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Figure 1: Starting with a Maximal Poisson-disk Sampling (MPS), we may either inject or eject disks to get denser or sparser
packings, which are still maximal and satisfy the disk conflict criteria. We can tune the density to (sparse or dense) almost-
perfect tilings.

Abstract

We present the Disk Injection and Disk Ejection methods for tailoring the number of disks in a maximal packing
to a user-desired density. Both methods move existing disks. Further, in ejection we remove existing disks, and
in injection we add new ones. We monotonically change the discrete density of the packing, while maintaining
a minimum distance between center points and the maximality of the packing. For injection, we remove a disk,
then move it to a corner of the uncovered void left behind. We inject a point if this leaves uncovered space. We
follow a series of increasingly aggressive movement rules: movement to a diameter corner, moving all nearby
disks away from a central disk, and moving disks towards attracting points. For ejection, we follow similar rules
but with opposite movement directions. In both cases, we start with a random maximal Poisson-disk packing,
and incrementally move towards a perfect equilateral triangular tiling almost everywhere, with good boundary
alignment. The packing retains its good blue noise spectrum for the majority of this range, losing it only as it
approaches a structured tiling. We are also able to inject or eject disks to follow a spatially-varying sizing function
for the radii, for planar and curved surfaces. We present two applications: modeling fiber reinforced polymers,
and Delaunay mesh quality improvement.

1. Introduction

A sphere or disk packing is a set of disks in a domain, such
that no disk contains the center of another disk. Another way
to define disk packings is to prevent disks from overlap-
ping at all. For constant radius disks, these are equivalent:

center-avoiding r disks are equivalent to non-overlapping
r/2-disks. If the radii vary, then there multiple ways to de-
fine a conflict, a violation of the center-distance require-
ment [MREB12]. A maximal packing is one in which the
addition of any new disk generates a conflict. This is dif-
ferent than a maximum packing; given a maximal packing,
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it may be possible to move disks around to make room to
add another one without conflict. Disk packings appear fre-
quently in nature, e.g. trees in a forest. In physics, random
close packings with fixed locations arise from random se-
quential adsorption of atoms on a plate. Packings in which
points move arise in gasses, liquids, and protein folding.

Generating a triangulation (mesh) of a domain is a pre-
requisite for many applications. Well-spaced points [Tal97,
MTT∗96] provide well-shaped meshes. Well-spaced means
there is a minimum distance between two sample points, and
a maximum distance between a domain point and its near-
est sample point, and their ratio is bounded locally. This
is equivalent to Voronoi cells having bounded aspect ratio.
Well-spacedness is guaranteed by disk packings with uni-
form or slowly varying disk radii [Tal97, MTT∗96]. Given
well-spaced points, their Delaunay or weighted Delaunay
triangulations provide well-shaped meshes, with many use-
ful properties. The longest edge at a vertex is not much
longer than the shortest edge. The discretization error in fi-
nite element simulations is bounded by the minimum mesh
angle; well-shaped meshes have a lower bound on the min-
imum triangle angle. The interpolation error is proportional
to the aspect ratio of the mesh triangles; this, too, is bounded
for meshes of well-spaced points. Standard approaches for
generating well-spaced point sets include Delaunay refine-
ment and Poisson-disk sampling.

Delaunay Refinement (DR) [Che89], including its vari-
ants such as Voronoi refinement [HMP06], is perhaps the
most common technique for generating a triangular mesh.
DR incrementally adds points, and maintains a Delaunay tri-
angulation of these points. A triangle with a large empty cir-
cumcircle triggers the addition of a new point to destroy it.
This can be placed at the center of the circumsphere, nearby,
or off-center and closer to the shortest edge [Ü09]. The tri-
angle angle is related by the Central Angle Theorem to both
the smallest edge length and the size of the circumsphere.
In this way DR produces a sphere packing: the minimum
edge length prevents points from being close together, and
the maximum circumsphere radius ensures the set is maxi-
mal in the sense that there is not enough room to introduce a
full-radius disk.

Maximal Poisson-disk Sampling (MPS) is a popu-
lar disk packing technique for generating random point
sets [EPM∗11, EMP∗12]. Points are added uniformly by
area at random, with a minimum separation distance, un-
til the set is maximal. Many methods stop shy of maxi-
mality. MPS can generate Voronoi [EM11] and Delaunay
meshes [EMD∗11], with both constant density and spatially-
varying density [MREB12]. As in DR, output points are
well-spaced and meshes are well-shaped [MTT∗96]. But,
because of MPS’s randomness, it is preferred over DR
for many applications. In computer graphics applications
such as texture synthesis, randomness avoids visual arti-
facts [PH04]. In many sampling and integration applications

randomness avoids bias and high variance [SK13]. In frac-
ture simulations, randomness provides realistic crack direc-
tions [Bis09, EKL∗11]. One potential drawback is that MPS
algorithms tend to be slower because they must follow a
global random process, whereas DR algorithms are deter-
ministic and local.

