Recent Developments in Coopr

William E. Hart, John D. Siirola, and Jean-Paul Watson

Discrete Math and Complex Systems Department
Sandia National Laboratories
Albuquerque, NM USA

INFORMS Annual Meeting
6-9 October, 2013

5 v .
,;,’/’VA u—g a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National

ooy Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, Sandia
National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories



Coopr: a COmmon Optimization Python Repository

-

X

..............

\

NERANEAN

\

/

CPLEX

Gurobi

Xpress

GLPK

7
[/

Decomposition Strategies .g " §
- Progressive Hedging § E S @
- Generalized Benders & é’ P CG/J) E
- DIP Interface (coming soon) J= % B % §
@) — N <
| o = %0 —
. o = =
Language Extensions S ~
- Disjunctive Programming
- Stochastic Programming
- Differential Equations

) PYOMO

_ PYthon Optimization Modeling Objects

CBC

/

PICO

OpenOpt

AMPL Solver Library

Hart, Siirola, Watson, p. 2

] Ipopt

— KNITRO

— Coliny

— Dakota

— BONMIN

@)

Sandia
National
Laboratories



';,'
Why Coopr?

* Not speed (of model generation)

» Flexibility and agility
— Natural problem representations
— Problem transformations
— “Meta-solvers”
— Rapid prototyping

Sandia
Hart, Siirola, Watson, p. 3 Paal:}ll;]rg?(llﬁes



Pyomo: object-oriented math programming

* rosenbrock.py:

from coopr.pyomo import *
model = ConcreteModel ()

var( initialize=-1.2, bounds=(-2, 2) )
var( initialize= 1.0, bounds=(-2, 2) )

model . X
model .y

model.obj = Objective(

sense= minimize )

expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,

Hart, Siirola, Watson, p. 4

@)

Sandia
National
Laboratories



Pyomo: object-oriented math programming

» Solve the model:
— The pyomo command

Hart, Siirola, Watson, p.5

% pyomo rosenbrock.py --solver=ipopt --summary
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.00] Creating model
[ 0.00] Applying solver
[ 0.03] Processing results
Number of solutions: 1
Solution Information
Gap: <undefined>
Status: optimal
Function Value: 2.98956421871e-17
Solver results file: results.yml

Model unknown
Variables:
X : Size=1, Index=None, Domain=Reals

Key : Lower : Value : Upper : Initial :
None : -2 : 0.999999994543 : 2 : -1.2 :
y : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Initial :
None : -2 : 0.999999989052 : 2 : 1.0 :
Objectives:

obj : Size=1
Key : Value
None : 2.98956421871e-17
Constraints:
None
[ 0.03] Applying Pyomo postprocessing actions
[ 0.03] Pyomo Finished

Fixed : Stale
False : False

Fixed : Stale
False : False

Sandia
National
oratories



Pyomo: object-oriented math programming

e Solve the model:
— The pyomo command
— Custom driver

Hart, Siirola, Watson, p. 6

driver.py

from coopr.opt import SolverFactory
from rosenbrock import model

solver = SolverFactory('ipopt")

results = solver.solve(model)

print "Solution Status: %s" % results['Solution'][@][ 'Status"']

model.load(results)
model.display()

% python driver.py
Solution Status: optimal
Model unknown

Variables:
X : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Initial : Fixed :
None : -2 : 0.999999994543 : 2 : -1.2 : False :
y : Size=1, Index=None, Domain=Reals
Key : Lower : Value : Upper : Initial : Fixed :
None : -2 : 0.999999989052 : 2 1.0 : False :
Objectives:
obj : Size=1

Key : Value
None : 2.98956421871e-17

Constraints:

Stale
False

Stale
False

None Saqdh
@ Laboratories




Team, Collaborators, (Known) Users

« Sandia National Laboratories
— Bill Hart
— Jean-Paul Watson
— John Siirola
— David Hart
— Tom Brounstein
« University of California, Davis
— Prof. David L. Woodruff
— Prof. Roger Wets
+ Texas A&M University
— Prof. Carl D. Laird
— Daniel Word
— James Young
— Gabe Hackebell
+ Carnegie Mellon University
— Bethany Nicholson
+ Texas Tech University
— Zev Friedman
* Rose Hulman Institute
— Tim EKI
+ William & Mary
— Patrick Steele
* North Carolina State

