
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's 

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Recent Developments in Coopr

William E. Hart, John D. Siirola, and Jean-Paul Watson

Discrete Math and Complex Systems Department

Sandia National Laboratories

Albuquerque, NM  USA

INFORMS Annual Meeting

6-9 October, 2013

SAND2013-9194C



Hart, Siirola, Watson,  p. 2

GLPK

PYthon Optimization Modeling Objects

Coopr: a COmmon Optimization Python Repository

Language Extensions

- Disjunctive Programming

- Stochastic Programming

- Differential Equations

Decomposition Strategies

- Progressive Hedging

- Generalized Benders

- DIP Interface (coming soon)

CPLEX

Gurobi

Xpress

AMPL Solver Library

CBC

PICO

OpenOptP
lu

gg
ab

le
 S

ol
ve

r 
In

te
rf

ac
es

C
or

e 
O

pt
im

iz
at

io
n 

In
fr

as
tr

uc
tu

re

Ipopt

KNITRO

Coliny

Dakota

BONMIN



Hart, Siirola, Watson,  p. 3

Why Coopr?

• Not speed (of model generation)

• Flexibility and agility
– Natural problem representations

– Problem transformations

– “Meta-solvers”

– Rapid prototyping



Hart, Siirola, Watson,  p. 4

Pyomo: object-oriented math programming

• rosenbrock.py:

from coopr.pyomo import *

model = ConcreteModel()

model.x = Var( initialize=-1.2, bounds=(-2, 2) )
model.y = Var( initialize= 1.0, bounds=(-2, 2) )

model.obj = Objective( 
expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,
sense= minimize )



Hart, Siirola, Watson,  p. 5

Pyomo: object-oriented math programming

• Solve the model:
– The pyomo command

% pyomo rosenbrock.py --solver=ipopt --summary
[    0.00] Setting up Pyomo environment
[    0.00] Applying Pyomo preprocessing actions
[    0.00] Creating model
[    0.00] Applying solver
[    0.03] Processing results

Number of solutions: 1
Solution Information
Gap: <undefined>
Status: optimal
Function Value: 2.98956421871e-17

Solver results file: results.yml

=====================================================
Solution Summary
=====================================================
Model unknown
Variables:
x : Size=1, Index=None, Domain=Reals

Key  : Lower : Value          : Upper : Initial : Fixed : Stale
None :    -2 : 0.999999994543 :     2 :    -1.2 : False : False

y : Size=1, Index=None, Domain=Reals
Key  : Lower : Value          : Upper : Initial : Fixed : Stale
None :    -2 : 0.999999989052 :     2 :     1.0 : False : False

Objectives:
obj : Size=1

Key  : Value
None : 2.98956421871e-17

Constraints:
None

[    0.03] Applying Pyomo postprocessing actions
[    0.03] Pyomo Finished



Hart, Siirola, Watson,  p. 6

Pyomo: object-oriented math programming

• Solve the model:
– The pyomo command

– Custom driver

driver.py

from coopr.opt import SolverFactory

from rosenbrock import model

solver = SolverFactory('ipopt')

results = solver.solve(model)

print "Solution Status: %s" % results['Solution'][0]['Status']

model.load(results)

model.display()

% python driver.py
Solution Status: optimal
Model unknown

Variables:
x : Size=1, Index=None, Domain=Reals

Key  : Lower : Value          : Upper : Initial : Fixed : Stale
None :    -2 : 0.999999994543 :     2 :    -1.2 : False : False

y : Size=1, Index=None, Domain=Reals
Key  : Lower : Value          : Upper : Initial : Fixed : Stale
None :    -2 : 0.999999989052 :     2 :     1.0 : False : False

Objectives:
obj : Size=1

Key  : Value
None : 2.98956421871e-17

Constraints:
None



Hart, Siirola, Watson,  p. 7

Team, Collaborators, (Known) Users
• Sandia National Laboratories

– Bill Hart

– Jean-Paul Watson

– John Siirola

– David Hart

– Tom Brounstein

• University of California, Davis

– Prof. David L. Woodruff

– Prof. Roger Wets

• Texas A&M University

– Prof. Carl D. Laird

– Daniel Word

– James Young

– Gabe Hackebeil

• Carnegie Mellon University

– Bethany Nicholson

• Texas Tech University

– Zev Friedman

• Rose Hulman Institute 

– Tim Ekl

• William & Mary

– Patrick Steele

• North Carolina State

– Kevin Hunter

(Known) users:
- University of California, Davis
- Texas A&M University
- University of Texas
- Rose-Hulman Institute of Technology
- University of Southern California
- George Mason University
- Iowa State University
- N.C. State University
- University of Washington
- Naval Postgraduate School
- Universidad de Santiago de Chile
- University of Pisa
- Argonne National Lab
- Lawrence Livermore  National Lab
- Los Alamos National Lab
- Federal Energy Regulatory Agency



Hart, Siirola, Watson,  p. 8

• Coopr Forum membership up 50% in 2013
– Active discussion list (~200 discussions in the last year)

• Active developer community

Development, Community activity



Hart, Siirola, Watson,  p. 9

What’s New in Coopr?

