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Release of Gaseous Fission Products

I Xe and Kr are the main gaseous fission products
I Relatively high yields
I Low solubility in fuel

I Nucleates and precipitates as bubbles
I Both, inter– and intragranular

I Fission gas bubbles leads to swelling
I Degrade gap conductivity
I Clad ballooning and burst
I Number and size distribution of bubbles

I Build up can lower reactivity, i.e. xenon poisoning
I Neutron absorber

I Understanding release mechanisms
I Design better (safety and efficiency) fuels
I Achieve higher burnups
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Accumulation and Release of FG
Intragranular bubbles Intergranular bubbles

Fission gas within fuel, can
be:

I Dissolved in fuel matrix
(lattice)

I Form intragranular
nano–bubbles

I Form intergranular
micro–bubbles

And can be released by:

I Direct release from
fission and knocked–out

I Diffusion to the surface
I Percolation of

integranular bubbles

Kashibe (1993) White (2004)
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Swelling Due to Gaseous FP Bubbles

I Main difference between a void, concentration of FG
I In TEM, differentiated by the feature shape (faceted or sphere)

I At high temperatures, fission gas diffuses into bubbles
I Grows as voids reach bubble
I Reaches equilibrium with surface energy as FG reaches bubble

I For a distribution of bubbles

∆V

V
=

(
4π
3

)∑
R3
iNi

1−
(
4π
3

)∑
R3
iNi

I Can lead to fuel–clad interactions
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Fission Gas Release: Percolation Theory

I Behavior of connected clusters in a
random graph

I Pour liquid from top

I Simulate FG release through grain
boundary

Grimmett (1999)
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Grain Boundary Bubble Percolation
I Previous work (Tikare), applied percolation model to FG

release
I Potts kMC model simulated microstructural evolution

I With similar FG release percolation model

I Primary gas release mechanism is intergranular bubbles
percolation

I Percolating feature releases gas to free surface (external or crack)
I Intergranular bubble formation is complex

Gas bubbles in polycrystal Gas bubbles Percolating bubble
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Microstructural Representation

I 3D digitized microstricture
I Each color is a different

phase/state
I Solid grain (orientation)
I Gas bubble
I Vacuum/void

I Interfaces, grain boundaries &
bubble surfaces are surface
between different “colored
particles”

Materials Science & Technology 2013 Conference & Exhibit

October 27-31, 2013 - Montreal, Québec, Canada
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Bubble Nucleation

White (2004)

I Gases are formed from fission
and transmutation events

I Different “paths” to follow
I Direct release
I Nucleation and growth of bubble
I Resolution into the matrix
I Etc.

I We considered bubbles that have
migrated to GB

I These nucleateat a given
frequency

I Once at the GB, they coalense
into large bubble structures
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10/28



Bubble Nucleation

White (2004)

I Gases are formed from fission
and transmutation events

I Different “paths” to follow
I Direct release
I Nucleation and growth of bubble
I Resolution into the matrix
I Etc.

I We considered bubbles that have
migrated to GB

I These nucleateat a given
frequency

I Once at the GB, they coalense
into large bubble structures

Materials Science & Technology 2013 Conference & Exhibit

October 27-31, 2013 - Montreal, Québec, Canada
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Bulk Volumetric Swelling

I Swelling simulated by a site exchange mechanism
I Choosing a random direction

px = cos(φ) sin(θ) py = sin(φ) sin(θ) pz = cos(θ)

I Essentially, “reverse” sintering [Garćıa–Cardona, Tikare
(2011)]
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Equations of State and Kinetics
I EOS defines energy of system

E =

N∑
i=1

(
Di=ts +Gi=dg

)
︸ ︷︷ ︸

Volumetric
energy terms

+

N∑
i=1

n∑
j=1

αi
(
1− δi

)
︸ ︷︷ ︸

Interfacial
energy terms

I Evolution simulated by statistical rearrangement of
ensemble

I Energy change used to determine thermodynamics of the change

I To determine the probability of a kinetic event taking place

pevent =
revent
nsitesω

= exp

(
− ∆E

kBT

)
︸ ︷︷ ︸

Boltzmann Distribution
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Microstructural and Volumetric Changes

Swollen microstructure Gas bubbles Percolating bubble

I Percolation starts when bubble density is ∼ 3%

I Percolating bubble is ∼ 30% of bubble volume
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Stages of Percolation
Initial Microstructure (time = 0 MCS) Early Stage (5503 MCS)

Moderate Stage (9000 MCS) Advanced Stage (24006 MCS)
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Gas Bubble Distribution
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Gas Bubble Swelling

∆V

V
≈

4πR3
b

3
Nb
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Gas Bubble Swelling

∆V

V
=

2(Rgb/a)(Rgb/R)2

1− 2(Rgb/a)(Rgb/R)2

Agrees with Kagana,
∼ 83% lower swelling for
interlinkage
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Bubble Evolution
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I Substantial increase in bubble volume
I Abrupt increase in volume at t = tperc ≈ 5500
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Initial Porosity of 5%

I Initial porosity has
significant consequences

I Percolation time significantly
reduced

tρ=95%
perc

tρ=100%
perc

∼ 27%

I Percolation happens with
smaller bubbles
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Porous: Gas Bubble Distribution
Porosity = 0%

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =538
Vb,2 =546
Vb,3 =589
Vb,4 =644
Vb,5 =693
Vb,6 =715
Vb,7 =782
Vb,8 =807

Vb,9 =853
Vb,10 =899
Vb,11 =949
Vb,12 =1776
Vb,13 =2117
Vb,14 =2305
Vb,15 =3197
Vb,16 =3997

Bubble Distribution, t = 5007

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =501
Vb,2 =536
Vb,3 =615
Vb,4 =626
Vb,5 =902
Vb,6 =1140
Vb,7 =1746
Vb,8 =19095

Bubble Distribution, t = 5503

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =553
Vb,2 =575
Vb,3 =743
Vb,4 =844
Vb,5 =853
Vb,6 =869
Vb,7 =2701
Vb,8 =24563

Bubble Distribution, t = 6007

Porosity = 5%

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =503
Vb,2 =512
Vb,3 =700

Bubble Distribution, t = 1005

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =8851

Bubble Distribution, t = 1501

0 100 200 300 400 500
Bubble Volume (pixel)

100

101

102

103

Fr
e
q
u
e
n
cy

Vb,1 =709
Vb,2 =1950
Vb,3 =14665

Bubble Distribution, t = 2005

Materials Science & Technology 2013 Conference & Exhibit

October 27-31, 2013 - Montreal, Québec, Canada
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Self-assembled Nano-porous Structures I
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21/28



Self-assembled Nano-porous Structures II

MCS = 0 100 500

1000 1500
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23/28



Summary

I Monte Carlo swelling model is able to simulate
microstructural evolution of bubble gas swollen fuels

I Intergranular bubble formation and interlinkage is a
complex behavior

I Percolation depends on microstructure, e.g. grain size
I It also seems like volumetric swelling has an effect on percolation

I Simple swelling model seems suitable to simulate extreme
volumetric swelling, leading to high porosity nano–porous
structures

I Further parameterization studies needed to fully
understand the capabilities of the model
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Questions?
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