations for E and ρ.

cross-sectional height, and also improves the accuracy of parameterization of the CMS matrices.
The geometric variations, location and length of the center component, are accurate only in a small
region around the nominal design but the accuracy is better than the quadratic parameterization.
For the geometric variations, parameterizing the eigenvalues is most accurate, followed by parame-
terizing the CMS matrices. Parameterizing the component matrices is the least accurate approach
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(a) Variations in cross-sectional width
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(b) Variations in cross-sectional height

Figure 5: The effects on the first five eigenvalues of quadratic parameterizations for B and H.

for the geometric variations. These trends are consistent with those for using real-valued finite
difference methods to construct the parameterizations instead of hyper dual numbers.

Parameters related to the geometric changes of the system, specifically � and W , are expected
to be more difficult to model due to their nonlinear effects on the stiffness matrix as they are varied.
Other parameters, that affect the system in only a bulk sense such as B or H, or that are material
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(a) Variations in location of center section
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Figure 6: The effects on the first five eigenvalues of quadratic parameterizations for � and W .

properties such as E or ρ, are expected to be easier to parameterize as varying them linearly varies
the system matrices linearly as well.
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(a) Variations in Young’s modulus

1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

E
ig

en
va

lu
es

, λ

Material Density, ρ

Craig−Bampton CMS Calculations, 3 modes per component

 

 

Parameter Sweep
Parameterize Component Matrices
Parameterize Craig−Bampton Matrices
Parameterize Craig−Bampton System
Parameterize Eigenvalues

(b) Variations in material density

Figure 7: The effects on the first five eigenvalues of cubic parameterizations for E and ρ.

5 Conclusions and Future Work

This work demonstrates that hyper dual numbers can be used to construct parameterized reduced
order models (PROMs) both efficiently (since only one mesh is needed) and accurately. With
these PROMs, the task of assessing the response of a real system with aleatoric uncertainty due to
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(a) Variations in cross-sectional width
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(b) Variations in cross-sectional height

Figure 8: The effects on the first five eigenvalues of cubic parameterizations for B and H.

manufacturing or other sources should now be feasible. Without these PROMs, the effort required
to analyze or model aleatoric uncertainty in a real system would be prohibitively expensive. The
derivatives necessary for constructing the PROMs are computed using only the nominal design,
eliminating the need to construct more than one mesh as would be required by finite differencing.
However, in order for this approach to be applied it is necessary to know how the mesh would
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(a) Variations in location of center section
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Figure 9: The effects on the first five eigenvalues of cubic parameterizations for � and W .

change as the parameters of the design are varied. One approach would be to incorporate hyper
dual numbers into the mesh generation routine.

This research also sought to determine the appropriate levels to develop PROMs. Results show
that parameterization of the eigenvalues and eigenvectors is the most accurate way to reproduce a
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perturbation in a linear system. As well, parameterization at the component matrix level and at
the system level for a CMS model produced nearly identical results. In all three cases, significant
savings in both computational time and man-hours are achieved by using PROMs. Future work,
though, must seek to improve the accuracy of the PROMs: currently, they are well suited to
studying small perturbations in system parameters (up to 5%).

In order for this approach to be useful for optimizations, the accuracy of the method must be
extended to significantly larger variations. Higher order parameterizations should better capture the
behavior for the geometric variations. This would require hyper dual numbers capable of producing
exact fourth (or higher) derivatives. It is fairly straightforward to extend the existing hyper dual
number formulation to higher derivatives, as evidenced by the extension to third derivatives. A
more general approach, though, in which dual numbers are defined recursively would allow for
easier extensions to arbitrary derivatives. This approach would define a hyper dual number as a
dual number with dual number components. Third derivatives would then be produced by going
one level further.
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