Both DR and MPS typically consider point locations to
be fixed once a point is generated. For DR, this helps in the
termination and output quality proofs. For MPS, this helps
in guaranteeing random-looking spectra. However, for many
settings this restriction does not make sense; after all, the po-
sitions of the points was somewhat arbitrary up to satisfying
the conflict criteria. Improving the quality of a given Delau-
nay triangulation is a clear win over just providing minimum
and maximum values arising from disk-packing properties.

In graphics and mesh generation, there are many meth-
ods for moving points to improve mesh quality [EAG∗13,
PS04, SHD11, Knu00, HSD13, DFG99]. Many seek a lo-
cal optimization of some measure related to mesh qual-
ity [Knu00], well-spacedness [EAG∗13], or the Fourier
spectrum [HSD13], without changing the number of
points. Others, such as bubble mesh [SG98] and mesh
cleanup [KS07], add and remove points, and explicitly
change their connectivity. These are helpful in practice, but
it is difficult to show monotonic progress and convergence,
or to guarantee the quality of the output.

In the bubble-mesh family of algorithms [SG98], mesh
points are moved, removed, and inserted with the goals of
achieving good mesh quality and aligning with the domain
boundary. Instead of a hard limit on the minimum inter-point
distance, points are encouraged to be evenly spaced using
spring-like forcing functions.

The physics and statistics communities have exten-
sively studied the density of various types of disk pack-
ings [SWM08, Tan79, Pen01], with a different vocabulary
and focus. Rectangles, spheres, ellipsoids [DCS∗04], irreg-
ular shapes, uniform and non-uniform sizes, have all been
considered. In physics, most consider dimensions one, two,
or three. A disk that cannot move because its tangent disks
pin it are “jammed.” Adapting disk sets that get closer
to maximality with fewer unjammed disks are said to ap-
proach the “jamming limit.” The distribution of isolated non-
jammed “rattler” disks in a maximal packing has been stud-
ied. Math and computer science has studied the graph of tan-
gent disks, called the “contact graph” [BR13].

For some physical systems, the disks are packed more (or
less) densely than what is typically achieved by uniformly-
random sequential insertion. Realism requires more densely
packed disks, which may be achieved by movement and in-
sertion. In the physics literature there are many heuristics for
moving, injecting, and rejecting disks [RR13]. These are of-
ten designed to mimic some physical process, such as atoms
moving with a certain velocity and mean-free path as a gas
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is compressed; or to predict the density of an unrealized sys-
tem [DCS∗04]. For this paper, the most relevant algorithms
are those that try to achieve a density or distribution of some
known physical system [NK92].

Both disk injection and ejection start with a random in-
put MPS, and keep the disk radii fixed. For injection, we
move a disk to some extreme position such that it is as close
as possible to other disks, and inject more disks if the re-
maining uncovered space allows. For ejection, we move a
disks’ neighbors toward it, then remove it if it is no longer
needed for domain coverage. At all steps we avoid conflict
and preserve the minimum separation condition. Injection
actively reduces the inradius of Voronoi cells, whereas ejec-
tion actively increases the outradius of Voronoi cells. In the
extreme, both algorithms tend towards equilateral triangle
tilings; but ejection has the longest possible edge length that
still provides domain coverage, and injection has the shortest
possible edge length ensuring point separation. For uniform
disk radius (constant sizing function), both generate a large
number of equilateral triangles. The majority of the Voronoi
cells and Delaunay triangles have small aspect ratios.

Sifted Disks [EMA∗13] reduces the number of disks
while preserving the packing’s maximality: adjacent disks
are replaced two-for-one if possible. This is a purely local
process that typically gets stuck well before achieving the
minimum packing. Disk ejection has the same goal as Sifted
Disks, and disk injection the opposite goal. Beyond this su-
perficial contrast, the point movement methods we propose
are more aggressive and coordinated, and the output is of-
ten close to the maximum (injection) or minimum (ejection)
packing.

2. Disk Injection Algorithm

We illustrate the main steps of the disk injection algorithm
in Figure 2 using a uniform disk size. We start with a maxi-
mal disk packing. We iterate over randomly selected sample
points (disk centers). We move this point, and, if its move-
ment created a large enough gap, then we also inject one
or more new points. These new sample points preserve the
maximal and disk-free conditions, and hence preserve the
quality guarantees. We terminate when the user-desired vol-
ume fraction is achieved, or no sample point can be relo-
cated.

We have three successively aggressive phases for inject-
ing points. Common to all phases, we conceptually remove a
disk and construct the “void” that is left behind. The remain-
ing disks are not maximal. The void is the subdomain that
is not covered by a disk; that it, it is the set of locations that
a disk center point could be injected without violating the
disk-free condition. The void is an arc-gon bounded by a set
of circular arcs of the remaining disks. The vertices shared
by consecutive arcs are corners. Two points are neighbors if
their disks overlap.

