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The Noble Gases

* Understanding the high pressure — high temperature response of
the noble gases provides insight into the behavior of filled — shell

electronic configurations

 The noble gases represent ideal systems for liquid state theory

* Krypton — Xenon are miscible and provide a test system for

developing Equation of State models for mixtures

 Understand the high — pressure behavior of a 70/30 Molar
Mixture of Krypton/Xenon

* Perform shock — reshock experiments on the Z — machine

 Use DFT to examine regions not explored experimentally

Previous work shows that integration of DFT, high-precision
Hugoniot standards, and Z experiments constitutes a solid basis——

for understanding the high pressure response of materials.
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Pure Xe and Kr EOS Results
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S Z-Experiment Setup

Induced
B-field

Current
(J)
/ Targets

Anode (Flyers)

* Current pulse loops through
shorting cap inducing a B — field.

 Resulting J x B force accelerates
anodes (flyers) outward up to 40 km/s

» Asymmetric AK Gaps result in two
different flyer velocities (two Hugoniot
points per experiment

LN, Cryostat
ched Cryogenic Gas Target

* Liquid Kr — 118 K, p, = 2.43 g/cm?
* Liquid Xe — 161.5 K, p, = 2.98 g/cm?®
* Liquid Kr-Xe (70/30) — 161.5 K, p, = 2.46@;J7cm3
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Experimental Approach

__ Quartz Copper Target Cell ®r
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Time

70/30 Molar Mix Krypton/Xenon

Initial Pressure 148 PSI « VISAR measures flyer velocity

Temperature = 161.5 K « Shock front reflective in Mix and
Quartz — sapphire depending on

Mixed Liquid Density 2.46 g/cc pressure

Initial P-T repeatable for every
experiment

Sapphire windows to hold pressure

* Multiple VPFs to reduce uncertainty

Target design allows for measurement of the reshock state i
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ke Quartz - Sapphire Us-Up Data and Fits
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« Correlation Matrix propagates
all uncertainties
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Direct measurement of flyer and shock velocity leads to high precision data

* M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 103, 225501 (2009).
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Pressure (GPa)

M. D. Knudson, Monday July 8 1100AM: Characterization of the release response of a-quartz
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Monte Carlo Impedance matching

using the new quartz release model

Monte Carlo impedance matching
to sapphire reflected Hugoniot

Correct for sapphire release using
SESAME 7411

Pressure (GPa)

Release Paths

Quartz release measured using
TPX and aerogel foam standards

Density Functional Theory
simulations used to calculate
release paths

New release model developed for
quartz from experimental data
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Measured the principle Hugoniot to
7 Mbar

Monte Carlo analysis accounts for
impedance standard uncertainty

Experimental results similar to pure
Kr

Mix p, = 2.46g/cm3, Kr p, = 2.43
g/cm?3
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ke Density Functional Theory

* DFT-MD simulations performed using VASP 5.2.12*

 Electronic states occupied according to Mermin’s finite-temperature
formulation

* Projector augmented wave core functions (PAW) potential for core
electrons — 8 valence electrons

 Calculate energy and pressure for a given density and finite temperature

- Solve the Hugoniot Condition: Z(E _E f)_ (P+ p fxv , —v)z 0

¥

* Initial conditions: p, = 2.46 g/cc, T, = 161.5 K, 30 atoms
« AM05 exchange correlation functionals
« Convergence tested: number of atoms, energy cut off

* Methods demonstrated successfully on Xenon and
Krypton
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: ' Comparison to DFT and EOS Tables
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Second Shock State

Experimental measured 2"d
shock state to 8 Mbar

Use linear fit to determine
Mixture Hugoniot state prior to
second shock (shock
attenuation in the Kr/Xe
sample)

Monte Carlo Impedance
Matching to the quartz
Hugoniot

Error bars larger because of
uncertainty in initial state

At pressures < 3.5 Mbar the 2"
shock is more compressible

Above 5 Mbar the 2"d shock is
less compressible
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Summary

« Experimental measured the principle Hugoniot of a 70/30 Molar ratio
mixture of krypton and xenon to 7 Mbar

« Determined the reshock state to 8 Mbar

 DFT simulations to calculate the low pressure (< 3 Mbar) region of
the Hugoniot — results consistent with the experimental data

« The Y360 Krypton table reasonable describes the mixture Hugoniot,
but only because of the initial density similarity

- Data can be used to understand mixture theory for EOS development
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Monte Carlo (MC) Impedance Matching

Aluminum

* Uncertainty in experimental data (Knudson
etal., JAP 2003)

| Possible, but highly improbable fits

* Vary each Ug-U, point by an uncorrelated

random number with ¢ = expt. Uncertainty Best Fit

 Solve for linear fit parameters

* Determine mean, o, and correlation of fit “r ]
parameters T
Quartz U, (km/s)
- Vary measured parameters (Vg, Ug, p,) with | BoetValia n. U, \A
. X r ni
uncorrelated random numbers, ¢ = experimental | varied p, U 7% S
uncertainty 51 vaned &S,
o
- Vary Al fit parameters using correlated random 5 XY |
o S 7 Fl
numbers ot Q//\Q,:/ \ Vglircity, V. ]
« Calculate U, P, and p i |
- Determine mean and T Parte velooiy, Uy (amis)

Monte Carlo technique accounts for all experimental uncertainty and Sania
propagates the Al and Cu standards’ error into the quartz data. ) feol