— Kevin Hunter
Hart, Siirola, Watson, p.7

0

Known) users:
- University of California, Davis

- Texas A&M University

- University of Texas

- Rose-Hulman Institute of Technology
- University of Southern California

- George Mason University

- lowa State University

- N.C. State University

- University of Washington

- Naval Postgraduate School

- Universidad de Santiago de Chile

- University of Pisa

- Argonne National Lab

- Lawrence Livermore National Lab

- Los Alamos National Lab

\- Federal Energy Regulatory Agency /

@)

Sandia
National
Laboratories



\

Development, Community activity

« Coopr Forum membership up 50% in 2013

— Active discussion list (~200 discussions in the last year)

Commits by time

 Active developer community

Commits by month

200
Dpen Tickets
100
Giperied
Bl Acceptad
u}
Jan 2006 Jan 2007 Jan 2008 dan 20029 Jam 2010 Jan ZOll Jan 2012 Jan 2013

Jan 2005 Jan 200% Jan 2010 Jan 2011

Hart, Siirola, Watson, p. 8 ational
P Laboratories



| i What’s New in Coopr?

* Releases:
— Current: 3.3.7114 (2 March 2013)
— Upcoming: 3.4 (end of October)

Expression objects

Suffix support

Differential Algebraic Equation support
Data Portals
PH lower bounds

Performance improvements

Sandia
Hart, Siirola, Watson, p. 9 Paal}ll?rg'?(llﬁes



Expression objects

 Where credit is deserved... Gabriel Hackebeil, Texas A&M

 Pyomo generates expression trees (via operator overloading) to
represent expressions in the user model

— all expressions are simple trees (shared sub-trees is disallowed)

« Expression objects
— First-class model components
« Named, attached to models, preserved when cloning the model
— Used in the same manner as Var, Param

From coopr/data/cute/hs085 cute.py

model.yl = Expression(initialize= model.x[2] + model.x[3] + 41.6 )
model.y7 = Expression(initialize= model.c8/model.yl )

model.con2 = Constraint(expr= model.yl- 213.1 >= 0 )

model.con3 = Constraint(expr= 405.23 - model.yl >=0 )

model.con35 = Constraint(expr= b[7] - model.y7 >=0 )

Hart, Siirola, Watson, p. 10 ational
P Laboratories



A
Suffix Support

 Where credit is deserved... Gabriel Hackebeil, Texas A&M

* (AMPL-style) Suffixes are now first-class model objects
— As first class objects, Suffixes are preserved when cloning model

model.sfx = Suffix(
direction= { LOCAL, IMPORT, EXPORT, IMPORT_EXPORT },
datatype= {INT, FLOAT, None} )

» Values are set / retrieved using

model.sfx.setValue(model.x, value)
model.sfx.getValue(model.x)

« Common use: retrieving dual information:

model.dual = Suffix(direction=Suffix.IMPORT)

print “Constraint c[1] Dual=%s” % \
model.dual.getValue(model.c[1])

Hart, Siirola, Watson, p. 11 ational
P Laboratories



A
Differential-Algebraic Models

* Where credit is deserved...
— Bethany Nicholson, Carnegie Mellon University

* Provide support for optimizing dynamic models
— Implemented as a plug-in (completely independent of Pyomo)
— Modeling components for differential equations
— Automated transformations to discretize model to (N)LP

r N r )

Dynamic Discretization Algebraic
Model Scheme Model

Automated

Hart, Siirola, Watson, p. 12 ational
P Laboratories



=d
General Syntax

* Import the extension
from coopr.dae import *

* DifferentialSet

m.tT
m.tT
m.tT

» Differential
m.xdot = Differential(

Hart, Siirola, Watson, p. 13

Differentialset(bounds=(0,10))
Differentialset(initialize=[1,2,3,4])
DifferentialsSet()

dvar=m.x,

rule=_xdot,

dset=m. t,
bounds=(0,10),
initialize=_init_xdot )

@)

Sandia
National
Laboratories



Optimal Control Example (1)

from coopr.pyomo import
from coopr.dae import *

o
w

= ConcreteModel ()

.t = Differentialset(bounds=(0,1))
var(m.t)

var(m.t)

min xs (¢) AR e

s. t. X1 = Xo def _obj(m):
] return m.x3[1]
x2 — _xz + u m.obj = Objective(rule=_obj)

N2 2 2 def _xldot(m,t):
X3 =x7 +x5 +0.005*u return m.x2[t]
m.xldot = Differential (dv=m.x1, rule=_xldot)