(a) Remove a (green) disk from
a maximal sample.

(b) Retrieve intersection points
bounding the uncovered region
(void).

(c) For each intersection point
construct the smallest disk that
contain all other intersection
points.

(d) Pick the intersection point,
a, with the largest disk. If multi-
ple solutions exist, we pick the
closest to a reference point in
the domain.

(e) Insert a new sample point at
a as well as a disk at its furthest
intersection point , b, if possi-
ble.

(f) Keep inserting new samples
at intersection points until the
the void is completly covered.

Figure 2: The main steps of Disk-Injection for a uniform siz-
ing function.

2.1. Void Diameter Injection

In the first phase, Void Injection, we move the selected disk
center p to one of its void corners. We find the pair of void
corners that are farthest apart, the diameter pair a,b. We
move p to a. If distance d(a,b) < r, then the entire void is
covered, and no other point can be injected. Otherwise, we
repeat the process: for the remaining void, we find the diam-
eter pair a1,b1, and inject p1 at a1, etc.

2.2. Neighbor Repeller Injection

In the second phase, Repeller Injection, we consider a local
neighborhood of p. We repel the neighbors of p away from
p. Leaving p in place, for each neighbor q, we create its void,
and move q to its void corner farthest from p. If this leaves
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(a) Multiple disks (green) cover
an attractor point (red).

(b) Removing all covering disks
leaves the attractor uncovered.

Figure 3: Remove all disks covering an attractor point. Then
we can inject a new disk at the attractor. Removal and injec-
tion is equivalent to moving one of the original disks.

an uncovered gap we inject a point, just as in Void Injection,
and declare success. Otherwise, we move the next neighbor
of p. If all neighbors have been moved and no point has been
injected, we apply Void Injection on p, moving p to one of
its diameter void corners, and injecting if possible.

2.3. Crystal Growth Injection

In the third phase, Crystal Injection, we grow a set of void
corner points that are attractors that pull nearby disk centers
towards them. We freeze disks as their centers attach to at-
tractor points. This is analogous to crystal growth. We start
with two disks with centers at distance r apart; the disk posi-
tions are frozen and their intersection points are the first at-
tractor points. We iterate over the mobile (not frozen) disks.
We visit these in uniform random order, which is efficient
in a parallel implementation. (Other orders, such as visiting
those nearby attractors, are possible.)

If a mobile disk does not cover any attractor point, then
we move it as in Void Injection.

For a mobile disk D(p) covering attractor point a, we seek
to move its disk center p to a. However, a might be strictly
inside some other disks, leading to a conflict, so we first
delete any such disks; see Figure 3. If moving and/or delet-
ing disks leaves an uncovered void, we immediately inject
points to recover maximality.

When we move a disk to an attractor point, the disk is
frozen and the attractor point is removed from the attrac-
tor set. The disk will intersect with some other frozen disks.
These intersection points are added to the pool of attractors,
unless they are in strictly inside some already-frozen disk.

See Figure 4 for a case where a disk covers two attractor
points, and moving the disk center to one of them leaves the
other uncovered. We increase the density further by inject-
ing a disk at these attractors after all disks are frozen. An
alternative is to inject there immediately.

(a) Remove a (green) disk that
is covering two attractor points.

(b) Re-inject it at one of the at-
tractor points.

Figure 4: Injection may create an attractor point that is out-
side all mobile disks, and so cannot attract a disk.
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Figure 5: Left, angle distribution after injection for angles.
The number of large angles is significantly reduced, but
some remain. Right, a stuck case: P is in an obtuse triangle,
but none of its neighbors can be moved.

2.4. Injection for Angles.

In the prior algorithms we chose the point to move uniformly
at random. There are alternatives that target removing par-
ticular structures. In two dimensions, we may target obtuse
triangles in a Delaunay triangulation of the points. The cir-
cumcircle of an obtuse triangle lies outside it, opposite the
obtuse angle. Also, the circumcircle is large compared to the
triangle edge length, and the circumcenter v is a Voronoi ver-
tex. Thus an obtuse triangle indicates that the region near v
has no nearby sample points. Moving sample points even
farther away from v, using v as a repeller in Repeller Injec-
tion, is likely to allow the injection of a new sample point at
v or nearby. See Figure 5 for typical results.

3. Disk Ejection Algorithms

We may modify Disk Injection from Section 2 to remove
disks. The analog to Void Injection has already been done,
and is Sifted Disks [MREB12], replacing overlapping disks
two-for-one if possible.