• Releases:
– Current:   3.3.7114     (2 March 2013)

– Upcoming:  3.4 (end of October)

• Expression objects

• Suffix support

• Differential Algebraic Equation support

• Data Portals

• PH lower bounds

• Performance improvements



Hart, Siirola, Watson,  p. 10

Expression objects

• Where credit is deserved…  Gabriel Hackebeil, Texas A&M

• Pyomo generates expression trees (via operator overloading) to 
represent expressions in the user model

– all expressions are simple trees (shared sub-trees is disallowed)

• Expression objects

– First-class model components

• Named, attached to models, preserved when cloning the model

– Used in the same manner as Var, Param

From coopr/data/cute/hs085_cute.py

model.y1  = Expression(initialize= model.x[2] + model.x[3] + 41.6 )

model.y7  = Expression(initialize= model.c8/model.y1 )

model.con2 = Constraint(expr= model.y1- 213.1 >= 0 )

model.con3 = Constraint(expr= 405.23 - model.y1 >=0 )

model.con35 = Constraint(expr= b[7] - model.y7 >=0 )



Hart, Siirola, Watson,  p. 11

Suffix Support

• Where credit is deserved…  Gabriel Hackebeil, Texas A&M

• (AMPL-style) Suffixes are now first-class model objects

– As first class objects, Suffixes are preserved when cloning model

model.sfx = Suffix(
direction= { LOCAL, IMPORT, EXPORT, IMPORT_EXPORT },
datatype= {INT, FLOAT, None} )

• Values are set / retrieved using

model.sfx.setValue(model.x, value)

model.sfx.getValue(model.x)

• Common use: retrieving dual information:

model.dual = Suffix(direction=Suffix.IMPORT)

print “Constraint c[1] Dual=%s” % \
model.dual.getValue(model.c[1])



Hart, Siirola, Watson,  p. 12

Differential-Algebraic Models

• Where credit is deserved…
– Bethany Nicholson, Carnegie Mellon University

• Provide support for optimizing dynamic models
– Implemented as a plug-in (completely independent of Pyomo)

– Modeling components for differential equations

– Automated transformations to discretize model to (N)LP

Dynamic 
Model

Discretization 
Scheme

Algebraic 
Model

Automated



Hart, Siirola, Watson,  p. 13

General Syntax 

• Import the extension
from coopr.dae import *

• DifferentialSet

m.t = DifferentialSet(bounds=(0,10))

m.t = DifferentialSet(initialize=[1,2,3,4])

m.t = DifferentialSet()

• Differential

m.xdot = Differential(

dvar=m.x,

rule=_xdot,

dset=m.t,

bounds=(0,10),

initialize=_init_xdot )



Hart, Siirola, Watson,  p. 14

Optimal Control Example (1)
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)



Hart, Siirola, Watson,  p. 15

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (2)

from coopr.pyomo import *
from coopr.dae import *



Hart, Siirola, Watson,  p. 16

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (3)

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)



Hart, Siirola, Watson,  p. 17

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (4)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)



Hart, Siirola, Watson,  p. 18

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (5)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, dset=m.t, 
rule=_x1dot)



Hart, Siirola, Watson,  p. 19

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (6)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)



Hart, Siirola, Watson,  p. 20

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()
m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

def _obj(m):
return m.x3[1]

m.obj = Objective(rule=_obj)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m,t):
return –m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m,t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)

Optimal Control Example (7)

def _init_conditions(m,i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0

m.init_conditions = ConstraintList(
rule=_init_conditions)



Hart, Siirola, Watson,  p. 21

Optimal Control Example: driver script
from coopr.pyomo import *
from coopr.dae import *
from coopr.opt import SolverFactory
from coopr.dae.colloc import Collocation_Discretization

# Import model
from example import m as model

# Create model instance
instance = model.create()

# Discretize instance using radau collocation
discretizer = Collocation_Discretization(instance)
discretized_instance = discretizer.apply(nfe=7, ncp=6)

