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Motivation

• Electronic digital signal processing is limited for wideband RF signals
– Wideband signals have to be channelized to passbands of a few GHz

– They are then down-converted to frequencies compatible with A-to-D converters

– Electronic channelizers are physically large and have fixed frequency 
characteristics 

• Limiting the application space



Monolithic RF Channelizing PIC

• Why optical RF channelizing?

– Low SWaP

– Wide bandwidth (1-50 GHz)

– Made possible by InP-based 
photonic integrated circuits (PICs)

• Channelize RF signals for further 
analysis

• Monolithic integration enables 
compact, highly functional 
photonic integrated circuits 
(PICs)

• Tunable filters enable accurate 
placement across the frequency 
band



Monolithic RF Channelizing PIC

• Important PIC features
– Cascaded ring resonator filters

• Tunable over 10’s GHz

• GHz-class pass bands

• 65 GHz free spectral range

– Integrated laser-modulator

• Reduces coupling losses

• Signal to EAM provides the 
RF input

– Integrated extra filter for 
wavelength monitoring



• Quantum well intermixing
– Metastable interface between well/barrier

– Add catalyst to enhance interdiffusion

– Reshaping increases the energy level

• Reduces the bandgap wavelength

– Capable >2 bandedges with same epitaxial base

Monolithic Integration Platform

Laser, SOA

EAM

Passive WG, Tuning Sections



DBR Laser –EAM

Laser-modulator

• DBR laser
– >50 dB SMSR

– Laser tunable over several nm

– Continuous tuning over 0.3 nm

• Electroabsorption modulator
– Bandwidth >20 GHz for 150 µm length

• Ridge waveguide design



Design of Active Ring Filters

• Active ring resonators offer:

– Compact size

– Low, or zero, back reflection

– Monolithic integration with lasers, modulators, SOA, etc.

– Gain elements can be used to compensate for waveguide losses

– Loss, couplers, and optical gain needs to be tightly controlled to achieve 
designed bandwidth, profile, extinction ratio and low noise

• Our approach

– Couplers designed for 1-5 GHz linewidth

– Integrated 60-µm-long SOAs in the ring

• Manipulate loss through filter

• Length and total gain designed for low noise

– Tuning section

• Current injection

gain of g dB/pass

loss of α dB/cm

field coupling κn

thru

drop



Filters: Previous Work

• Tuning of single ring resonator

– Tunable over the entire free 
spectral range

• Developed experimentally verified 
models for the InP-based 
resonators

“InP Tunable Ring Resonator Filters”, Photonics 
West 2012

• Cascaded 2-ring resonator

– 3 GHz 3-dB optical bandwidth

– >20 dB extinction

– Quality factor of 65,000

“Cascaded Double Ring Resonator Filter with 
Integrated SOAs” OFC 2011



Filters: Waveguides

• Low loss waveguides are 
necessary for high Q filters

• Couplers need to be tightly 
controlled to achieve designed 
bandwidths

• Buried heterostucture
advantages

– Waveguide thickness defined by 
epitaxial material

– Semiconductor etch only defines 
guiding width and coupler gap

– Devices are essentially not 
affected by variations in etch 
depth

Waveguides in [011]

Waveguides in [011]

Regrown p-InP

Regrown p-InP

n-InP

n-InP

Waveguide

Waveguide



Ridge to Buried Heterostructure Coupler

• Laser and modulator has been 
optimized for ridge waveguide 
architecture

• Rings are optimized for buried 
heterostructure architecture

• Transition between the two 
waveguide types is done by 
tapering

• Experimental measurements 
show excess loss of 0.14 
dB/transition 
– Theory predicts 0.11 dB/transition



Characterization of Packaged Devices



Characterization: Wavelength Scans

• Laser wavelength was scanned by adjusting phase current over a 
continuous tuning range

• Strong optical power gives the best measurement of filter shape

– 3-dB optical passbands of 3.8 GHz demonstrated

– 3-dB electrical passband of 3.36 GHz



Characterization: RF Scan

• Sinusoidal signal was applied to 
modulator to create a sideband
– The signal frequency was swept to 

sweep the sideband through the 
channelizing filter

• The lower signal power from the 
RF sideband is on the order of this 
noise

• Lower filter extinction is due to the 
filter noise floor
– ASE from SOAs create a noise floor