3.1. Neighbor Attractor Ejection

Attractor Ejection is a modification of Repeller Injection
from Section 2.2, but moving disks in the opposite direction.
Take an arbitrary disk center p, and consider each neigh-
boring disk center q in sequence. Move q to q′, the point
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on segment pq as close as possible to p while still covering
its void, and keeping it outside all disks except perhaps p’s.
(The next paragraph explains how to calculate q′.) That is,
moving q will not uncover some part of the domain. After
all neighbor movements, remove p if its new void is already
covered by its neighbors. Otherwise, we find a new position
for p. Move p to the center of the minimum disk covering its
void’s corners. If the new position is inside some disk (the
void is not convex) then project it to the void. In rare cases
there may be no new position for p that covers its void; in
that case we put p and its neighbors back in their original
positions.

To find q′, we compute q’s void corners. For each corner
we find the interval of pq within r of it. We intersect all these
intervals. The endpoint of the remaining interval closest to p
is q′.

3.2. Crystal Growth Ejection

Find (or create if necessary) two disks with center distance√
3r. Dilate their disks to

√
3r; their two intersection points

are attractor points, where a new disk would create equilat-
eral triangles of the maximum possible edge length, while
still having the center of the triangle covered by r-disks. Pick
any other sample q at random. If its disk does not cover an
attractor point, move it as in Attractor Ejection. Otherwise,
move q to the (closest) attractor point that its disk covers. If
this creates a conflict, remove the other conflicted disks (not
q) and resample any voids to regain maximality. Then update
the attractor points.

4. Visiting the Phases and Achieved Area Fraction

The user specifies the exact number of points desired, N.
Since the domain and disk radius are fixed, we can calculate
this from a user specified relative radius ρ, area fraction or
packing density η [EAG∗13].

We apply the phases in sequence. If at any time the cur-
rent number of points n reaches N, we are done. Figure 6
shows the typical progress if one phase is continued ad in-
finitum. Note that each has rapid progress initially, then mi-
nor progress after a certain threshold. We use these thresh-
olds as the decision criteria for transitioning from one phase
to the next. In particular, we transition from Void Injection to
Repeller Injection when the area fraction reaches 0.75, and
from Repeller Injection to Crystal Injection when it reaches
0.79. Note Crystal Injection can typically reach about 0.89
in a periodic domain, after which progress is slow. The dens-
est hex packing of an infinite domain has π/(2

√
3)≈ 0.907;

periodic domains have a smaller limit because of boundary
effects, the interaction between the periodic distance and r.

5. Results for a Periodic Unit Box

We apply our methods to the unit box with periodic bound-
ary conditions and measure the output. Figure 7 shows the
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Figure 6: Disk injection and ejection can achieve a wide
range of area fractions. MPS provides the input, at around
0.55. Ejection can tune this down to 0.31, and injection can
tune it up to 0.89. The densest hex packing has π/(2

√
3) ≈

0.907 and the sparsest has π/(6
√

3)≈ 0.302.

effect of changing the area fraction over the different qual-
ity measures. Spectral analysis for various area fractions and
Simple MPS are shown in Figure 9.

6. Algorithms for Spatially Varying Radii

We extend our methods to non-uniform disk radii, that varies
across the domain. In some cases the only differences are
that the number of neighbors may be larger, and we need
to consider power diagrams and power vertices instead of
Voronoi diagrams and Voronoi vertices [YW13, EMA∗13]
when finding void corners.

We define the weighted distance w(a,b) from a to b to be
d(a,b)− r(a), as in additively weighted Voronoi diagrams.
Note the distance is asymmetric, w(a,b) 6= w(b,a).

A key choice is how to define conflict. We choose a
variant related to the prior-disk and smaller-disk crite-
ria [MREB12]. In particular, when we move or inject a disk
we consider it to be the latest arrival, and allow its center to
be placed anywhere not already covered by the other disks.
That is, we accept any disk center if the weighted distances
of the other centers to it are all positive. It is possible for the
new disk to be large enough that it covers the center of some
other (prior) disk. This changes the arrival order of the disks,
but, as in smaller-disk, it ensures that no pair of disks cover
each others’ centers.

6.1. Non-uniform Injection

6.1.1. Void Injection

We consider removing one disk and replacing it by two
(or more). However, the disk radius is potentially different
at each void corner. For each corner c, its weighted diam-
eter is its maximum weighted distance to another corner,
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Figure 7: Quality achieved by different algorithms. From an
initial 100K sample, we can tune its area fraction to any
value in [0.31,0.79]. Comparing between the different injec-
tion and ejection algorithms, to the input Simple MPS, and
Centroidal Voronoi Tessellation (CVT)

maxi w(c,ci). We remove p, and replace it with a disk at the
corner with the maximum weighted diameter. If the diam-
eter is negative, then this disk covers all other corners and
injection failed. Otherwise, there are some uncovered cor-
ners, and we recursively compute the new void(s) and inject
the new corner with the maximum weighted diameter. We
stop when maximality is recovered.

