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* MgO is abundantly found the Earth’s mantle
and likely other terrestrial exo-planets

* Understanding the high P-T behavior of
MgO is important for modeling Earth’s
interior and planetary formation

» Static pressure data show no phase
transition up to 227 Gpa at ambient
temperature

Temperature (K)

* Hugoniot data (starting at ambient
temperature) to ~ 200 GPa — no phase
transition

» Belonoshko et al predict a B1-B2 phase
transition near 350 GPa and melt near 5 Mbar
and 12000 K.

* McWilliams et al predict B1-B2 transition at
440 GPa and melt at 650 GPa
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L vl MgO Phase Diagrams
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* Multiple phase diagrams published

« B1-B2 phase boundary in
disagreement in all phase diagrams

« Melt boundary in disagreement

« No consensus on phase
boundaries

-
w

Temperature T (103 K)
[y
o

Temperature [10° K]

u

.-

]
This study

I

Super Earth
_(5Mg) 1

ra
-

I B1 to B2, 0K (Theory) —|
1 L

0.4
Pressure P (TPa)

0.6 0.8

McWilliams et al., Science 338, 1330 (2012)

20

0

N TN T T T T T T S T T T T Y

G. -G, [meWatom)

1

liquid

l', f \::w K

8.%.9.9.%

LI l L | L L I L l LI ‘l LELELEL l L)
0 100 200 300 400 500 600
Prassure [GPa]

ndia
“nal

B. Boates and S. Bonev, PRL 110, 135504 (2013). ratories



Objectives

* Measure the MgO Hugoniot to 12 Mbar using the
Sandia Z - Machine

 Experimental determine the proposed solid-
solid phase transition

* Determine melt on the Hugoniot

* Apply Density Functional Theory methods to
corroborate experimental findings

* Update the MgO phase diagram




! Experimental Approach

Induced Shorting Cap
B-field
Current flow (J) Al 6061
@ Flyer Plate
© S
® Samples
@ @ AK Gap
Opaque
samples
Cathode Anode (Flyers)

- * Multiple samples per experiment
 Current pulse loops through shorting

cap inducing a B —field. * MgO windows are initially transparent
and are backed by quartz, TPX plastic, or

* Resulting J x B force accelerates aerogel windows

anodes (flyers) outward up to 40 km/s

_ ] * VISAR used to measure flyer velocity
 Asymmetric AK Gaps result in two

different flyer velocities (two Hugoniot * Multiple VPFs per sample — reduces
points per experiment uncertainty

Sandia
Method produces steady shock state in the MgO i) fatonat
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Experimental Measurements
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* VISAR tracks flyer plate velocity up to impact

» Shock front in MgO not reflective — Loss of contrast in VISAR signal
» Clear impact and shock transit fiducials — transit time analysis

At higher pressures, MgO shock front reflective and shock velocity
measured directly

» Shock front in back window is reflective — release state for MgO is i Sandia
determined (not discussed here)
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Monte Carlo (MC) Impedance Matching

Aluminum

* Uncertainty in experimental data (Knudson
etal., JAP 2003)

| Possible, but highly improbable fits . # 28

 Vary each Ug-U; point by an uncorrelated

random number with ¢ = expt. Uncertainty Best Fit

 Solve for linear fit parameters 16 \ / :
* Determine mean, o, and correlation of fit “T /i&é ]
parameters T L
U, (km/s)
Mgo 'l'l'l'l'l__l'l'l,'/l'|'|'l'l
- Vary measured parameters (V, Ug, p,) with | Beatvakepo U, .\ A,
uncorrelated random numbers, o = experimental | veriedpu, R T R
uncertainty St T/ TRkl
o
- Vary Al fit parameters using correlated random sl N |
] V4 N\ FlI
numbers = Q//“/” "\, Vglircity. V, ]
» Calculate U, P, and p i i —
- Determine mean and ¢ T Partde Veloaty, Uy (mis)
Monte Carlo technique accounts for all experimental uncertainty and Sits

National

propagates the Al standard error into the MgO data. il Laboratories




Experimental Results
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 Total of 37 Hugoniot measurements
* Highest pressure Hugoniot measurement - 11.6 Mbar
* Lowest pressure Hugoniot measurement — 330 Gpa
* No reflective shock front below 7 Mbar
« Data spans the B1-B2 transition and the B2 - melt transition T Sandia
ationa
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« Z data deviate from the extrapolated gun data fit at 330 Gpa
« Z data also deviate from the McWilliams ef al fit near 330 Gpa
« Suggests the B1-B2 solid phase transition starts around 330 Gpa

* No obvious change in Hugoniot as MgO transitions from B2 -
Liquid
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Optimization for Phase Boundaries

« Use Genetic Algorithm (GA) methods to
optimize a 3 and 4 piece linear fit.