2
XZ - 8 * (t - 0-5) + 0-5 S 0 def _XZdOt(m,t):
-m.x2 .
X1 (0) =0 m.nggguinmrqu)e(rgﬁ%?%%d[\slm.xz, rule=_x2dot)

= — def _x3dot(m,t):
x2 (0) 1 return m.X1[t]**2+m.x2[t]**240.005*m.u[t]**2
X3 (0) — m.x3dot = Differential (dv=m.x3, rule=_x3dot)

33333
X
N
I

_ def _con(m,t):
tf — 1 return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init cond1t1ons(m i):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(
rule=_init_conditions)

Hart, Siirola, Watson, p. 14 ational
a lirola atson, p Laboratories



Optimal Control Example (2)

e
w

from coopr.pyomo import
from coopr.dae import *

m = ConcretemModel ()

from coopr.pyomo import
from coopr dae import *

ala

min x3(tf)
s. t. le = Xy
x.z = —X + Uu

X3 = xf + x5 + 0.005 * u?
x,—8*(t—0.5)2+05<0

x1(0) =0

x,(0) = —

x3(0) =0
tf =1

Hart, Siirola, Watson, p. 15

def _xldot(m,t):

return m. ngt}

def _x2dot(m,t):

_return -m. xzit}mm u{ﬁ}

def _x3dot(m,t):

_return m, xl[t}

def _con(m,t):

return m.x2[t]-8% (t ~0.5)%%2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)
def _init_conditions(m,i):

yvield m.x1[0]
vield m.x2[0] ==
yield m.x3[0] ==
m.init_conditions = ConstraintList(
rulte=_init_conditions)

*2+4m. xz[t] *%2+0.005*m.ult]™

‘3:2

Sandia
National
Laboratories



\

Optimal Control Example (3)

from coopr.pyomo import *
from coopr.dae import *

m = ConcreteMode1()
m.t = Differentialset(bounds=(0,1))
m.x1 = var(m.t)
. m.x2 = var(m.t)
min xs(ty) ey
S. L. 96:1 = X9 def _obi(m):
X = —Xz+ U m = concreteModel()
X3 = x¥ + x5 + 0.00 m.t1= Di ff%ren‘)m alset(bounds
m.x1 = var(m.t
X, = 8x (=05 +| iy var(m.t)
x,(0) =0 m.x3 = var(m.t)
x,(0)=—-1| m.u = var(m.t)

Hart, Siirola, Watson, p. 16

def _con(m,t):
return m.x2[t]-8%(t-0.5)*%2+40.5 <= 0
m.con = Constraint{m.t, rule=_con)

def _init (Oﬂd???@ﬂ%{m iy
vield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(
rule=_r1init_conditions)

Sandia
National
Laboratories



Optimal Control Example (4)

min x3(tf)
s. t. le = Xy
x.z = —X + Uu

X3 = xf + x5 + 0.005 * u?
x, — 8% (t—0.5)24+0.5<

x,(0)=0

x,(0) = -1

x3(0) =0
tr=1

Hart, Siirola, Watson, p. 17

from coopr. gy@m& import *
from coopr.dae import *

= ConcreteModel ()

.t o= Differentialset(bounds=(0,1))
L o= var(mlt)

vari{m.t)

X3 = var(m.t)

LU= varim. )

EEEEEE
*
B
il

def _obj(m):
return m.x3[1]
m.obj = Objective(rule=_obj)

def _xldot(m,t):
 return m, x2[t]

def obj(m)
m.obj = Objective(rule=_obj)

return m.x3[1]

def _con(m,t):
return m.x2[t]-8%(t-0.5)*%240.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init Candiﬁion%{m i)
yvield m.x1[0] == 0
yield m.x2[{0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(
rule=_init_conditions)

Sandia
National
Laboratories



Optimal Control Example (5)

from coopr.pyomo import *
from coopr.dae import *

m = (Qﬂff@?@M@d@ (}
m. t = Differentialset(bounds=(0,1))
m.x1 = var{(m.t)
. m.x% = Vargm t%
m.x3 = var(m.t
min x3(tf) m.u = var(m.t)
s. t. X1 = Xo def _obj(m):
. return m.x3[1] )
Xo = —Xy + u m.obj = Objective(rule=_obj)
N2 2 2 def _xldot(m,t):
X3 =x7 +x5 +0.005*u return m,x2[t]
2 m.xldot = Differential (dv=m.x1, rule=_xldot)
X, —8*(t—05)"+05<0 FI T —

def _x1ldot(m,t):
return m.x2[t]
m.x1ldot = Differential (dv=m.x1l, dset=m.t,
rule=_x1ldot)

def _init fQﬁéTT?Qﬂ%{m 1)
vield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(
rule=_1init_conditions)