6.1.2. Repeller Injection

Given disk p, we consider moving each of its neighbors q in
turn. We move q to its void corner c with maximum w(c, p).
If this leaves a void, then we recursively insert a new disk at
c′ with maximum w(c′, p).

There is no Crystal Injection or ejection for non-uniform
radii.

6.2. Non-uniform Ejection

For Sifted Disks, we use Sifted Disks [EMA∗13]. For At-
tractor Ejection, we start by assuming that the disk radius
at q is invariant, and estimate q’s new position q′ exactly
as before. The problem is that its new radius might be too
small to cover its original void. This would destroy maxi-
mality and require adding points. So, if that happens, we do
a simple heuristic search for an acceptable position. We try
q′′ = q+ 0.9 ~qq′. We try this scaling up to three times total,
stopping if the original void is covered.

While this works reasonably well in practice, many other
strategies for searching for good positions are possible, such
as moving q′ farther if its covers the void by a wide margin,
or moving q′ to the corner closest to p.

7. Meshing Applications

In this section we demonstrate how our method improves
mesh quality of non-convex domains, and curved surfaces.
For domains with boundaries, we place disks with centers
on the one-dimensional domain boundary. We first adjust the
spacing of these disks using one-dimensional disk injection
or ejection, respecting the sizing function, and keeping disk
centers on the boundary curves. These disks are fixed and
not moved when processing the rest of the surface.

7.1. Non-convex domains

We applied Disk Injection over a non-convex domain with a
hole. Figure 8 shows the Delaunay mesh for the input Simple
MPS, and after injection.

7.2. Curved surfaces

The algorithmic changes are the following. We use three-
dimensional disks. The distance between centers is based on
Euclidean distance between the spheres, which will be close

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



Submission ID paper1102 / Disk Injection and Ejection

(a) Simple MPS with boundary samples.

(b) Crystal Growth Injection with boundaries.

(c) Crystal Growth Ejection with boundaries.

Figure 8: Disk Injection over a bounded non-convex domain
with a hole.

to geodesic distance provided that the surface curvature is
small or it is sampled fine enough. We define voids using the
complement of the intersection of spheres with the surface.
That is, voids lie on the surface, despite the use of spheres.
Thus injected points lie on the surface.

7.2.1. Fertility Sculpture Sampling

We sampled the well-known Fertility model, sizing disk radii
based on the local curvature. Then we applied Disk Ejection
and Disk Injection using the same sizing function. See Fig-
ure 10 for results.

8. Fiber Composite Models

We seek to model the micro-structure of a unidirectional E-
glass fiber reinforced epoxy material. The composite con-
sists of an arrangement of fibers embedded in a matrix ma-
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Figure 9: Spectral analysis for Simple MPS, Disk Ejection,
and Disk Injection for various area fractions.

terial. For a unidirectional material, the fibers are aligned
in roughly the same direction. Since the fibers have circu-
lar cross sections of about the same diameter, the material
cross section looks like a random two-dimensional arrange-
ment of non-overlapping unit disks. The extent of the mate-
rial is usually orders of magnitude larger than the fiber diam-
eter, so the material is modeled well by a periodic arrange-
ment of disks in a square, called a “representative volume
element.” Many have tried to characterize material strength
and stress response using a structured (hexagonal, square,
. . . ) fiber packing [LBM00,BAC05,SOK01,Mal08,TTL06].
While these structured models produce reasonable results
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(a) Delaunay Angles
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(b) Local Beta
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Figure 10: Delaunay meshes and quality measures of Disk
Injection and Disk Ejection on the Fertility curved surface
model. We were able to reduce the mesh size by 38% and
have a better quality than MPS using Attractor Ejection. Re-
peller Injection gives even better quality and increases the
mesh size by 44%

(a) peak load (b) post fracture

Figure 11: Von Mises stress distribution under uniaxial trans-
verse tension.

under elastic loading, they significantly over-predict strength
and damage resistance. To accurately predict crack initia-
tion and propagation in a homogenized multi-scale analy-
sis, a random packing is necessary [WCS98,TGL08,Rom10,
SGP06, SG06, TTL06]. For good fidelity, the density of the
disks in the packing must also match the density of the fibers
in the material. Density is typically measured by volume
fraction, the fraction of the square domain covered by some
disk. MPS and its near-maximal variants usually produce
volume fractions around 50%. In physical materials, the vol-
ume fraction is often larger, 60–70%; see Figure 12b. (In ad-
dition, dart throwing does not represent the physical process
of packing fibers.)

