
S a n d i a   N a t i o n a l  L a b o r a t o r i e s

Shock Compression of Condensed Matter 

Seattle, July 7-12 2013

Shock Compression of Cryogenic Noble 
Gas Mixtures: Krypton - Xenon 

Seth Root*, Rudolph J. Magyar, Raymond W. Lemke, and 
Thomas R. Mattsson

Sandia National Laboratories

Albuquerque, NM, United States

sroot@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and 
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 

Corporation, for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.

SAND2013-4974C



The Noble Gases

• Understanding the high pressure – high temperature response of 
the noble gases provides insight into the behavior of filled – shell 
electronic configurations

• The noble gases represent ideal systems for liquid state theory

• Krypton – Xenon are miscible and provide a test system for 
developing Equation of State models for mixtures

• Understand the high – pressure behavior of a 70/30 Molar 
Mixture of Krypton/Xenon

• Perform shock – reshock experiments on the Z – machine

• Use DFT to examine regions not explored experimentally

Previous work shows that integration of DFT, high-precision 
Hugoniot standards, and Z experiments constitutes a solid basis 
for understanding the high pressure response of materials.



Xenon: S. Root et al., Phys. Rev. Lett. 105, 085501 (2010).

J. H. Carpenter et al., EPJ Web of Conf. 10, 00018 
(2010).

Pure Xe and Kr EOS Results

• Measured the pure Xe and Kr
Hugoniots to 8 Mbar

• Validated the use of DFT for 
calculating Hugoniots to Mbar 
pressures

• Results lead to development of new 
wide-range EOS models for xenon 
and krypton

• Xenon SESAME 5191, J. H. Carpenter 
(SNL)

• Krypton Y360, P. Sterne (LLNL)

• Understand noble gas mixtures: 
70/30 molar mix Kr/Xe

Krypton: S. Root et al., SCCM 2011, Chicago, USA



Z-Experiment Setup

• Current pulse loops through 
shorting cap inducing a B – field.

• Resulting J x B force accelerates 
anodes (flyers) outward up to 40 km/s

• Asymmetric AK Gaps result in two 
different flyer velocities (two Hugoniot 
points per experiment

LN2 Cryostat
Cryogenic Gas Target

• Liquid Kr – 118 K, 0 = 2.43 g/cm³

• Liquid Xe – 161.5 K, 0 = 2.98 g/cm³

• Liquid Kr-Xe (70/30) – 161.5 K, 0 = 2.46 g/cm³
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• 70/30 Molar Mix Krypton/Xenon

• Initial Pressure 148 PSI

• Temperature = 161.5 K

• Mixed Liquid Density 2.46 g/cc

• Initial P-T repeatable for every 
experiment

• Sapphire windows to hold pressure

• VISAR measures flyer velocity

• Shock front reflective in Mix and 
Quartz – sapphire depending on 
pressure

• Multiple VPFs to reduce uncertainty

Experimental Approach

Target design allows for measurement of the reshock state



Quartz - Sapphire Us-Up Data and Fits

• Nearly 300 quartz and 34 
sapphire Hugoniot data points 

• Data includes uncertainty from 
Al and Cu Hugoniot standards

• Correlation Matrix propagates 
all uncertainties

• M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 103, 225501 (2009).

• D. G. Hicks et al., Phys. Plasmas 12, 082702 (2005).

• R. F. Trunin, Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter ( 2001).

Direct measurement of flyer and shock velocity leads to high precision data
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Release Paths

• Quartz release measured using 
TPX and aerogel foam standards

• Density Functional Theory 
simulations used to calculate 
release paths

• New release model developed for 
quartz from experimental data

M. D. Knudson, Monday July 8 1100AM: Characterization of the release response of -quartz

• Monte Carlo Impedance matching 
using the new quartz release model

• Monte Carlo impedance matching 
to sapphire reflected Hugoniot

• Correct for sapphire release using 
SESAME 7411



Experimental Results: Hugoniot

• Measured the principle Hugoniot to 
7 Mbar

• Monte Carlo analysis accounts for 
impedance standard uncertainty

• Experimental results similar to pure 
Kr

• Mix 0 = 2.46g/cm3, Kr 0 = 2.43 
g/cm3

• Weighted Linear Fit to experimental 
data

1 -0.9851

-0.9851 1

Correlation Matrix



Density Functional Theory 

• DFT-MD simulations performed using VASP 5.2.12*

• Electronic states occupied according to Mermin’s finite-temperature 
formulation

• Projector augmented wave core functions (PAW) potential for core 
electrons – 8 valence electrons

• Calculate energy and pressure for a given density and finite temperature

• Solve the Hugoniot Condition: 

* G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994). 

     02  vvPPEE refrefref

• Initial conditions: 0 = 2.46 g/cc, T0 = 161.5 K, 30 atoms

• AM05 exchange correlation functionals

• Convergence tested: number of atoms, energy cut off

• Methods demonstrated successfully on Xenon and 
Krypton



Comparison to DFT and EOS Tables

• The Kr Y360 EOS table reasonable 
reproduces the DFT and experimental 
data

• This applies only for this mixture ratio 
with these initial conditions!!

• The similar initial densities of the pure 
Kr and 70/30 Mix likely cause the 
similar results in this pressure regime

• DFT simulations to 3 Mbar

• DFT results consistent with the 
experimental data



Second Shock State

• Experimental measured 2nd

shock state to 8 Mbar

• Use linear fit to determine 
Mixture Hugoniot state prior to 
second shock (shock 
attenuation in the Kr/Xe
sample)

• Monte Carlo Impedance 
Matching to the quartz 
Hugoniot

• Error bars larger because of 
uncertainty in initial state

• At pressures < 3.5 Mbar the 2nd

shock is more compressible

• Above 5 Mbar the 2nd shock is 
less compressible



Summary

• Experimental measured the principle Hugoniot of a 70/30 Molar ratio 
mixture of krypton and xenon to 7 Mbar

• Determined the reshock state to 8 Mbar

• DFT simulations to calculate the low pressure (< 3 Mbar) region of 
the Hugoniot – results consistent with the experimental data

• The Y360 Krypton table reasonable describes the mixture Hugoniot, 
but only because of the initial density similarity

• Data can be used to understand mixture theory for EOS development

The integration of DFT, high-precision 
Hugoniot standards, and Z experiments 
constitutes a solid basis for understanding 
the high pressure response of materials.
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Monte Carlo (MC) Impedance Matching

Monte Carlo technique accounts for all experimental uncertainty and 

propagates the Al and Cu standards’ error into the quartz data.

Aluminum

• Uncertainty in experimental data (Knudson 
et al., JAP 2003)

• Vary each US-UP point by an uncorrelated 
random number with  = expt. Uncertainty

• Solve for linear fit parameters

• Determine mean, , and correlation of fit 
parameters

Quartz

• Vary measured parameters (VF, US, 0) with 
uncorrelated random numbers,  = experimental 
uncertainty

• Vary Al fit parameters using correlated random 
numbers

• Calculate UP, P, and 

• Determine mean and 