Hart, Siirola, Watson, p. 18 ational
art, Siirola, Watson, p L e



\

Optimal Control Example (6)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

min
s. t. X1 = Xo def _obj(m):
. return m.x3[1] )
Xo = —Xy + u m.obj = Objective(rule=_obj)
. def _xldot(m,t):
X3 — X% + X% + 0005 * u2 : ré‘tuﬁﬂ(gex%{t}
2 m.xidot = Differential (dv=m.x1l, rule=_xlidot)
— return -m.x2[t]+m.uflt
X1 (0) =0 m.x2dot = Differential(dv=m.x2, rule=_x2dot)
= — def _x3dot(m,t):
x2 (0) 1 return m.x1[t]**2+m. x2[t]**2+0.005*m.u[t]**2
X3 (0) — 0 m.x3dot = Differential (dv=m.x3, rule=_x3dot)

_ def _con(m,t):
tf — 1 return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init C@ﬂdwtwengim i)
vield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList( )
rule=_init_conditions)

Hart, Siirola, Watson, p. 1 ational
art, Siirola, Watson, p. 19 Laboratories

i
|



\

Optimal Control Example (7)

from coopr. py@mo import *
from coopr.dae import *

def _init_conditions(m,i):

: yield m.x1[0] 0

min x3(t; yield m.x2[0] == -1

s.t. X = ~yleld m.x3[0] == 0 _ _

X, = —x,+ M.1nit_conditions = ConstraintList(
rule=_init_conditions)

X3 = x¥ + x5 + 0.

e F Y B

— — 2 ”
x2 8 * (t 05) + 05 S 0 def ____xzci@t(mgi)ég E -

_ return ~-m.x2[t]+m.ult

xl (0) — 0 m.x2dot = Differential (dv=m.x2, rule=_x2dot)
= — def _x3dot(m,t):

x2 (0) 1 return m.ox1t]**2+m. x2[t]**2+0.005*m.u[t]**2

X3 (0) o 0 m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m,t):

tr = 1 Feturn m.x2[t]-8%(t-0.5)%%240.5 <= 0
m.con = Constraint(m.t, rule=_con)

def _init cond1t1ons(m i):
y1e1d m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
m.init_conditions = ConstraintList(
rule=_init_conditions)

Hart, Siirola, Watson, p. 20 ational
art, Siirola, Watson, p L e




Optimal Control Example: driver script

Hart, Siirola, Watson, p. 21

from coopr.pyomo import *

from coopr.dae import *

from coopr.opt import SolverFactory

from coopr.dae.colloc import Collocation_Discretization

# Import model
from example import m as model

# Create model instance
instance = model.create()

# Discretize instance using radau collocation
discretizer = Collocation_Discretization(instance)
discretized_instance = discretizer.apply(nfe=7, ncp=6)

# Solve discrete model
opt = SolverFactory(‘ipopt’)
results = opt.solve(discretized_instance)

# Load Results
discretized_instance.load(results) @ Sandia

National
Laboratories



'; R
Optimal Control Example: results

Differential Variables

Control Variable

0.2

145

Hart, Siirola, Watson, p. 22 ational
P Laboratories



Optimal Control Example: alternate driver

=)

from coopr.pyomo import *

from coopr.dae import *

from coopr.opt import SolverFactory

from coopr.dae.colloc import Collocation_Discretization
from smallExample import model

instance = model.create()

# Discretize instance using radau collocation

discretizer = Collocation_Discretization(instance)

instance = discretizer.apply(nfe=7, ncp=6)

# Control variable u made constant over each finite element
instance = discretizer.reduce_collocation_points(

var=instance.u, ncp=1, diffset=instance.t )

opt = SolverFactory(‘ipopt’)
results = opt.solve(instance)

instance. load(results)