# Solve discrete model
opt = SolverFactory(‘ipopt’)
results = opt.solve(discretized_instance)

# Load Results
discretized_instance.load(results)



Hart, Siirola, Watson,  p. 22

Optimal Control Example:  results

t t

u

Differential Variables Control Variable



Hart, Siirola, Watson,  p. 23

Optimal Control Example:  alternate driver
from coopr.pyomo import *
from coopr.dae import *
from coopr.opt import SolverFactory
from coopr.dae.colloc import Collocation_Discretization
from smallExample import model

instance = model.create()

# Discretize instance using radau collocation
discretizer = Collocation_Discretization(instance)
instance = discretizer.apply(nfe=7, ncp=6)

# Control variable u made constant over each finite element
instance = discretizer.reduce_collocation_points(

var=instance.u, ncp=1, diffset=instance.t )

opt = SolverFactory(‘ipopt’)
results = opt.solve(instance)

instance.load(results)



Hart, Siirola, Watson,  p. 24

Optimal Control Example:  results

t t

Differential Variables Control Variable

u



Hart, Siirola, Watson,  p. 25

DataPortal: unified data import mechanism

• Where credit is deserved…  Bill Hart, Sandia

• Observations:
– Scripting has become a common activity for Coopr users

– Original data management mechanism limited

• Data Portal Objects
– Support loading and storing data

– I/O for set, parameter, variables, suffix data, etc.

– Explicitly manage connections to data sources

– Initialize both abstract and concrete models

– Data sources: csv, tab, odbc, xls/xlsm/xlsb/xlsx, yaml, json, xml, 
and Pyomo data command files



Hart, Siirola, Watson,  p. 26

DataPortal Example: Abstract Model

M = AbstractModel()
M.A = Set(dimen=2)
M.q = Param(M.A)
M.p = Param(M.A)

dp = DataPortal()
dp.load(filename=‘foo.csv’, param=(M.p,M.q), index=M.A) 

Instance = M.create(dp)

A1,A2,p,q
a,b,1,2
c,d,3,4

foo.csv



Hart, Siirola, Watson,  p. 27

DataPortal Example: Concrete Models

db = DataPortal()
db.load(filename=‘foo.csv’, param=‘q’, index=‘A’)
db.load(filename=‘bar.tab’, param=‘p’)

M = ConcreteModel()
M.A = Set(dimen=2, initialize=db.data(‘A’))
M.q = Param(M.A, initialize=db.data(‘q’))
M.p = Param(M.A, initialize=db.data(‘p’))
Instance = M.create()

A1,A2,q
a,b,2
c,d,4

A1 A2 p
a b 1
c d 3

foo.csv bar.tab



Hart, Siirola, Watson,  p. 28

Lower bounding in PH

• Where credit is deserved…  
– Dinakar Gade, Sarah Ryan; Iowa State

– Gabriel Hackebeil; Texas A&M

– Jean-Paul Watson;  Sandia

– Roger Wets, David Woodruff;  UC Davis

• Progressive Hedging (PH)
– “Historically” PH is a heuristic for MIP

– A lower bound on optimal cost can be obtained with 
approximately the same effort as one PH iteration.



Hart, Siirola, Watson,  p. 29

Obtaining PH Lower Bounds

• Implementation:
– phboundextension computes a lower bound in any iteration.

– Can compute a bound once every N iterations.

– Can assign the lower bounding task to separate processors, 
one for each (bundle of) scenario sub-problem(s).

• How?
runph […] --user-defined-extension=coopr.pysp.phboundextension



Hart, Siirola, Watson,  p. 30

PH Lower / Upper bounds



Hart, Siirola, Watson,  p. 31

(Performance)

• Recent work has had significant focus on memory
– 20% reduction over Coopr 3.2

• Removing bottlenecks
– Direct solver interfaces

– Transformations, especially for 

• Block manipulation

• Disjunctive programming

• Stochastic programming

– Data management

• Param initialization and manipulation

• Data and model I/O



Hart, Siirola, Watson,  p. 32

For More Information…

• Project homepage
– http://software.sandia.gov/coopr

• Mailing lists
– “coopr-forum” Google Group

– “coopr-dev” Google Group

• “The Book”

• Online documentation
– “Getting Started with Coopr” 

– “Coopr Installation Guide”

• Mathematical Programming Computation papers
– Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

– PySP: Modeling and Solving Stochastic Programs in Python (4(2), 2012)