8.1. Our Fiber Simulations

We start with an MPS over a periodic unit square, a represen-
tative volume element. We use disk injection to increase the
volume fraction to the desired volume fraction matching the
material at hand, in our case 67%. We load the volume ele-
ment transverse to the fibers; see Figure 11. We calculate the
boundary conditions using a multi-scale approach, solving
for the relative velocities at the periodic nodes, ensuring the
homogenized response is uniaxial. We ran four examples,
each with different random MPS input and injected disks,
an averaged them. Figure 12 shows the four simulated re-
sponses, plus their average. Note that the simulations span a
small range in the elastic range, but at fracture (peak load)
there is a wider variation in the responses. This is consistent
with experiments. We also ran simulations with structured
packings; we can see from Figure 12 that the responses are
unrealistic.

Conclusions

We have introduced a method to tune the discrete density
of a (random) maximal disk packing to any feasible user-
specified value. In contrast to prior methods, we are able to
get much closer to the densest-possible and sparsest-possible
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(a) simulated responses (b) physical fiber micrograph

Figure 12: (a) Tensile response at v f = 67%. Multiple
random-sample simulations (blue), modeling natural ma-
terial variations, and their average (black); and unrealis-
tic structured-mesh responses (red and green). (b) Scanning
electron microscope micrograph of a fiber composite cross
section [BRV∗08].

packings. Disks are added or removed one by one, giving
very fine control. Blue noise is retained for much of this
range, but lost as we approach a structured tiling.

We have demonstrated the efficiency of our method using
uniform sizing functions over planar domains, and curved
domains typical of graphics models. We show the usefulness
of our output for matching the density of physical materials,
and generating realistic fracture simulations.

For future work, we would like to consider methods
to reintroduce randomness. Injected disks are exactly the
disk radius away from neighbors. Ejected disks tend to be
equidistant to several nearby disks. Both of these might be
perturbed. We have demonstrated that the method works for
a slowly varying sizing function; we would like to explore
the limits of how fast the distribution may be graded.

References
[BAC05] BARBERO E., ABDELAL G., CACERES A.: A mi-

cromechanics approach for damage modeling of polymer ma-
trix composites. Composite Structures 67, 4 (2005), 427 – 436.
doi:10.1016/j.compstruct.2004.02.001. 7

[Bis09] BISHOP J.: Simulating the pervasive fracture of materi-
als and structures using randomly close packed Voronoi tessel-
lations. Comput. Mech. 44 (2009), 455–471. doi:10.1007/
s00466-009-0383-6. 2

[BR13] BEZDEK K., REID S.: Contact graphs of unit sphere
packings revisited. Journal of Geometry 104, 1 (2013), 57–83.
doi:10.1007/s00022-013-0156-4. 2

[BRV∗08] BRAUER D., RÜSSEL C., VOGT S., WEISSER J.,
SCHNABELRAUCH M.: Degradable phosphate glass fiber re-
inforced polymer matrices: mechanical properties and cell re-
sponse. J of Materials Science: Materials in Medicine 19, 1
(2008), 121–127. doi:10.1007/s10856-007-3147-x. 9

[Che89] CHEW L. P.: Guaranteed-Quality Triangular Meshes.
Tech. Rep. 89-983, Department of Computer Science, Cornell
University, 1989. 2

[DCS∗04] DONEV A., CISSE I., SACHS D., VARIANO E. A.,
STILLINGER F. H., CONNELLY R., TORQUATO S., CHAIKIN
P. M.: Improving the density of jammed disordered packings
using ellipsoids. Science 303, 5660 (2004), 990–993. doi:10.
1126/science.1093010. 2, 3

[DFG99] DU Q., FABER V., GUNZBURGER M.: Centroidal
Voronoi tessellations: Applications and algorithms. SIAM review
41, 4 (1999), 637–676. 2

[EAG∗13] EBEIDA M. S., AWAD M. A., GE X., MAHMOUD
A. H., MITCHELL S. A., KNUPP P. M., WEI L.-Y.: Im-
proving spatial coverage while preserving blue noise of point
sets. Computer-Aided Design 0, 0 (2013), –. In Press, Accepted
Manuscript. doi:10.1016/j.cad.2013.08.015. 2, 5

[EKL∗11] EBEIDA M. S., KNUPP P. M., LEUNG V. J., BISHOP
J. E., MARTINEZ M. J.: Mesh generation for modeling and sim-
ulation of carbon sequestration process. In DOE Scientific Dis-
covery through Advanced Computing (SciDAC) (July 2011). 2

[EM11] EBEIDA M. S., MITCHELL S. A.: Uniform random
Voronoi meshes. In Int. Meshing Roundtable (2011), pp. 258–
275. 2

[EMA∗13] EBEIDA M. S., MAHMOUD A. H., AWAD M. A.,
MOHAMMED M. A., MITCHELL S. A., RAND A., OWENS
J. D.: Sifted disks. Computer Graphics Forum 32, 2pt4 (2013),
509–518. 3, 5, 6