Summary

• Demonstrated viable approach for optical RF channelizing PIC

– Active 3-pole ring resonator filters

• >20 dB of optical extinction

• State-of-the-art 4 GHz passband matching models

• Further reduction in passband possible with new designs

• Lower crosstalk can be achieved with higher pole-filter

– Demonstrated filtering of RF signal

• Performance limited by SOA noise and sideband power

• Improvements in modulator efficiency will improve signal to noise

– Traveling wave modulators

– Mach-Zehnder modulators
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Motivation
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Experimental results
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• Scanning source measurement
– Wavelength swept on a tunable laser source

– 12 nm filter added to the ring output

• This filters out much of the ASE from the SOA

– 3 GHz 3-dB optical bandwidth

– Quality factor of 65,000

filter



Previous Work

• Dual ring resonators with 
quality factor of 65,000

– Linewidth of 3 GHz

• Analysis of dynamic range of 
active ring resonator filters

– Active ring resonator filters can 
offer improved performance 
over passive filters (SiON) due 
to no coupling losses

– Limitations due to amplified 
spontaneous emission and 
SOA saturation must be 
designed in

“Cascaded Double Ring Resonator Filter with Integrated SOAs”, OFC 2011
“Wide Dynamic Range of Ring Resonator Channel-Dropping Filters with Integrated SOAs”, OFC 2011



Previous Work

•Tuning of Single Ring 
Resonator

– Tunable over the entire 
free spectral range

•Developed 
experimentally verified 
models for the InP-
based resonators

“InP Tunable Ring Resonator Filters”, Photonics West 2012



Design of Active Ring Filters

• Active ring resonators offer:

– Compact size

– Low, or zero, back reflection

– Monolithic integration with lasers, modulators, SOA, etc.

– Gain elements can be used to compensate for waveguide losses

• Design Considerations:

– Bandwidth determined by:

• Coupler strength and optical loss

– Filter profile defined by:

• Coupler strengths and number of rings and internal net loss

– Extinction ratio influenced by:

• Noise from optical amplifiers and optical loss

– Tunability affected by:

• Size of tuning section and induced loss

→ Loss, couplers, and optical gain needs to be tightly controlled

gain of g dB/pass

loss of α dB/cm

field coupling κn

thru

drop



Approach

• Couplers designed for 1-2 GHz linewidth
– Fractional coupling power of 6% for both couplers

• Integrated 60-µm-long SOAs in the ring
– Minimize loss through filter

– Length and total gain designed for low noise

• Tuning section
– Current injection



• Quantum well intermixing
– Metastable interface between well/barrier

– Add catalyst to enhance interdiffusion

– Reshaping increases the energy level

• Reduces the bandgap wavelength

– Capable >2 bandedges with same epitaxial base

Monolithic Integration Platform



Buried Heterostucture Waveguides

• Waveguide definition process

– Stepper lithography

• 0.6 µm resolution

– Dry etch

– MOCVD Regrowth

• InP cladding

• InGaAs contact layer

• Buried heterostucture
advantages

– Waveguide thickness defined by 
epitaxial material

– Semiconductor etch only defines 
guiding width and coupler gap

– Devices are essentially not 
affected by variations in etch 
depth

Waveguides in [011]

Waveguides in [011]
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Low Loss Waveguides

• Low loss waveguides

– Loss and coupling define the 
bandwidth of the filter

• Scattering and Absorption Loss

– Modal overlap with InP p-type 
doping regions is a major 
source of loss

• 500 Å doping spike at the 
regrowth interface

– Compensates for Si 
contamination at the regrowth 
interface

• Doping of the regrown p-type 
cladding

– Waveguide loss was measured 
using Fabry-Perot cavity 
measurements

• 1.5 cm-1 at 1550 nm

Simulated p-type Doping Loss

Experimental Loss Measurements



Low Loss Waveguides: Bend Loss

• Low loss waveguides

– Loss and coupling define the bandwidth of the filter

• Output coupling and waveguide loss

• Bend loss

– Tradeoff between loss and FSR

– 200 µm radius for 1 µm waveguide width 
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Low Loss Waveguides: Bend Loss

• Waveguide width is very 
important to bend loss

• Lithographic bias can 
significantly affect bend losses

– Projection lithography/stepper 
used

– Dimensions verified by CD 
SEM measurements

• Monitors bias drift over time

• Done before waveguide etch 
allowing for rework.