Hart, Siirola, Watson, p. 23 ational
art, Siirola, Watson, p L e



'; R
Optimal Control Example: results

0.2

Differential Variables

-0.6

-0.8} T Kl
— X2

=135 0.2 0.4 0.6 0.8 1.0

Hart, Siirola, Watson, p. 24

Control Variable

0.2 0.4 0.6 0.8 1.0

Sandia
National
Laboratories



Y
" DataPortal: unified data import mechanism

 Where credit is deserved... Bill Hart, Sandia

« Observations:
— Scripting has become a common activity for Coopr users
— Original data management mechanism limited

« Data Portal Objects

— Support loading and storing data

— 1/O for set, parameter, variables, suffix data, etc.
— Explicitly manage connections to data sources
— Initialize both abstract and concrete models

— Data sources: csv, tab, odbc, xls/xIlsm/xIsb/xIsx, yaml, json, xml,
and Pyomo data command files

Hart, Siirola, Watson, p. 25 ational
art, Siirola, Watson, p L e



| i DataPortal Example: Abstract Model

M = AbstractModel()
M.A = Set(dimen=2)
M.q = Param(M.A)
M.p = Param(M.A)

dp = DataPortal()
dp.load(filename=‘foo.csv’, param=(M.p,M.q), index=M.A)

Instance = M.create(dp)

foo.csv
Al,A2,p,q
a,b,1,2
c,d,3,4

Hart, Siirola, Watson, p. 26 ational
P Laboratories



A4
| DataPortal Example: Concrete Models

db = DataPortal()
db.load(filename=‘foo.csv’, param=°q’, index=‘A’)
db.load(filename=*‘bar.tab’, param=°p’)

M = ConcreteModel()
M.A = Set(dimen=2, initialize=db.data(‘A’))
M.q = Param(M.A, initialize=db.data(‘q’))
M.p = Param(M.A, initialize=db.data(‘p’))
Instance = M.create()
foo.csv bar.tab
Al,A2,q Al A2 D
a,b,2 a b 1
c,d,4 C d 3

Hart, Siirola, Watson, p. 27 ational
P Laboratories



A4
"V Lower bounding in PH

* Where credit is deserved...
— Dinakar Gade, Sarah Ryan; lowa State
— Gabriel Hackebeil: Texas A&M
— Jean-Paul Watson; Sandia
— Roger Wets, David Woodruff; UC Davis

* Progressive Hedging (PH)
— “Historically” PH is a heuristic for MIP

— A lower bound on optimal cost can be obtained with
approximately the same effort as one PH iteration.

Hart, Siirola, Watson, p. 28 ational
art, Siirola, Watson, p L e



| i Obtaining PH Lower Bounds

* Implementation:
- phboundextension computes a lower bound in any iteration.
— Can compute a bound once every N iterations.

— Can assign the lower bounding task to separate processors,
one for each (bundle of) scenario sub-problem(s).

« How?

runph [..] --user-defined-extension=coopr.pysp.phboundextension

Hart, Siirola, Watson, p. 29 ational
art, Siirola, Watson, p L e



\

PH Lower / Upper bounds

440

@

420

400 2 © = W

380 |

360
2 340
S —p s 1
:g: 320 f B
S p=2
;:' 300
a —p =5

280

— = 15

260

240

220

200

0 20 40 60 80 100 120 140 160 180

Iteration

Sandia
Hart, Siirola, Watson, p. 30 ?Iaagglrg?(ll o



—; A
| (Performance)

« Recent work has had significant focus on memory
— 20% reduction over Coopr 3.2

* Removing bottlenecks
— Direct solver interfaces

— Transformations, especially for
» Block manipulation
* Disjunctive programming
« Stochastic programming
— Data management
« Param initialization and manipulation
» Data and model I/0O

rt, Siirola, Wat . 31 ofneL
Hart, Siirola, Watson, p. 3 Laboratories



i For More Information...

* Project homepage
— http://software.sandia.gov/coopr

Springer Optimizm 67

William E. Hart
Carl Laird

Jean-Paul Watson
. Malllng IiStS David L. Woodruff
— “coopr-forum” Google Group PVOFHQ o
— “coopr-dev” Google Group Optlml_zatlon
Modeling
» “The Book’ in Python

Online documentation
— “Getting Started with Coopr”

@Springer
— “Coopr Installation Guide”

Mathematical Programming Computation papers
— Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

— PySP: Modeling and Solving Stochastic Programs in Python (4(2), 2012) @ Sandia

Hart, Siirola, Watson, p. 32 National
P Laboratories