[EMD∗11] EBEIDA M. S., MITCHELL S. A., DAVIDSON A. A.,
PATNEY A., KNUPP P. M., OWENS J. D.: Efficient and good
Delaunay meshes from random points. Comput. Aided Des. 43,
11 (2011), 1506–1515. doi:10.1016/j.cad.2011.08.
012. 2

[EMP∗12] EBEIDA M. S., MITCHELL S. A., PATNEY A.,
DAVIDSON A. A., OWENS J. D.: A simple algorithm for
maximal Poisson-disk sampling in high dimensions. Computer
Graphics Forum 31, 2 (May 2012), 785–794. doi:10.1111/
j.1467-8659.2012.03059.x. 2

[EPM∗11] EBEIDA M. S., PATNEY A., MITCHELL S. A.,
DAVIDSON A., KNUPP P. M., OWENS J. D.: Efficient maxi-
mal Poisson-disk sampling. ACM Trans. Graphics 30, 4 (2011),
49:1–49:12. doi:10.1145/1964921.1964944. 2

[HMP06] HUDSON B., MILLER G., PHILLIPS T.: Sparse
Voronoi refinement. In Int. Meshing Roundtable (2006), Sandia
National Laboratories, pp. 339–358. 2

[HSD13] HECK D., SCHLÖMER T., DEUSSEN O.: Blue noise
sampling with controlled aliasing. ACM Trans. Graphics
32, 3 (July 2013), 25:1–25:12. doi:10.1145/2487228.
2487233. 2

[Knu00] KNUPP P. M.: Achieving finite element mesh quality via
optimization of the Jacobian matrix norm and associated quanti-
ties. Part II—A framework for volume mesh optimization and the
condition number of the Jacobian matrix. Int. J. for Numerical
Methods in Engineering 48, 8 (2000), 1165–1185. 2

[KS07] KLINGNER B. M., SHEWCHUK J. R.: Aggressive tetra-
hedral mesh improvement. In Int. Meshing Roundtable (2007),
pp. 3–23. 2

[LBM00] LANDIS C. M., BEYERLEIN I. J., MCMEEKING
R. M.: Micromechanical simulation of the failure of fiber re-
inforced composites. J Mechanics and Physics of Solids 48,
3 (2000), 621 – 648. doi:10.1016/S0022-5096(99)
00051-4. 7

[Mal08] MALIGNO A. R.: Finite element investigations on the
microstructure of composite materials. PhD thesis, University of
Nottingham, 2008. 7

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

http://dx.doi.org/10.1016/j.compstruct.2004.02.001
http://dx.doi.org/10.1007/s00466-009-0383-6
http://dx.doi.org/10.1007/s00466-009-0383-6
http://dx.doi.org/10.1007/s00022-013-0156-4
http://dx.doi.org/10.1007/s10856-007-3147-x
http://dx.doi.org/10.1126/science.1093010
http://dx.doi.org/10.1126/science.1093010
http://dx.doi.org/10.1016/j.cad.2013.08.015
http://dx.doi.org/10.1016/j.cad.2011.08.012
http://dx.doi.org/10.1016/j.cad.2011.08.012
http://dx.doi.org/10.1111/j.1467-8659.2012.03059.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03059.x
http://dx.doi.org/10.1145/1964921.1964944
http://dx.doi.org/10.1145/2487228.2487233
http://dx.doi.org/10.1145/2487228.2487233
http://dx.doi.org/10.1016/S0022-5096(99)00051-4
http://dx.doi.org/10.1016/S0022-5096(99)00051-4


Submission ID paper1102 / Disk Injection and Ejection

[MREB12] MITCHELL S. A., RAND A., EBEIDA M. S., BA-
JAJ C.: Variable radii Poisson-disk sampling, extended version.
In Canadian Conference on Computational Geometry (2012),
pp. 1–9. 1, 2, 4, 5

[MTT∗96] MILLER G. L., TALMOR D., TENG S.-H., WALK-
INGTON N., WANG H.: Control volume meshes using sphere
packing: Generation, refinement and coarsening. In Int. Meshing
Roundtable (1996), pp. 47–61. 2

[NK92] NOLAN G., KAVANAGH P.: Computer simulation of ran-
dom packing of hard spheres. Powder Technology 72, 2 (1992),
149 – 155. doi:10.1016/0032-5910(92)88021-9. 3

[Pen01] PENROSE M. D.: Random parking, sequential ad-
sorption, and the jamming limit. Communications in Math-
ematical Physics 218 (2001), 153–176. doi:10.1007/
s002200100387. 2

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004. 2

[PS04] PERSSON P.-O., STRANG G.: A simple mesh generator
in MATLAB. SIAM review 46, 2 (2004), 329–345. 2

[Rom10] ROMANOWICZ M.: Progressive failure analysis of uni-
directional fiber-reinforced polymers with inhomogeneous inter-
phase and randomly distributed fibers under transverse tensile
loading. Composites Part A: Applied Science and Manufactur-
ing 41, 12 (2010), 1829–1838. 8

