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Fabrication approaches for InGaAs detectors ) i
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Simple process

High surface leakage Very low dark current Potentially low capacitance
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Comparison to the “nBn” detector ) e

composition grade

7 nBn greatly reduces
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™/ barrier NANS Depletion region generation (G-R)
" InGaAs absorber w Principles of operation
Optical e-h generation in absorber

Collection of holes across barrier
Barrier blocking of electron transport
Surface passivation by barrier
material

Energy

undoped

barrier
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n InAsSb absorber

Similarity to nBn
Position Large bandgap barrier passivation
Minimal depletion region

Contact metal

pr/p++ InGaAs Differences from nBn
InAlAs barrier
graded InAIGaAS p-type contact mesa

1 InGaAs absorber Reduces e~ thermionic emission
n+ graded InAIGaAs Graded absorber/barrier interface

n+ InP substrate Smooths VB discontinuity
Interface doping

Prevents absorber depletion
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Procedures

Epitaxial growth
Molecular beam epitaxy

Device fabrication

Square devices (200x200 - 500%500 pm?)
Selective wet etch to InAlAs for mesas
Wet etch to absorber for absorber contacts
PdNiAu contact metal litho / evaporation / liftoff
Unguarded

Linear devices (12.5-50x1000 um?)
Additional SiO, PECVD / RIE for pads
Proximity-guarded

Simulation (1-D / 2-D)
Commercial drift-diffusion simulator (Sentaurus) IRV barrier
Initially assume InGaAs SRH lifetimes 1, = 1}, = 7),gaas TinAIAs

Include absorber / substrate interface recomb. velocity absorber
Single 1, = 1}, = T),A8¢ IN all INAI(Ga)As regions TinGaAs /—

Thermionic emission at barrier / p+ interface
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I-V characteristics: Square devices ) i
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I-V characteristics: Linear devices =
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Consequence of plasma processing?
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Hole injection in forward-biased linear devices ) i

-J >
Jp/Jn ~ 106
+ bias
Absorber /
<€ J

Forward bias highly favors hole injection
Approximates photogeneration
Adjacent fingers reverse biased
Lateral bipolar transistor
Model validation
Diffusion length estimation

collector 2 collector 1 emitter

recombination




Hole injection/collection I-V rh) p_

12.5 um pitch linear array
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Hole lateral collection and diffusion lengths rh) e

From simulation
Diffusion length = (u, KTt,6aas/d )2 [1, = 300 cm?/Vs]: 70 um
Collection length from perimeter / area current analysis (J,eim/Jarea): 8 1M
Difference arises from strong influence of interface recombination
« “Effective” lateral diffusion length includes interface recombination

From square device perimeter / area analysis
Assuming no surface leakage component in 18 pA/cm perimeter current: 22 um
Subtracting 9 pA/cm (seen in linear devices) for surface leakage: 11 um
» Reasonable consistency with simulated perimeter / area analysis

Role of assumption of equal InGaAs electron and hole lifetimes
Relaxation of this constraint allows good model fits for variety of (z,, 1,, IRV, sets)
» Interface and bulk recombination not separable in thin absorbers
» Effective lateral diffusion length not sensitive to choice of these parameters
* Other absorber thicknesses required to determine IRV, but...
* IRV, =0 would imply 7, /1, =200 (t,=20 ps, t,=0.1ps)



Application of simulation to design/analysis ) S

illumination
l l l l l l hole density contours

I
\ //'

stripes
P 10 ————m—m™—m™—m™——m————————————
295 K simulation
10—9 L
[lluminated
- 10-10 -
. . < ==
Design flexibility = 1011} | 1 fFlum? design
o —— 0.2 fF/um? design
—
5 1012
O ~_ Dark
10 13 -
10—14 ........................




. Sandia
Comparison to state of the art ) e

Estimates for FPA arrays
Derived from linear devices
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Conclusions i)

* Low dark current InGaAs detectors with simple mesa isolation demonstrated
» Areal dark current density 8-15 nA/cm2
Higher value may reflect plasma damage
» Perimeter dark current density 9-18 pA/cm
Higher value from lateral collection in unguarded devices
* Numerical model developed
Excellent fit to both reverse-bias and lateral bipolar transistor I-V
Dark current at large reverse bias dominated by generation in InAIGaAs
Lateral collection (~diffusion) length approximately 10 um
Suggests significant interface recombination velocity
Useful for design optimization and performance prediction
« Small-pixel dark current estimate 2-20 x recent diffused devices
Many aspects of these devices not optimized




