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Release of Gaseous Fission Products

» Xe and Kr are the main gaseous fission products
> Relatively high yields
> Low solubility in fuel
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Release of Gaseous Fission Products

» Xe and Kr are the main gaseous fission products
> Relatively high yields
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v

Xe and Kr are the main gaseous fission products
> Relatively high yields
> Low solubility in fuel

v

Nucleates and precipitates as bubbles

> Both, inter— and intragranular

v

Fission gas bubbles leads to swelling

> Degrade gap conductivity
> Clad ballooning and burst
> Number and size distribution of bubbles

v

Build up can lower reactivity, i.e. xenon poisoning
> Neutron absorber

v

Understanding release mechanisms

> Design better (safety and efficiency) fuels
> Achieve higher burnups

013 Conference & Exhibit

uébec, Canada




Accumulation and Release of FG
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Accumulation and Release of FG

Intragranular bubbles Intergranular bubbles

Fission gas within fuel, can
be:

» Dissolved in fuel matrix
(lattice)

» Form intragranular
nano—bubbles

» Form intergranular
micro—bubbles

And can be released by:

» Direct release from
fission and knocked—out

» Diffusion to the surface

» Percolation of
integranular bubbles

(2004) A
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Swelling Due to Gaseous FP Bubbles

» Main difference between a void, concentration of FG
» In TEM, differentiated by the feature shape (faceted or sphere)
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Swelling Due to Gaseous FP Bubbles

v

Main difference between a void, concentration of FG
» In TEM, differentiated by the feature shape (faceted or sphere)

v

At high temperatures, fission gas diffuses into bubbles

» Grows as voids reach bubble
> Reaches equilibrium with surface energy as FG reaches bubble

» For a distribution of bubbles

AV_ (£) Y RN,
4 — (¥) X R3N;

» Can lead to fuel-clad interactions
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Fission Gas Release: Percolation Theory

» Behavior of connected clusters in a
random graph

» Pour liquid from top

0(p)
1 (1,1

1
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Grimmett (1999
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Fission Gas Release: Percolation Theory

» Behavior of connected clusters in a

random graph
» Pour liquid from top

» Simulate FG release through grain

boundary

Sharp increase in cluster size,
7035

Percolation occurs at
705

Largest Cluster of Filled Squares
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Grain Boundary Bubble Percolation

» Previous work (Tikare), applied percolation model to FG
release

Gas bubbles in polycrystal Gas bubbles

Percolating bubble
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Grain Boundary Bubble Percolation

» Previous work (Tikare), applied percolation model to FG
release
» Potts kMC model simulated microstructural evolution
» With similar FG release percolation model

» Primary gas release mechanism is intergranular bubbles
percolation
> Percolating feature releases gas to free surface (external or crack)
> Intergranular bubble formation is complex

Gas bubbles in polycrystal Gas bubbles

Percolating bubble
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Model Development
Simulation Framework
Modeling FG Bubble Swelling
System Thermodynamics
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Microstructural Representation

» 3D digitized microstricture
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Microstructural Representation
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3D digitized microstricture
Each color is a different
phase/state

» Solid grain (orientation)

» Gas bubble
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Microstructural Representation

» 3D digitized microstricture
» Each color is a different
phase/state
» Solid grain (orientation)
» Gas bubble
» Vacuum/void

> Interfaces, grain boundaries &
bubble surfaces are surface
between different “colored
particles”
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Bubble Nucleation

» Gases are formed from fission
and transmutation events

o
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White (2004)
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Bubble Nucleation

R U
White (2004)

» Gases are formed from fission
and transmutation events
» Different “paths” to follow

> Direct release

» Nucleation and growth of bubble
» Resolution into the matrix

» Etc.
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Bubble Nucleation

» Gases are formed from fission
and transmutation events
» Different “paths” to follow
» Direct release
» Nucleation and growth of bubble

» Resolution into the matrix
» Etc.

» We considered bubbles that have
migrated to GB

» These nucleateat a given
frequency

» Once at the GB, they coalense
into large bubble structures
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Bulk Volumetric Swelling

» Swelling simulated by a site exchange mechanism
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Bulk Volumetric Swelling

» Swelling simulated by a site exchange mechanism
» Choosing a random direction

pz = cos(¢)sin(f)  p, =sin(¢)sin(f)  p, = cos(d)

» Essentially, “reverse” sintering [Garcia—Cardona, Tikare
(2011)]




Equations of State and Kinetics
» EOS defines energy of system

N N n
E = (Di:ts als Gi:dg) + E g Oéi(l - 52‘)
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Volumetric Interfacial
energy terms energy terms
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Equations of State and Kinetics
» EOS defines energy of system

N N n
FE = (Di:ts + Gi:dg) + Z Z (o7 (1 - 57?)

i=1 i=1j=1
Volumetric Interfacial
energy terms energy terms

» Evolution simulated by statistical rearrangement of
ensemble

» Energy change used to determine thermodynamics of the change

» To determine the probability of a kinetic event taking place

_ Tevent AE
Pevent = ——— = €XP | —7 5

NsitesW
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Results and Analysis
Microstructural Evolution
FG Release by Percolation
Comparison Between Initial Porosities
Nano—fibrous Structures
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Microstructural and Volumetric Changes

Swollen microstructure Gas bubbles Percolating bubble

» Percolation starts when bubble density is ~ 3%
» Percolating bubble is ~ 30% of bubble volume
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Stages of Percolation
Initial Microstructure (time = 0 MCS) Early Stage (5503 MCS)

Advanced Stage (24006 MCS)
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Gas Bubble Distribution
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Gas Bubble Distribution

Frequency

Frequency

Bubble Distribution, t = 3006

Bubble Distribution, t = 1501 10"
Vin =580
10!
1400
.
12001 ¢ °0
[ e
H
910001 | 'b
2 ' ]
200 E-1 ! .- 200 300 0
Bubble Volume (3 gop| ! . »ble Volume (pixel)
@ i .
IS) ] \
P i J
8 oof N
Bubble Distribution, £ ! ",. Distribution,
Z 400 : oo,
B .,
I oo,
' %e0qq,
ooe
| iy TILTOVS
'
I
5000 10000 _ 15000 20000 25000 30000
Time (MCS)
10"
500 109 0 200 300 500
Bubble Volume (pixel)

100

200 300
Bubble Volume (pixel)

® Materials Sc

October 27

31, 2013 - Montreal,

013 Conference & Es

uébec, Canada




Gas Bubble Swelling

Time (MCS)
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Gas Bubble Swelling
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Gas Bubble Swelling
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Bubble Evolution
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» Substantial increase in bubble volume
» Abrupt increase in volume at ¢ = t,e,. =~ 5500
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Initial Porosity of 5%
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Porous: Gas Bubble Distribution
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Self-assembled Nano-porous Structures 1
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Self-assembled Nano-porous Structures 11
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Outline

Conclusion
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Summary

» Monte Carlo swelling model is able to simulate
microstructural evolution of bubble gas swollen fuels

» Intergranular bubble formation and interlinkage is a
complex behavior
» Percolation depends on microstructure, e.g. grain size
> It also seems like volumetric swelling has an effect on percolation
» Simple swelling model seems suitable to simulate extreme
volumetric swelling, leading to high porosity nano—porous
structures

» Further parameterization studies needed to fully
understand the capabilities of the model
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