[RR13] RIMOLI J. J., ROJAS J. J.: Meshing strategies for the
alleviation of mesh-induced effects in cohesive element models.
Computational Physics (2013). arXiv:1302.1161. 2

[SG98] SHIMADA K., GOSSARD D.: Automatic triangular mesh
generation of trimmed parametric surfaces for finite element
analysis. Computer Aided Geometric Design 15, 3 (1998), 199–
222. 2

[SG06] SWAMINATHAN S., GHOSH S.: Statistically equivalent
representative volume elements for unidirectional composite mi-
crostructures: Part II—With interfacial debonding. J Composite
Materials 40, 7 (2006), 605–621. 8

[SGP06] SWAMINATHAN S., GHOSH S., PAGANO N.: Statis-
tically equivalent representative volume elements for unidirec-
tional composite microstructures: Part i-without damage. J Com-
posite Materials 40, 7 (2006), 583–604. 8

[SHD11] SCHLÖMER T., HECK D., DEUSSEN O.: Farthest-
point optimized point sets with maximized minimum distance.
In HPG ’11 (2011), pp. 135–142. doi:10.1145/2018323.
2018345. 2

[SK13] SUBR K., KAUTZ J.: Fourier analysis of stochastic
sampling strategies for assessing bias and variance in integra-
tion. ACM Trans. Graphics 32, 4 (July 2013), 128:1–128:12.
doi:10.1145/2461912.2462013. 2

[SOK01] SEARLES K., ODEGARD G., KUMOSA M.: Micro-
and mesomechanics of 8-harness satin woven fabric compos-
ites: I — evaluation of elastic behavior. Composites Part A: Ap-
plied Science and Manufacturing 32, 11 (2001), 1627 – 1655.
doi:10.1016/S1359-835X(00)00181-0. 7

[SWM08] SONG C., WANG P., MAKSE H. A.: A phase diagram
for jammed matter. Nature 453 (2008), 629–632. doi:10.
1038/nature06981. 2

[Tal97] TALMOR D.: Well-Spaced Points for Numerical Meth-
ods. PhD thesis, Carnegie Mellon University, Pittsburgh, August
1997. CMU CS Tech Report CMU-CS-97-164. 2

[Tan79] TANEMURA M.: On random complete packing by discs.
Annals of the Institute of Statistical Mathematics 31 (1979), 351–
365. doi:10.1007/BF02480293. 2

[TGL08] TOTRY E., GONZÁLEZ C., LLORCA J.: Failure locus
of fiber-reinforced composites under transverse compression and
out-of-plane shear. Composites Science and Technology 68, 3
(2008), 829–839. 8

[TTL06] TAY T.-E., TAN V. B., LIU G.: A new integrated
micro–macro approach to damage and fracture of composites.
Materials Science and Engr. B 132, 1 (2006), 138–142. 7, 8

[Ü09] ÜNGÖR A.: Off-centers: A new type of Steiner points
for computing size-optimal quality-guaranteed Delaunay trian-
gulations. Computational Geometry: Theory and Applications
42 (2009), 109–118. doi:10.1016/j.comgeo.2008.06.
002. 2

[WCS98] WERWER M., CORNEC A., SCHWALBE K.-H.: Local
strain fields and global plastic response of continuous fiber rein-
forced metal-matrix composites under transverse loading. Com-
putational materials science 12, 2 (1998), 124–136. 8

[YW13] YAN D.-M., WONKA P.: Gap processing for adap-
tive maximal Poisson-disk sampling. ACM Trans. Graphics
28, 4 (2013), in press. SIGGRAPH 2013. URL: http:
//peterwonka.net/Publications/pdfs/2013.
TOG.Dongming.MaximalPoissonSampling.pdf. 5

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

http://dx.doi.org/10.1016/0032-5910(92)88021-9
http://dx.doi.org/10.1007/s002200100387
http://dx.doi.org/10.1007/s002200100387
http://arxiv.org/abs/1302.1161
http://dx.doi.org/10.1145/2018323.2018345
http://dx.doi.org/10.1145/2018323.2018345
http://dx.doi.org/10.1145/2461912.2462013
http://dx.doi.org/10.1016/S1359-835X(00)00181-0
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1007/BF02480293
http://dx.doi.org/10.1016/j.comgeo.2008.06.002
http://dx.doi.org/10.1016/j.comgeo.2008.06.002
http://peterwonka.net/Publications/pdfs/2013.TOG.Dongming.MaximalPoissonSampling.pdf
http://peterwonka.net/Publications/pdfs/2013.TOG.Dongming.MaximalPoissonSampling.pdf
http://peterwonka.net/Publications/pdfs/2013.TOG.Dongming.MaximalPoissonSampling.pdf