- 3 - Piece uses B1, B2, Liquid regions

« 4 - Piece uses B1, B2, Coexistence
region, and liquid region

« Similar method applied to diamond
(Knudson et al, Science 322, 1822
(2008).

 GA method optimizes ‘break points’ for
a multi-piece linear fit using linear
regression

« Several optimization runs performed to
estimate uncertainty in break points

« 3-piece linear fit suggests a large B2
region inconsistent with previous
phase diagrams and has a larger y? o
than a 4-piece fit oo e
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Optimization Results

B1 - B2 Boundary
Up =6.00 * 0.20 km/s

P =330 - 355 Gpa

B2 - Liquid Coexistence Region
Up=7.5%0.3 km/s
P =412 - 466 Gpa

Coexistence Region — Liquid Boundary
Up=9.7*0.1 km/s
P =660 — 683 GPa

Largest uncertainty in the B2 —
coexistence region

More data will improve the result
statistics

Use DFT methods to further elucidate the phase

diagram
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Density Functional Theory

* Use DFT-MD to assess the state of MgO at high pressures

* DFT-MD simulations performed using VASP 5.2.12*

 Electronic states occupied according to Mermin’s finite-temperature
formulation

» Calculate energy and pressure for a given density and finite temperature

- Satisfy the Hugoniot Condition:

20E-E,, )-(P+P, v, -v)=0

A

« Simulations start from the B1 and the B2 phase

« 216 atoms per simulation (B1 phase); 250 atoms (B2 phase)

« AMO05 (Armiento-Mattsson) exchange correlation functional

« VASP PAW potentials: Mg(3s?) and O(2s?p*) for low temp (< 1eV)
Mg(2s22p©3s?) and O(2s2p*) for (> 1eV)

National

Sandia
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DFT Hugoniot Results

DFT simulations to 12 1200 |- ° This work a’
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- Examine the phase boundaries
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Calculation of Solid-Solid Phase Boundary

 Pressure and Energy are directly
calculated in DFT-MD

* For finite temperature phase el I —p—

transitions entropy is necessary f:f__iglog.;;cgpli , Liquid
_szllquE ’
« At low temperatures, harmonic o | O  Swendsenaamens, 1987 s
. . . x i b/,---- v 7
phonon approximation provides o i
solution jg
E
« Use finite displacements in a supercell & =xf

following the approach of the Phon

code

(Alfe, Computer Physics Communications. 180, 2622

(2009)) % 200 200 800
Pressure (GPa)

« Entropy can be calculated directly
using analogy to finite temperature
quantum harmonic oscillator

« Approximation breaks down for
moderate temperatures
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Solid — Melt Boundaries

For melting boundary use
two phase coexistence
simulations

Place solid and liquid in
contact with each other

Run at different
temperatures or starting
energies and watch phase

Relative heat capacities
and enthalpy of melting
determine range of phase
coexistence

Follow work of

Belonoshko, but include

quantum calculations of B2

phase melting sandia
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MgO Phase Diagram

B1 - B2 phase boundary occurs
lower than predicted by Belenoshko

B1 — melt boundary consistent with
Alfe

DFT Hugoniot shows a large region
of coexistence on the B2 — melt
boundary

US — Temperature Fit applied to
experimental data

Region of B1 — B2 coexistence from
DFT ranges from 330 — 350 GPa

Region of B2 — melt coexistence
ranges from 430 — 660 GPa
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Summary

« Accurately measured the MgO Hugoniot from 330 GPa to 1160 Gpa

 Determine the phase boundary regions for the B1, B2, and Liquid phases of
MgO along the Hugoniot

« Show MgO has a large coexistence region along the Hugoniot between B2
and liquid

- Significant importance to planetary and moon formation

- Shock pressures of ~7 Mbar or greater needed to completely melt MgO

 Developed an updated phase diagram for MgO
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Comparison to McWilliams
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 The B1-B2 transition occurs at lower pressure

« Larger B2 - Liquid coexistence region

 DFT temperatures lower than measured temperatures in the
liquid state
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