Coherent interference of nonlinearities
In nanoscale silicon waveguides:

The interplay between Kerr, free-carrier dispersion,
and Brillouin nonlinear responses.
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Silicon photonic waveguide

* Silicon waveguide (n = 3.45) on silicon dioxide substrate (n = 1.44).

* Strong field confinement (area < 1 um?).

e Sufficiently low propagation loss ( < 1 dB/cm).
300 nm
* Small bending radius (7 < 3 um). si <7~
/ $300 nm

* Nano-photonics. l{_/\_/\é/
SiO,

Major Nonlinear Effects for use of dynamic devices
* Re{y®}: Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM),
Four-Wave Mixing (FWM)
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* [m{y®}: Two-Photon Absorption (TPA), Stimulated Raman Scattering (SRS)

e TPAinduced Free Carrier effect (y©®) ?
Lin, et al., Opt. Express 15, 16604 (2007) S B S -

Leuthold, et al., Nature Photon. 4, 535 (2010)
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Stimulated Brillouin scattering (SBS)

e Scattering of light from acoustic waves.

e N
p = k; + K
kp ............ K ........... >
Stokes SBS  Anti-Stokes SBS \ = J

How does backward-SBS work?
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» Strong coupling requires large optical forces.

e Tight phonon confinement.

Q=2 U Q: Phonon angular frequency  n: Refractive index
= 4ho c | v:Sound velocity o: Optical angular frequency

R.W. Boyd, “Nonlinear optics,” Chap. 9.

1 Electrostrictive forces

compress medium

Electrostriction:

From dynamic material
response.
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Phase matching condition of SBS

Backward-SBS phase matching condition
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Backward SBS

Chiao, et al., Phys. Rev. Lett. 12, 592 (1964) Ippen, et al., Appl. Phys. Lett. 21, 539 (1972)
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Forward-SBS phase matching condition
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Shelby, et al., Rhys. Rev. B 31, 5244 (1985). 5
Kang, et al., Nat. Phys. 5, 276 (2009). -
Wang, et al., Opt. Express 19, 5339 (2011). - Ul
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Forward SBS by two-color pump-probe

Wy, — w1 = ()
A1 (wq)
Az(w2) <
Az(w3)

P; = |Ai|2 TE-like waveguide mode
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Coupled wave equation for Stokes - lwl | o,

-
S
N
Q
[
—
@

wavedA _ . . Y
d_; = [Yé?s (Q)] A14;743 10
V%)s (Q): the third order nonlinear coefficient for SBS.
G Q.. /20 (3)
(3) m _
) =— . where G = 2 Q)
Ysps(Q) 20 —0-i0./20 ‘YSBS( m)l J

R.W. Boyd, “Nonlinear optics,” Chap. 9, Academic press



Forward SBS by two-color pump-probe

e Stokes wave amplitude ~ Resonant
Brillouin Susceptibility
Ay(2) = e Sss@lPptsz =
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Coupled wave equation for Stokes wave with Kerr effect o
—= =i [v§as (@ + 277 | 414,45 -

yg?l’g)s(ﬂ): the third order nonlinear coefficients for SBS.

. Y1(<) the third order nonlinear coefficients for non-degenerate FWM. || 6




SBS nonlinear responses
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P; = |A;|* TE-like waveguide mode Aa(wz + Q) &
en
Coupled wave equation for Stokes wave §
dA _ c
—= = z[yg;)s (@) + 2y +yE (- Q)PO] At Ay A, Q
—
. ySBS(Q) the third order nonlinear coefficients for SBS. @)

. y& ) the third order nonlinear coefficients for non- -degenerate FWM.
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~ yFC) (Q): the fifth order nonlinear coefficient for free carrier effects.

Po = 2(|A11% + |42|* + |451%)




g5 = C [y @Lsps + (2v2 + Y (=P, ) Liot| PiPoPs

C 1s a constant, P, indicates the optical power of kth field, and
Lggs and Ly, are the interaction lengths of SBS and the rest
nonlinear responses, respectively.
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In the absence of the Brillouin nonlinearities (e.g. for large
detuning from a Brillouin resonance) the free carrier and FWM
contributions to the Stokes sideband
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0 /2Q
8os QO_Q_iQm/ZQ

D, GLSBS/(ZLtot ZY(B) + VF(S;)( Q)PoD

the relative strength of the Brillouin scattering effect relative
to the reference nonlinear responses.

5s _ leibs 4 p

(3) (5)
‘ZV ‘ > ‘VFC (£Q)P 0‘ at high frequency (>15 GHz)
3
N = ‘ZY( + Ve Q)P /\ZYI(Q

G =2D,n

L
(3)] ~tot
“Yk ‘ Lsps
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12 a o Stokes b 0 Anti-Stokes
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Brillouin Active Membrane waveguide

Brillouin Active Membrane
(BAM) waveguide

Si;N, membrane
acts as conduit
for phonons.
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Ir slots

Each slot acts as a
wideband phonon mirror. « New physics

CLEO 2013 7240013

e Structure dependent resonant
Excellent phononic frequency
resonances over wide

Free control of phonon structure )
range of frequency.

while optimizing photon waveguide

« (Cascaded higher modes .




Brillouin active membrane waveguide
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/Air slot
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Quantitative Analysis of Brillouin Nonlinearity
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Efficient transduction 1-18 GHz
frequencies.

3,000 x stronger forward SBS
than any known system.
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_______Conclusion
/

First demonstration of wideband (1-18 GHz)
photon-phonon interaction with high Q.

a o Stokes

First-ever demonstration chip-scale Forward
Stimulated Brillouin Scattering (SBS).

Power (a.u.)

> 3,000 x stronger SBS than any known system.

6.165 6.18 6.195 . ..
Frequency (GHz) > Demonstrated tailorable phonon resonant emissic:

from 1GHz-18GHz.

> Demonstrated tailorable nonlinear susceptibility
from the coherent interference of Kerr and Brillouin
nonlinearities.

High f*Q product close to the intrinsic damping of

Si;N,.
15

>f,=16.3 GHz and Q = 1500
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