Couplers

• Coupler design

– Couplers utilize 1 µm waveguides 
with 1 µm gap

– Coupling defined by length overlap 
region

– Lithography biases are constant

→ Consistency in coupler values 
within and between process runs

• Simulations used to predict 
coupling

– BPM simulation

• Includes waveguide bends

– Experiment shows lower coupling 
than predicted by BPM

• Waveguide widths and gap has a 
bias due to fabrication



Experimental results

• Scanning source measurement
– Wavelength swept on a tunable laser source

– 12 nm filter added to the ring output

• This filters out much of the amplified spontaneous emission (ASE) from the SOA



Experimental results

• Scanning source measurement
– Variation in SOA current from 0.1-1.0 mA

– >15 dB extinction

– 3.5 GHz to 2.2 GHz FWHM optical 
linewidth



Experimental results

• Optical spectrum analyzer measurement

– Broadband light source

– Ring output fiber coupled to OSA

– Better for larger wavelength scans

– ISOA1 = 2 mA

– Extinction ratio of >15 dB

Broadband Light 
Source

polarizer

Optical
Spectrum
Analyzer

+
+



Experimental results

• Optical spectrum analyzer measurement

– Broadband light source

– Ring output fiber coupled to OSA

– ISOA1 = 2 mA

– Extinction ratio of >15 dB

– 110 GHz with ITune = 1 mA

• Nearly twice the free spectral range
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Simulation: Calibration

• Complete simulation of dynamic range and noise of active InGaAsP multi-ring 
filters

– Include gain distortions and spontaneous emission noise

• Time dependent rate equation method

– Gain and spontaneous emission modeled as function of injection current at all 
wavelengths simultaneously

• Fit experimental bandwidth of drop and extinction of bus to extract net round 
trip loss and coupling fraction

– 6% coupler with 1.4 cm-1



Simulation: Tuning Current Loss
• Tuning and loss from benchmarked 

from filter tuning data

• Effects of tuning induced loss on 
FWHM linewidth

• 0.9 dB of additional loss caused by 
tuning current 

– reduces peak power 5 dB

– Increase FWHM by 1.6 GHz

• Loss can be compensated by increase 
in SOA gain



Motivation

• Analyze an RF signal for frequency content

– Filter outputs are spectral power density integrated over the filter bandwidth

• Monolithic integration with active components such as lasers and 
modulators enables compact, highly functional photonic integrated 
circuits (PICs)

ch. n

λo

ch. 1
Optical output

RF Input

Integrated laser, modulator, and 
filters

Laser EAM



Simulation benchmarking



Monolithic RF Channelizing PIC 

• Channelize RF signals for further analysis

• Monolithic integration enables compact, highly functional photonic integrated 
circuits (PICs)

• Tunable filters enable accurate placement across the frequency band



Monolithic RF Channelizing PIC

• Channelize RF signals for further analysis

• Monolithic integration enables compact, highly functional photonic integrated 
circuits (PICs)

• Tunable filters enable accurate placement across the frequency band



InP Active 2-ring Filter

– ASE source and OSA

• Higher extinction

– SOA-ASE goes is correct wavelength ‘bin’

– Tunable laser and photodiode

• Lower extinction 

– off resonance measurement includes SOA-ASE from all wavelengths

• A filter (~5 nm) will give results similar to OSA

– This can be external for testing

– On a monolithic chip we need to add additional filtering

need bigger font
on fig



Channel-Dropping Filters

• Analyze an RF signal for frequency content

– Filter outputs are spectral power density integrated over the filter bandwidth

• Monolithic integration with active components such as lasers and 
modulators enables compact, highly functional photonic integrated 
circuits (PICs)

ch. n

λo

ch. 1
Optical output

RF Input Integrated
laser, modulator, and filters

Laser EAM



Monolithic Integration and Loss-Limited Filter 
Response

• Optical waveguide losses dominate the filter performance

• Useful passive ring resonant filters are typically made of glasses 
or undoped semiconductors with very low optical loss.

• Ring Filters with losses commonly seen in doped InGaAsP 
waveguides for active PICs have too little optical transmission to 
be useful as GHz-class filters
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A Small Amount of Gain 
Offsets Losses

• SOAs enable monolithic integration

• Introduce an ideal loop gain to each 
filter

– No noise in model, yet

• Ring waveguide loss
– 4 dB/cm

• Loss-less filter achieved 
– 0.5 dB/pass gain element0.3 0.4 0.5 0.6 0.7
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Active Rings : Experimental

Broadband Light 
Source

+
+

polarizer

Optical
Spectrum
Analyzer

• Dual-ring filters
• > 30 dB extinction ratio

• 2.5 GHz linewidth

– ISOA1 = ISOA2 = 1 mA

– Extinction ratio of >30 dB

– Filter loss of 1.7 dB

• Loss defined as total power on resonance compared 
to total power off resonance

• OSA measurement
– Broadband light source

See paper OThW2
Thur. @ 4 pm



Active filter modeling

•Time domain travelling wave 
model of single and multi-ring 
filters

•Semiconductor Optical Amplifier 
(SOA) embedded in each ring

•Local gain and spontaneous 
emission modeled as functions of 
injection current and optical 
power
– Time-dependent rate-equation approach

•Complete power spectra 
computed at each time step



Fraction of SOA spontaneous emission coupled into 
waveguide mode
• Amplified spontaneous emission 

(ASE) noise from SOAs creates a 
noise floor on filter spectra

• ASE noise computation in two steps

• Spontaneous emission 
recombination event

• Coupling of spontaneous emission 
into guided mode of ring

• The spontaneous emission factor 
influences the noise floor due to 
ASE



Model of Active Ring

• Variation of SOA injection current

– Insertion loss drops and bandwidth narrows as SOA current is increased

Radius: 200 um
Couplers: 17% power cross-coupling
Passive guides: 3 cm-1

SOA: 60 um long
7 QW centered, 25C
1 um wide BH
current flow only in the MQW
Spontaneous Coupling: 0.0037

0.1 mW
1.54 +/-Δ um

Bus

Drop

J = 830 A/cm2

I = 0.5 mA

Increasing 
gain

Increasing 
gain



Model of Active Ring

• Operation at very high gain (SOA injected current)

– Negative insertion loss achievable, but very noisy

Radius: 200 um
Couplers: 17% power cross-coupling
Passive guides: 3 cm-1

SOA: 60 um long
7 QW centered, 25C
1 um wide BH
current flow only in the MQW
Spontaneous Coupling: 0.0037

0.1 mW
1.54 +/-Δ um

Bus

Drop

J = 1.67 KA/cm2

I = 1.0 mA



Single Ring Active Filter:
Simulation Benchmark to Experiment

• Complete simulation of dynamic range and noise of active 
InGaAsP multi-ring filters

– Include gain distortions and spontaneous emission noise

• Time dependent rate equation method

– Gain and spontaneous emission modeled as function of injection 
current at all wavelengths simultaneously

Red & black data

Blue & green data



3-ring active filter simulations

I = 2.25 mA

I = 0.5 mA

• For 3-ring maximally flat filters simulate 

– Linewidth, Insertion loss

– Dynamic range and Noise floor

• SOA gain and power saturation depend on key factors

– Number and configuration of QWs and Injected current

– Simulate case of both 3 and 7 QW SOA



InP Filter Dynamic Range

• Active InGaAsP filter shows improved filter transmission compared to passive SiON
design over >30 dB dynamic range

• Spontaneous emission noise in SOAs limits SNR at lowest input optical powers

• SOA saturation causes compression of filter S21 at resonance at high end of input 
power

Compare to passive, SiON filter
loss = 0.2 dB/cm
ideal input coupling
-3 dB input coupling3 rings

3 QW SOAs
Maximally-flat design

Noise floor from SOA 
spontaneous emission

Filter S21 compression
due to SOA gain compression
at high circulating 
optical power



Summary

• Time domain model of active ring with 
SOAs developed

– SOA model includes gain saturation and ASE

• 3-ring filter with 3 and 7 quantum well gain 
sections simulated

– Optical linewidth
– Noise floor
– Linearity and dynamic range of S21 versus input power

• InP active filters show promise for 
frequency-domain signal processing in 
monolithic integrated photonic integrated 
circuits

– 50 dB input dynamic range
• Output compressed at high power

– 0 dB loss in mid range accessible for 1 GHz filters
– Filters with power gain are possible but quickly become limited 

by noise
– Possible methods to improve dynamic range

• Reduce optical confinement factor
– Balance against lower gain or more complex offset 

active lasers in remainder of PIC

• Wider SOAs
• More pump current



Best Fit to C20G10S100, EW1858

• 8 QW offset

• 100 um SOA

• K2 = 0.03

• Loss = 1.4 
cm-1

• P in = 0.005 
mW

• I SOA model
– 0.31 mA

• I SOA exp
– 1 mA

Simulation data is in SOA100_K03_alpha14_8mqw_offset.xls and .mat



Detail Fit to C40G10S20, EW1858

• 8 QW offset

• 20 um SOA

• K2 = 0.06

• Loss = 1.4 
cm-1

• P in = 0.005 
mW

• I SOA model
– 0.12 mA

• I SOA exp
– 0.2 mA

– Pin exp
– 0.2 mW

Simulation data is in SOA20_K06_alpha14_8mqw_offset.xls and .mat

Try a small adjustment 
Spontaneous emission here


